
1

Oracle® Business Intelligence Publisher
Using Oracle BI Publisher Extension for Oracle JDeveloper

11g Release 1 (11.1.1)

E48204-01

March 2014

This document describes how to add a BI Publisher report to an Oracle Application Development Framework
(ADF) application for Oracle Fusion Applications using Oracle JDeveloper.

It includes the following sections:

■ Section 1, "Including Oracle BI Publisher Reports in ADF Applications"

■ Section 1, "Installing the BI Publisher Extension"

■ Section 2, "Adding BI Publisher Content to an ADF Project"

■ Section 3, "Deploying and Running the Application"

■ Section 4, "Passing Parameters from the Application Page"

■ Section 5, "Using a Push Data Model"

■ Section 6, "Conditionally Required Settings"

■ Section 7, "Documentation Accessibility"

1 Including Oracle BI Publisher Reports in ADF Applications
BI Publisher provides an integration with Oracle Application Development Framework (ADF) that enables you
to embed a BI Publisher report in an application (JSF) page for Oracle Fusion Applications. At runtime, your
application sends a web service request to the BI Publisher server to run a report in the BI Publisher catalog
and retrieve the output to display in your application page. The data for your report can be generated by the BI
Publisher data engine, or you can push data from another source to the BI Publisher report formatting engine.
The integration also supports passing parameters from your application page back to the BI Publisher server.

To facilitate development of your application, BI Publisher provides an extension to JDeveloper. The extension
enables you to drag and drop a report region to your page and establish the connection between this region
and the BI Publisher server. The extension also enables you to define aspects of the report format and to set
properties for the region.

This integration is illustrated in Figure 1.

Note: This document assumes familiarity with Oracle Application
Development Framework (ADF) and Oracle JDeveloper. For more
information about these see:

■ Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework

■ Oracle JDeveloper 11g Online Help

2

Figure 1 Design Time and Run-Time Interaction Between BI Publisher and ADF

As shown in the figure, during design time, the BI Publisher extension establishes the connection between your
page and the BI Publisher server and enables you to set properties for your report region. After deploying your
application, at run time, the ADF application uses a web service to run and retrieve the BI Publisher report
back to your page.

The Oracle BI Publisher and ADF JDeveloper integration is available from the Oracle Fusion Applications
Development Environment extension bundle. For more information about obtaining this bundle, see the Oracle
Fusion Applications Developer's Guide.

2 Adding BI Publisher Content to an ADF Project
After you install the BI Publisher extension you can create a project that includes a BI Publisher report region.
The following procedures describe how to add BI Publisher content to an ADF project:

■ Section 2.1, "Adding the BI Publisher Technology Scope"

■ Section 2.2, "Adding a BI Publisher Region to the JSF Page"

■ Section 2.3, "Configuring Connection to the BI Publisher Server"

■ Section 2.4, "Setting Properties for the BI Publisher Region"

2.1 Adding the BI Publisher Technology Scope
To display the BI Publisher options, add the BI Publisher technology scope to your project.

1. In Oracle JDeveloper, go to the Projects Pane and right-click the project to which you want to add the
technology scopes and select Project Properties.

2. Select Technology Scope.

3. In the Available Technologies list, select BI Publisher as shown in Figure 2:

3

Figure 2 Selecting the BI Publisher Technology Scope

4. Click the right shuttle button to add BI Publisher and its dependent technologies to your project.
Dependent technologies are moved together. Figure 3 shows the results of this action.

Figure 3 BI Publisher and Dependent Technologies

5. Click Finish.

2.2 Adding a BI Publisher Region to the JSF Page
The BI Publisher region must reside on a JSF page. To add a JSF page to your project:

4

1. Right-click your project and select New.

2. From the Gallery dialog, on the Categories pane, under Web Tier, select JSF.

3. From the items presented in the right pane, select JSF Page, as shown in Figure 4.

Figure 4 Selecting a JSF Page

4. On the Create JSF Page dialog, enter a name for your JSF page. Oracle recommends selecting Create as
XML Document to create an XML-based JSP document (extension.jspx).

Figure 5 Create JSF Page Dialog

5

5. From the Component Palette list, select BI Publisher, as shown in Figure 6.

Figure 6 Component Palette List

6. Drag and drop the BI Publisher Region component from the palette to the page.

7. Once the BI Publisher Region is dropped to the JSPX page, the Insert BI Publisher Region dialog, shown
in Figure 7, prompts you to enter a region ID for the BI Publisher Region.

Note: The region ID must be unique and must not include the underscore "_" character.

Figure 7 BI Publisher Region Dialog

Click OK. When you insert the BI Publisher region notice the following:

■ A placeholder image displays in the BI Publisher region of your page.

■ The BI Publisher configuration file, /WEB-INF/xmlp-client-config.xml is created. Click Refresh on
the Projects pane if it does not display immediately.

■ The Property Inspector presents the BI Publisher region properties when the BI Publisher region is
selected.

Figure 8 shows these items:

6

Figure 8 Report Image, Configuration File, and Property Inspector

8. In the Property Inspector, under the Appearance region, enter the report region Width and Height in px to
specify the size of the report region in your application page. For example 1000 px and 800 px. No defaults
are assigned for height and width, so ensure that you set these fields.

2.3 Configuring Connection to the BI Publisher Server
To establish a connection to the BI Publisher server, update the xmlp-client-config.xml file under Project >
Web Content > WEB-INF with the connection information as follows:

1. Double-click xmlp-client-config.xml to open the file for editing.

Figure 9 shows the sample xmlp-client-config.xml file.

Figure 9 Entering the Connection Keys

7

2. Update the properties (keys) as shown in the following example. Add the properties not found in the
default file.

The sample xmlp-client-config.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
 <comment>BIP Server Information</comment>
 <entry key="bipuri">http://example.com:7001/xmlpserver</entry>
 <entry key="username">username</entry>
</properties>

■ bipuri - enter the URL for the BI Publisher server. This may be behind a firewall. For example:
http://hostname.com:7001/xmlpserver

■ username - enter the secure user name to connect to BI Publisher. This user is the authenticated user
used to connect from your application to BI Publisher.

■ password- for the BI Publisher user name entered above

2.4 Setting Properties for the BI Publisher Region
The following properties are available in the Property Inspector:

Table 1 Common Properties

Property Description

Id The unique ID for the BI Publisher region. You assign this ID
when you insert the BI Publisher region to your page. The ID
must not contain spaces.

Report Path The path to the report in the BI Publisher catalog. Reports have
the extension ".xdo". Begin the path from the first level beneath
"Shared Folders," but do not include "Shared Folders." For
example: "/Samples/1.+Overview/Balance+Letter+Report.xdo"

Rendered The control to show or hide the BI Publisher region when the
page is rendered.

The default is true (show).

Table 2 Advanced Properties

Property Description

Layout Name The layout from the report definition to apply to the report data.
For example, "My Layout". If you do not specify a value here the
default layout from the report definition is used.

OutputFormat Sets the default output format. See Table 4 for the list of valid
values. If you do not specify a value here the default output
format from the report definition is used.

Parameters To pass parameters from your application page to the BI
Publisher report, use this property to specify the backing bean
that captures the parameter values. Use the Expression Builder
to populate this field. For example:

#{UIBackingBean.parameters}

See Section 4, "Passing Parameters from the Application Page"
for information.

8

ReportData If your report uses a push data model, use this property to
specify the backing bean that contains the method that defines
the report data location. Use the Expression Builder to populate
this field. For example:

#{UIBackingBean.reportData}

See Section 5, "Using a Push Data Model" for more information.

Locale Enter a default locale format using the ISO language
code-country code combination, for example en-US.

Table 3 Appearance Properties

Property Description

Width Sets the report region width. Enter the value in pixels, for
example, 1000 px.

Height Sets the report region height. Enter the value in pixels, for
example, 800 px.

RenderActionPanel Specifies whether to show or hide the report viewer action
panel. The default is true.

Note that if you set this to false, you must set
renderReportOnLoad to true.

RenderFormatList Specifies whether to show or hide the output Format List. The
default is true.

RenderLocaleList Specifies whether to show or hide the Locale List. The default is
true.

RenderReportOnLoad When set to true, the report is generated when the ADF page is
launched. The default is true.

Table 4 Valid Values for OutputFormat

Output Format

Value to Enter for
OutputFormat
Property Template Types That Can Generate This Output Format

Interactive N/A Not supported

HTML html BI Publisher, RTF, XSL Stylesheet (FO)

PDF pdf BI Publisher, RTF, PDF, Flash, XSL Stylesheet (FO)

RTF rtf BI Publisher, RTF, XSL Stylesheet (FO)

Excel (mhtml) excel BI Publisher, RTF, Excel, XSL Stylesheet (FO)

Excel (html) excel2000 BI Publisher, RTF, Excel, XSL Stylesheet (FO)

Excel (*.xlsx) xlsx BI Publisher, RTF, XSL Stylesheet (FO)

PowerPoint (mhtml) ppt BI Publisher, RTF, XSL Stylesheet (FO)

PowerPoint (.*pptx) pptx BI Publisher, RTF, XSL Stylesheet (FO)

MHTML mhtml BI Publisher, RTF, Flash, XSL Stylesheet (FO)

PDF/A pdfa BI Publisher, RTF, XSL Stylesheet (FO)

PDF/X pdfx BI Publisher, RTF, XSL Stylesheet (FO)

Table 2 (Cont.) Advanced Properties

Property Description

9

3 Deploying and Running the Application
To deploy and run the application, first copy the required libraries to the client where JDeveloper is installed
and then follow the deployment steps.

■ Copy Libraries

■ Deploy the Application

Copy Libraries
1. Ensure that Oracle Business Intelligence Publisher shared libraries are installed on your target WebLogic

Server instance.

■ oracle.xdo.runtime: $MW_HOME/jdeveloper/xdo/lib/xdoruntime.ear

■ oracle.xdo.webapp: $MW_HOME/jdeveloper/xdo/lib/xdowebapp.war

2. When the shared libraries are installed, you can see them in the WebLogic Server console as shown in
Figure 10.

Figure 10 Libraries Shown in WebLogic Server Console

Deploy the Application
To deploy and run the application:

Zipped PDFs pdfz BI Publisher, RTF, PDF, XSL Stylesheet (FO)

FO Formatted XML xslfo BI Publisher, RTF, XSL Stylesheet (FO)

Data (XML) xml BI Publisher, RTF, PDF, Excel, Flash, XSL Stylesheet (FO),
Etext, XSL Stylesheet (HTML XML/Text)

Data (CSV) csv BI Publisher, RTF, PDF, Excel, Flash, XSL Stylesheet (FO),
XSL Stylesheet (HTML XML/Text), Etext

XML xml XSL Stylesheet (HTML XML/Text)

Text text XSL Stylesheet (HTML XML/Text), Etext

Flash flash Flash

Table 4 (Cont.) Valid Values for OutputFormat

Output Format

Value to Enter for
OutputFormat
Property Template Types That Can Generate This Output Format

10

1. From Project Properties, click Deployment, click New and enter a value for the J2EE application name.
Figure 10 shows the Create Deployment Profile dialog.

Figure 11 Create Deployment Dialog

2. Click WEB-INF/lib. BI Publisher Runtime does not have to be included so long as weblogic.xml and
weblogic-application.xml are properly configured. Figure 12 shows libraries selected for deployment.

Figure 12 Libraries Selected for Deployment

11

3. Add a shared library reference to weblogic.xml and weblogic-application.xml as shown in Figure 13
and Figure 14.

Figure 13 Library Entry in weblogic.xml

Figure 14 Example weblogic-application.xml

4. From the JDeveloper menu, select Run > Start Server Instance. Do not run the JSPX page directly.

5. Right-click the application and select Deploy - (your BIP ADF Application name) - to
IntegratedWLSConnection as shown in Figure 15. Make sure the BIP ADF Application deployment profile
has your J2EE application name (webapp21 in this example) selected on Application Assembly.

12

Figure 15 Deploying an Application to a Connection

The deployment completed message displays in the Log window.

6. Open your browser and enter http://<hostname>:<port>/j2eeWebAppName/faces/report.jspx in the
address field. When the page launches, the contents display according to the settings you defined for
RenderActionPanel, RenderFormatList, RenderLocaleList, and RenderReportOnLoad.

Figure 16 shows an example display when RenderActionPanel, RenderFormatList, and RenderLocaleList
are set to true and RenderReportOnLoad is set to false. The Template list, Output Format list, and Locale
list display and can be updated by the user. To render the report, the user must click Go.

Figure 16 Displayed Fields

7. Click Go. Your report displays, as shown in Figure 17.

13

Figure 17 Generated Report

4 Passing Parameters from the Application Page
You can pass parameters entered from your application page to the report using a backing bean. The BIP region
tag must define the parameters property and bind it to the backing bean method as shown:

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
 xmlns:xdo="http://xmlns.oracle.com/xdo/faces">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <f:view>
 <af:document id="d1">
 <af:form id="f1">
 <p>
 <af:inputText label="Employee ID" id="it1"
 binding="#{UIBackingBean.empId}"/>
 </p>
 <p>
 ?[34m|
 </p>
 <p>
 <af:separator id="s1"/>
 </p>
 <xdo:BIPRegion id="bipregion1" reportId="/Samples/Overview/Balance+Letter+Report.xdo"
 width="1000px" height="800px"
 parameters="#{UIBackingBean.parameters}" reportData=""/>
 <f:facet name="second"/>
 </af:form>
 </af:document>
 </f:view>
</jsp:root>
Specify the backing bean in the Parameters property of the Property Inspector. See Table 2, " Advanced
Properties" for more information.

5 Using a Push Data Model
Some reports require XML data from a source other than a BI Publisher data model. For this requirement, you
can push data to the BI Publisher server to use as input for your report. For this scenario, store the data in a
location that is accessible by your application and create a backing bean that defines the getter method to

14

retrieve the report data from its stored location. You still define the Report Path, Layout Name and other
properties for the report as defined on the BI Publisher server.

The BIPRegion tag must define the reportData property for the tag, and bind it to the backing bean method.
The following sample code shows this binding:

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
 xmlns:xdo="http://xmlns.oracle.com/xdo/faces">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <f:view>
 <af:document id="d1">
 <af:form id="f1">
 <xdo:BIPRegion id="id3"
 reportId="/Samples/Overview/Balance+Letter+Report.xdo"
 width="1000px" height="800px"
 reportData="#{UIBackingBean.reportData}"/>
 </af:form>
 </af:document>
 </f:view>
</jsp:root>

The following code sample shows the UIBackingBean class referenced in the previous sample:

package fusionApp;
import java.io.RandomAccessFile;
import java.util.Hashtable;
import java.util.Properties;
import oracle.adf.view.rich.component.rich.input.RichInputText;
public class UIBeackingBean {
 private RichInputText empId;
 private Properties mParameters;
 private byte[] reportData;

 public UIBeackingBean() {
 mParameters = new Properties();
 reportData = null;
 }

 public void setEmpId(RichInputText empId) {
 this.empId = empId;
 }

 public RichInputText getEmpId() {
 return empId;
 }

 public Hashtable getParameters() {
 if(empId != null && empId.getValue() != null)
 {
 mParameters.put("userid", new String[]{empId.getValue().toString()});

 String[] values = (String[])mParameters.get("userid");
 System.out.println("getParameters() is called : " + values[0]);
 }
 return mParameters;
 }

15

 public byte[] getReportData() {

 String dataFile = "/tmp/reportData.xml";
 try
 {
 RandomAccessFile raf = new RandomAccessFile(dataFile, "r");
 reportData= new byte[(int)raf.length()];

 raf.read(reportData);
 raf.close();
 //write this to temp
 java.io.FileOutputStream outStream = new
 java.io.FileOutputStream("/tmp/output_reportData");
 outStream.write(reportData);
 outStream.close();

 } catch (Exception e) {
 System.out.println("Error reading file : " + e.getMessage());
 }
 return reportData;

 }
}
To define a push data model:

1. Create a backing bean class that defines the getter method that retrieves your data from its stored location.

2. In JDeveloper, create the BIP Region for your page and specify all properties for the report that you wish to
run on the BI Publisher server (Report Path, Layout Name, Output Format, and so on).

3. In the Property Inspector, for the ReportData property, enter the expression that defines the variable to pass
to the backing bean method to call the appropriate getter method to retrieve the report data from its stored
location. Use the Expression Builder to build the unified expression language (EL) syntax.

6 Conditionally Required Settings
Depending on the type of report you are running you may need to make other settings for your reports to run
as expected.

This section contains the following topics:

■ Section 6.1, "Setting the MIME Types for Your Report Output Type"

6.1 Setting the MIME Types for Your Report Output Type
To ensure that all the output types can be successfully generated from your page, add the MIME-type
mappings to the web.xml file. Typically you only need to add the MIME-type mappings for Excel output.

To add the MIME-type mappings:

1. Double-click the Project web.xml file to open it for editing.

2. Expand the MIME mappings region.

3. Click Add.

4. In the Property Inspector, enter the following:

16

■ extension - (Required) Enter the file name extension of the document type you want to map to a
particular MIME type for your web application. For example, pdf. This field corresponds to the
<extension> tag of the <mime-mapping> subelement.

■ mime-type - (Required) Enter the document MIME type that you want to map to the specified file
name extension. For example, application/pdf for Adobe's Portable Document Format. This field
corresponds to the <mime-type> tag of the <mime-mapping> subelement. Note, the official registry of
Internet MIME types is managed by the Internet Assigned Numbers Authority (IANA) at
www.iana.org.

The following table shows the required MIME types to generate the Microsoft Excel output options
supported by BI Publisher:

7 Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Oracle Business Intelligence Pubisher Using the Oracle Business Intelligence Publisher Extension for Oracle JDeveloper , 11g Release 1 (11.1.1)
E48204-01

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or
display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S.
Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use,
duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation,
shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications,
including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate failsafe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The
Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not
responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for
any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Extension Mime-Type

xls application/vnd.ms-excel

xlsx application/vnd.openxmlformatsofficedocument.spreadsheetml.sheet

xlsm application/vnd.ms-excel.sheet.macroEnabled.12

mhtml message/rfc822

	1 Including Oracle BI Publisher Reports in ADF Applications
	2 Adding BI Publisher Content to an ADF Project
	2.1 Adding the BI Publisher Technology Scope
	2.2 Adding a BI Publisher Region to the JSF Page
	2.3 Configuring Connection to the BI Publisher Server
	2.4 Setting Properties for the BI Publisher Region

	3 Deploying and Running the Application
	4 Passing Parameters from the Application Page
	5 Using a Push Data Model
	6 Conditionally Required Settings
	6.1 Setting the MIME Types for Your Report Output Type

	7 Documentation Accessibility

