

 ADF Code Corner

Oracle JDeveloper OTN Harvest 04 / 2012

Abstract:

The Oracle JDeveloper forum is in the Top 5 of the most

active forums on the Oracle Technology Network (OTN).

The number of questions and answers published on the

forum is steadily increasing with the growing interest in

and adoption of the Oracle Application Development

Framework (ADF).

The ADF Code Corner "Oracle JDeveloper OTN Harvest"

series is a monthly summary of selected topics posted on

the OTN Oracle JDeveloper forum. It is an effort to turn

knowledge exchange into an interesting read for

developers who enjoy harvesting little nuggets of wisdom.

twitter.com/adfcodecorner http://blogs.oracle.com/jdevotnharvest/

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
30-APR-2012

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2012

2

April 2012 Issue – Table of Contents

How to activate and passivate ADF BC user session data 3

Which option to choose for accessing Web Services in ADF 3

Required vs. showRequired: and what could go wrong 4

Navigate regions using "queueActionEventInRegion" 6

Clear Table Filter upon Navigation ... 8

How-to invoke a method once upon application start........................ 12

Add or remove custom operators in af:query 13

Associating a table with a filter and custom View Criteria 13

OTN Harvest Spotlight - Donovan Sherriffs 15

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

Oracle ADF Code Corner OTN Harvest is a monthly blog series that publishes how-to tips
and information around Oracle JDeveloper and Oracle ADF.

Disclaimer: ADF Code Corner OTN Harvest is a blogging effort according to the Oracle
blogging policies. It is not an official Oracle publication. All samples and code snippets are
provided "as is" with no guarantee for future upgrades or error correction. No support can be
given through Oracle customer support.

If you have questions, please post them to the Oracle OTN JDeveloper forum:
http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83
http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2012

3

How to activate and passivate ADF BC user session data

User session specific information, like a queried user name or account data, can be saved in the Oracle

ADF Business Components session using a call to getUserData() that returns a java.util.HashMap as a

data store. The user data map can be accessed from Java for read and write by calling …

getDBTransaction().getSession().getUserData()

on an ApplicationModule or Entity impl class. Alternative, if user data needs to be referenced from an
attribute or validator in ADF Business Components, you can use Groovy too.

adf.userSession.userData.<the map key>

However, the user specific information in the userData HashMap is not persisted by default when

activation / passivation occurs for application modules that have Application Module pooling enabled,

which means that custom session data may be lost between requests.

Note: Read http://docs.oracle.com/cd/E23943_01/web.1111/b31974/bcstatemgmt.htm#sm0318 to

learn more about application state management in Oracle ADF Business Components. This document

also explains which information automatically gets passivated and activated by the framework.

Avoiding user session data losses: In 2011, Timo Hahn wrote a blog entry in which he explains the

problem of lost user session data and how to solve the problem using explicitly passivation in Java.

http://tompeez.wordpress.com/2011/07/08/jdev-always-test-your-app-with-applicationmodule-pooling-

turned-off/

As a general recommendation, ADF Business Component applications should always be tested for

activation / passivation safety as explained in this document

http://docs.oracle.com/cd/E23943_01/web.1111/b31974/bcstatemgmt.htm#CHDGAIFA

Which option to choose for accessing Web Services in ADF

Oracle ADF provides three options for integrating Web Service:

 Web Service Data Control

 JAX-WS proxy client and POJO Data Control

 JAX-WS proxy client and programmatic View Objects

Note: In the above, I exclude REST services in my recommendation because this is what ADF will

address much better using the URL data control in JDeveloper 11g R2 (available) and with improved

functionality in the upcoming Oracle JDeveloper 12c release.

For deciding which option to use for integrating Web Service, here is what I consider "a good rule of

thumb"

1. Use Web Service Data Control only for simple service like weather reports or stock quotes

http://docs.oracle.com/cd/E23943_01/web.1111/b31974/bcstatemgmt.htm#sm0318
http://tompeez.wordpress.com/2011/07/08/jdev-always-test-your-app-with-applicationmodule-pooling-turned-off/
http://tompeez.wordpress.com/2011/07/08/jdev-always-test-your-app-with-applicationmodule-pooling-turned-off/
http://docs.oracle.com/cd/E23943_01/web.1111/b31974/bcstatemgmt.htm#CHDGAIFA

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2012

4

2. Use JAX-WS proxy client for all more complex services and access them from

a. Programmatic view object and entity if your business service is ADF Business

Components as this allows for better integration with database queried views

i. Use View Objects only for read only access

ii. Use View Objects and Entities for CRUD Web Service integration

b. POJO Data Control

i. If your business service is not ADF BC.

ii. If the WS doesn't require integration into ADF business components

iii. If the WS access should be from a bounded task flow in an ADF library for

maximum reuse

As a general hint of best practice: Never use the JAX-WS generated proxy client directly. Always

access it from a wrapper bean to avoid code losses or problem in cases where the proxy client

needs to be re-generated.

Note: ADF Code Corner published an article explaining how to cache Web Services results

when using JAX-WS proxy clients to avoid unnecessary round trips.

See: http://www.oracle.com/technetwork/developer-tools/adf/learnmore/92-cache-ws-queries-

523136.pdf

Required vs. showRequired: and what could go wrong

The af:inputText component has two properties that you can use to show a icon indicating the field

to be required.

The required property, when set to true always shows an icon next to the field that indicates this field to

be required. If the required property is set to false then, if the showRequired property is set to true, the

required icon also is shown though a required value is not enforced upon field validation.

This said, the showRequired property is a switch to show or hide the required icon in case that an input

field doesn't enforce users to provide a value A use case for when to use the showRequired property is

provided in the tag documentation

" An example of when it can be desirable to use the showRequired property is if you have a field that is initially empty and is

required only if some other field on the page is touched."

http://docs.oracle.com/cd/E23943_01/apirefs.1111/e12419/tagdoc/af_inputText.html

And here's where things can get ugly

One of the ADF Faces layout components, the af:panelLabelAndMessage component also has a

showRequired attribute you set to show a required icon.

http://docs.oracle.com/cd/E23943_01/apirefs.1111/e12419/tagdoc/af_panelLabelAndMessage.html

http://docs.oracle.com/cd/E23943_01/apirefs.1111/e12419/tagdoc/af_inputText.html
http://docs.oracle.com/cd/E23943_01/apirefs.1111/e12419/tagdoc/af_panelLabelAndMessage.html

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2012

5

The af:panelLabelAndMessage layout container is often used to add multiple UI components, like

and input text component and a checkbox or command button, to a cell of an af:panelFormLayout

container.

 <af:panelFormLayout>

 <af:panelLabelAndMessage label="Label" id="plam2" showRequired="true">

 <af:panelGroupLayout id="pgl0" layout="horizontal">

 <af:inputText id="it6" required="false" showRequired="false"/>

 <af:commandButton text="LOV" id="cb1"/>

 </af:panelGroupLayout>

 </af:panelLabelAndMessage>

</af:panelFormLayout>

If the af:inputText component required property is set to true, the rendered output is as shown

below. Now there are two required field icons, which most likely is not what you want. Same is the case if

the required property is false and the showRequired property is true.

How to remove one of the required field icons? The answer to this question is "skinning". The following

skin definition hides the required icon from all input text components

af|inputText::label .AFRequiredIconStyle{display:none}

To only remove the required field icon from some input text fields, you can use a styleClass property as

shown below

<af:inputText id="it6" required="true" showRequired="false" styleClass="noRequiredIcon"/>

The skin definition needs to change to the one shown below to remove the required field icon next to the

text field

.noRequiredIcon af|inputText::label .AFRequiredIconStyle{display:none}

However, you may wonder why the af|inputText ::label selector is still in the statement though

the style class reference probably would be sufficient. In CSS the longest match rules so that adding the

component selector, other components that also have required field icons are not impacted even if they

also have the styleClass="noRequiredIcon" set. This way you can handle the setting/hiding of the

required field icon dependent on the UI component.

Note: the styleClass property can be set dynamically using EL. Using EL you can dynamically set the

style class and thus show/hide the redundant required icon.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2012

6

Navigate regions using "queueActionEventInRegion"

A common requirement in Oracle ADF is to perform navigation within an ADF region triggered by the

parent page. While contextual event is one option to perform this task, the queueActionEventInRegion

method exposed on the RichRegion instance is another.

The queueActionEventInRegion performs navigation following control flow cases defined for the

current view exposed in the region. Control flow cases can be flows that are defined from the view

activity to a next activity or wild card control flow cases.

The easiest way for developers to access the RichRegion instance of an af:region tag is to use its Binding

property and point it to a managed bean. Once you have a handle to the RichRegion, you can perform

navigation from any event raised on the parent view (e.g. menu items action, command button action,

value change events etc.)

The sample code below is invoked from the action property on a command button and performs

navigation to the control flow case name defined in "navigationCase" variable. In a sample application

you can download from here, the navigationCase variable is populated from a af:selectOneChoice

component selection.

//process navigation

public String navPickerAction() {

 //get selected navigation option

 String navigationCase = this.currentNavOption;

 RichRegion region = this.findRegionById("adfRegion1");

 region.queueActionEventInRegion(

 createMethodExpressionFromString(navigationCase),

 null, null,false, 0, 0,

 PhaseId.INVOKE_APPLICATION);

 return null;

}

//Create Method expression

private MethodExpression createMethodExpressionFromString(String s){

 FacesContext fctx = FacesContext.getCurrentInstance();

 ELContext elctx = fctx.getELContext();

 ExpressionFactory exprFactory =

 fctx.getApplication().getExpressionFactory();

 MethodExpression methodExpr = exprFactory.createMethodExpression(

 elctx,

 s,

 null,

 new Class[]{});

 return methodExpr;

}

Another useful method on the RichRegion instance is the ability to peek into the region for control flow

cases defined for the current view.

The following code is from the downloadable sample and reads the control flow cases for a view into a

list of SelectItem used in an af:selectOneChoice

//read the navigation case list from the region capabilities

public ArrayList<SelectItem> getNavlist() {

 RichRegion region = this.findRegionById("adfRegion1");

https://blogs.oracle.com/jdevotnharvest/resource/QueueActionEvent.zip

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2012

7

 Set<String> capabilities =

 region.getRegionModel().getCapabilities();

 navlist = new ArrayList<SelectItem>();

 for(String navcase : capabilities){

 SelectItem item = new SelectItem();

 item.setLabel(navcase);

 item.setValue(navcase);

 navlist.add(item);

 }

 return navlist;

}

The select one choice in component in the sample always shows the control flow cases that are defined

for the current view in the ADF Region (just for fun, you may want to add some wild card navigation

flows in the task flow and then re-run the application to see that the control flow cases are dynamically

looked up).

Get the sample application from here and make sure you configure the database connect to point to the

HR schema of your local Oracle database.

Download Oracle JDeveloper 11.1.1.6 sample

See also: "Reference : Initiate Control Flow Within A Region From Its Parent Page Functional Pattern"

http://www.oracle.com/technetwork/developer-tools/adf/queueactioneventinregion-155252.html

https://blogs.oracle.com/jdevotnharvest/resource/QueueActionEvent.zip
http://www.oracle.com/technetwork/developer-tools/adf/queueactioneventinregion-155252.html

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2012

8

Clear Table Filter upon Navigation

The following behavior can be observed in Oracle ADF for dependent view objects displayed on different

ADF Faces views.

A user filters the result set displayed in an ADF bound table using the table filter feature. In the screen

shot above, the table shows a single department, which also is marked as the current. To view and work

on the dependent detail collection for the selected row, the application user presses a navigation button.

As expected, the dependent collection shows employees for the selected department. The screen shot also

shows a command button for the user to press for navigating back to the previous page, which …

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2012

9

Still shows the parent table as it was left, including the table filter settings. Good if this is the way you

want it. However, what if you want the table and filter to be reset upon back navigation.

To implement the reset, there are two things that need to be done independently from each other

 The table filter needs to be cleared

 The filtered table needs to be reset

To start with the first task, clearing the table filter can be handled easily in a managed bean referenced

from the "Next Page" button action property. For this, the table Binding property too needs to reference

the managed bean so that the code has access to the RichTable instance.

public String onGoEmp() {

 //access the Rich Tableinstance created for this managed bean

 //through the table Bindings property

 RichTable table = this.getDepartmentsTable();

 //get the table filter model

 FilterableQueryDescriptor filterDescriptor =

 (FilterableQueryDescriptor)table.getFilterModel();

 //sweap the filter

 filterDescriptor.getFilterCriteria().clear();

 //perform navigation to the detail page

 return "goEmp";

}

The code above does take care for the table filter to no longer show the search criteria the user entered.

The next task is to undo the filter, which can be done declaratively after creating and exposing a client

method on the View Object.

When you create an ADF bound table with the filter feature enabled, Oracle JDeveloper creates a search

binding in the executable section of the PageDef file.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2012

10

The search binding is referenced by the query listener that is automatically configured in the ADF Faces

table properties to implicitly apply a default view criteria to the underlying collection. This view criteria

needs to be removed for the table before re-executing the query.

As the view criteria is added to the query (and thus the View Object), it makes sense to expose the client

method to unset the default view criteria on the View Object impl class and not the Application Module.

In the sample used for this tip, the DeptVOImpl class is built and used to expose the method shown

below.

public void clearOutstandingImplicitViewCriteria() {

 // we only want to remove the stuff that was added though the table

 //filter (or a default search form)

 // "__ImplicitViewCriteria__" is the magic name for this VC

 ViewCriteria vcDefault = this.getViewCriteria(

 ViewCriteriaManager.IMPLICIT_VIEW_CRITERIA_NAME);

 if (vcDefault != null) {

 //Clear the stored values

 vcDefault.clear();

 //And refresh the collection

 this.executeQuery();

 }

}

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2012

11

Once the method is exposed on the ADF Business Components client interface from where it displays in

the ADF Data Controls panel.

You can now drag the method from the Data Control panel to the "Next Button" command button so it

is referenced in its ActionListener property. The PageDef file is updated as shown below.

The command button is updated as shown below so that upon navigation the filtered query is always reset

Note that the code doesn't need to be called on navigation to the detail page but could also be called

from a command button on the page so that after PPR of the table, the filter is reset.

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2012

12

How-to invoke a method once upon application start

A requirement on the OTN forum was to execute a method only once upon application start either for

the application as a whole (all user instances) or once per application user session. In addition, the method

to be executed was exposed as an Operation binding on the ADF binding layer.

One way to provide a solution to this requirement is to within the combination of a phase listener on the

JSPX of JSF document level and a managed bean in application or session scope (dependent on whether

the method should be executed once per application start or once per application user session).

The phase listener can be configured on a JSF document, as mentioned or in the faces-config.xml

file if there is no single entry to an application. For this example, we assume a single point of entry so that

the phase listener can be configured on the f:view attribute.

<f:view beforePhase="#{ManagedBean.onBeforePhase}">

The event logic is configured in a bean in request scope so it could also hold component references for

the page if required.

public void onBeforePhase(PhaseEvent phaseEvent) {

 //render response is called on an initial page request

 if(phaseEvent.getPhaseId() == PhaseId.RENDER_RESPONSE){

 FacesContext fctx = FacesContext.getCurrentInstance();

 ELContext elctx = fctx.getELContext();

 ExpressionFactory exprFactory =

 fctx.getApplication().getExpressionFactory();

 //call the managed bean in application or session scope. If the

 //bean instance already exists, then no new instance of it will be

 //created,in which case the "initial load" method is not executed

 ValueExpression ve = exprFactory.createValueExpression(

 elctx,

 "#{your_managed_bean_in_application_or-session_scope",

 Object.class);

 ve.getValue(elctx);

 }

}

The idea for this phase listener is to reference a managed bean in application scope or session scope base

on your requirement. The managed bean in session or application scope invokes the method you want to

invoke once per application or user session in its post construct method

//Managed Bean in application scope

import javax.annotation.PostConstruct;

...

@PostConstruct

 public void methodInvokeOncedOnPageLoad(){

 //access the methods you want to invoke. If they are exposed in the

 //PageDef file, access the BindingContext --> BindingContainer -->

 //OperationBinding. Alternatively you can call BindingContext -->

 //findDataControl("Name as in DataBindings.cpx") -->

 //getApplicationModule --> findViewObject/Execute methods

 }

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2012

13

Note that the Java EE @PostConstruct bean is called once for each bean instantiation. In the managed

bean case, the bean is instantiated once per application or session and so is the method executed once.

Add or remove custom operators in af:query

Under the same header in the Oracle® Fusion Middleware Fusion Developer's Guide for Oracle

Application Development Framework product documentation you find information about hiding

operators from a View Criteria so they don't show in a query component

http://docs.oracle.com/cd/E14571_01/web.1111/b31974/web_search_bc.htm#ADFFD2457

With the information provided, you can create custom operators for each view criteria item by adding

code to the view object XML file or remove default operator, for example

<ViewCriteriaRow

 Name="vcrow0"

 UpperColumns="1">

 <ViewCriteriaItem

 Name="JobId"

 ViewAttribute="JobId"

 …

 Required="Optional">

 <CompOper

 Name="LessThan"

 ToDo="-1"

 Oper=" <= ">

 </CompOper>

 </ViewCriteriaItem>

 …

 </ViewCriteriaRow>

A complete list of Oper property values is available from here:

http://docs.oracle.com/cd/E15051_01/apirefs.1111/e10653/constant-values.html

Hint: Search for the oracle.jbo.common.JboCompOper header

Jang Vijay Singh who originally posted the question on the OTN forum wrote a comprehensive blog

summary about this topic, which I recommend you to read from here:

http://weblog.singhpora.com/2012/04/how-to-showhide-operators-in-adfquery.html

Associating a table with a filter and custom View Criteria

Often developers initially create ADF table without the table filter option. To implement table filters later,

follow the steps outlined below

1. In the visual editor, select the table and open the Property Inspector (make sure the table and not

a column is selected.

http://docs.oracle.com/cd/E14571_01/web.1111/b31974/web_search_bc.htm#ADFFD2457
http://docs.oracle.com/cd/E15051_01/apirefs.1111/e10653/constant-values.html
http://weblog.singhpora.com/2012/04/how-to-showhide-operators-in-adfquery.html

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2012

14

2. In the property inspector header, press the "pencil icon" (tooltip says "Edit Component

Definition")

3. In the opened dialog, enable the filter option

4. Press ok

This configures the table with a filter header and default view criteria condition. To filter the table

with custom view criteria defined on the underlying View Object.

5. Select the "Bindings" tab

6. In the Executables section, select the search binding (magnifier icon)

7. In the Property Inspector set the "Criteria" property to the name of a named where clause

defined on the View Object

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2012

15

ADF Code Corner

OTN Harvest Spotlight
- Donovan Sherriffs

"Development should not be difficult"

 -Donovan Sherriffs

Blog: http://javaosdev.blogspot.co.uk/

Twitter:

ACC: What is your current role?

DS: I am currently a ADF consultant working at ITQ in South Africa specializing in Oracle Forms

modernization with a side serving of service integration. My responsibilities include Oracle

ADF and Java EE development, team leadership, architecture and training.

ACC: What is your IT background?

DS: After obtaining my Information Technology qualification I started off (back in the 90's)

developing web based C++ and ASP internet/ intranet sites.

After a brief flirtation with these technologies I move into the Java space where I stayed for a

good number of years (working with most databases, application servers, frameworks and buzz

words along the way) from Java 1.1 until today.

I have had the privilege of working on all types of systems in various industries from large scale

integration projects in the public sector, a BI solution for a small corporate, a high volume

transactional equities settlement system, client focused online banking system to name a few.

The last few years have been working with ADF mostly kicking off Oracle Forms

modernization projects.

I have worked as a developer, project manager, and architect and have played most roles in the

software development life cycle. But my passion is for solving complex technical problems and

improving developer productivity through the use of frameworks, standards and patterns.

ACC: How do you currently use Oracle JDeveloper and ADF?

DS: JDeveloper is the standard IDE for all development done in our environment (Java EE, ADF

and SOA suite). It is what I live and breathe on a day to day basis. My current focus is rewriting

an internal Oracle Forms system of over a thousand forms (ADF using Business Components).

http://javaosdev.blogspot.co.uk/

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2012

16

ACC: So far, what has been your biggest challenge in building Java EE application with Oracle ADF?

DS: I think this really a matter of understanding best practice. When first approaching an ADF

implementation we made a few fundamental mistakes on our first try.

Also overcoming the learning curve for Java developers can be steep but steeper for Oracle

Forms developers. With a framework of this magnitude you need to know how to use it to best

suite you.

ACC: Which feature of ADF was the greatest benefit to your project?

DS: Definitely the ease of development features and rich set of UI components with PPR.

ACC: Away from the on line help, what have been your most valuable sources of ADF knowledge?

DS: I have to give big round of applause to the community! They are very active and very helpful.

The OTN forum and blogs out there are filled with helpful hints and tips.

ACC: By your experience and as estimation, how long does it take for new developer to learn ADF?

DS: Depends on the developer. Really, it's something that takes a short amount of time to be

productive and a long time to master. So we have had developers who embrace the technology

with lots of JSF experience become very productive in a month.

ACC: What do you recommend as a starting point and path to learn Oracle ADF?

DS: If you have no Java experience I suggest a Java and Java EE set of tutorials.

For an individual with Java background doing some of the online tutorials really helps.

After that I would say "build something throw it away then build it better (there is no
replacement for experience with these tools)".

If you are embarking on a large scale project get expert advice early.
ACC: What are your top 3 ADF best-practices for ADF developers?

DS: 1. Use a proxy for all service calls

2. Work with the framework, things work better if you use what ADF gives you in the
way it was intended

3. Consider clustering, multiple languages, error handling and plumbing related issues
early in the process

ACC: Name 3 ADF anti patterns or gotchas to avoid?

DS: 1. ADF is a vast framework there is always a temptation to use everything it gives you, try
to keep it simple.

2. Repeating yourself: Use templates and declarative components to avoid doing the same
thing over and over etc.

3. God-like objects in the usage of application module classes

ADF CODE CORNER
OTN ORACLE JDEVELOPER FORUM HARVEST
04 / 2012

17

ACC: How do you see the market for ADF developing for the local area you live and work in?

DS: ADF has been slow starter in South Africa, but I have recently seen a bit more momentum in
the space. South Africa is a price sensitive environment and most of the Java work is in open
source technologies but there is a lot of interest in the productivity gains ADF provides.

So I think ADF could make some good headway if it is seen as a Java development platform
rather than something you rewrite Oracle Forms in or use with SOA suite etc.

Also I have noticed a reluctance in Java developers to use ADF as a tool for developing Java
based systems. My opinion is that ADF allows you to focus on solving the exciting technical
issues instead of mundane tasks by giving you significant set of productivity tools.

Once you have mastered ADF it will be a hard task to drag yourself back to building with any
other framework. Give it a try.

ACC: ADF Genie grants you a wish, what would you ask for?

DS: This may be controversial but I wish for a more open and lightweight ADF environment. This
would include

 rich Maven support

 list-of-values based on Pojo's or services, enhancing the Pojo data control

 allowing development on multiple IDEs .

 In this way the ADF framework based approach could promulgate through the Java
development community and allow other developers to contribute and enjoy the benefits of
building application rapidly. This could pave the way forward for ADF becoming the de facto
standard for Java development.

ACC: Thank you Donovan

RELATED DOCOMENTATION

