
Pro EJB 3
Java Persistence API

■ ■ ■

Mike Keith

Merrick Schincariol

Keith_6455FRONT.fm Page i Tuesday, April 11, 2006 4:29 PM

Pro EJB 3: Java Persistence API

Copyright © 2006 by Mike Keith and Merrick Schincariol

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-645-6

ISBN-10 (pbk): 1-59059-645-5

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Steve Anglin
Technical Reviewer: Jason Haley, Huyen Nguyen, Shahid Shah
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Julie M. Smith
Copy Edit Manager: Nicole LeClerc
Copy Editor: Hastings Hart
Assistant Production Director: Kari Brooks-Copony
Production Editor: Laura Esterman
Compositors: Pat Christenson and Susan Glinert Stevens
Proofreader: Elizabeth Berry
Indexer: Julie Grady
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.
You will need to answer questions pertaining to this book in order to successfully download the code.

Keith_6455FRONT.fm Page ii Tuesday, April 11, 2006 4:29 PM

v

Contents at a Glance

Foreword . xv

About the Authors . xvii

About the Technical Reviewers . xix

Acknowledgments . xxi

Preface . xxiii

■CHAPTER 1 Introduction . 1

■CHAPTER 2 Getting Started . 17

■CHAPTER 3 Enterprise Applications . 35

■CHAPTER 4 Object-Relational Mapping . 71

■CHAPTER 5 Entity Manager . 111

■CHAPTER 6 Using Queries . 163

■CHAPTER 7 Query Language . 191

■CHAPTER 8 Advanced Object-Relational Mapping . 221

■CHAPTER 9 Advanced Topics . 257

■CHAPTER 10 XML Mapping Files . 299

■CHAPTER 11 Packaging and Deployment . 335

■CHAPTER 12 Testing . 353

■CHAPTER 13 Migration . 385

■APPENDIX Quick Reference . 411

■INDEX . 433

Keith_6455FRONT.fm Page v Tuesday, April 11, 2006 4:29 PM

vii

Contents

Foreword . xv

About the Authors . xvii

About the Technical Reviewers . xix

Acknowledgments . xxi

Preface . xxiii

■CHAPTER 1 Introduction . 1

Java Support for Persistence . 2
JDBC . 2

Enterprise JavaBeans. 2

Java Data Objects . 3

Why Another Standard? . 4

Object-Relational Mapping . 5

The Impedance Mismatch . 6

The Java Persistence API . 12

History of the Specification . 12

Overview . 13

Summary . 15

■CHAPTER 2 Getting Started . 17

Entity Overview . 17

Persistability . 17

Identity . 18

Transactionality. 18

Granularity . 18

Entity Metadata . 19

Annotations . 19

XML . 19

Configuration by Exception . 20

Creating an Entity . 21

Automatic State Mapping . 22

Keith_6455FRONT.fm Page vii Tuesday, April 11, 2006 4:29 PM

viii ■C O N T E N T S

Entity Manager . 23

Obtaining an Entity Manager . 24

Persisting an Entity . 25

Finding an Entity . 26

Removing an Entity . 27

Updating an Entity. 28

Transactions . 28

Queries . 29

Putting It All Together . 30

Packaging It Up . 33

Persistence Unit . 33

Persistence Archive . 34

Summary . 34

■CHAPTER 3 Enterprise Applications . 35

Application Component Models . 35

Session Beans . 37

Stateless Session Beans . 37

Stateful Session Beans . 41

Message-Driven Beans . 44

Defining a Message-Driven Bean . 44

Servlets . 45

Dependency Management . 46

Dependency Lookup . 47

Dependency Injection . 49

Declaring Dependencies . 51

Transaction Management . 54

Transaction Review . 54

Enterprise Transactions in Java . 55

Using Java EE Components . 60

Using a Stateless Session Bean . 61

Using a Stateful Session Bean . 61

Using a Message-Driven Bean . 63

Adding the Entity Manager . 64

Putting It All Together . 65

Defining the Component . 65

Defining the User Interface . 67

Packaging It Up . 68

Summary . 68

Keith_6455FRONT.fm Page viii Tuesday, April 11, 2006 4:29 PM

■C O N T E N T S ix

■CHAPTER 4 Object-Relational Mapping . 71

Persistence Annotations . 71

Accessing Entity State . 72

Field Access . 72

Property Access . 73

Mapping to a Table . 74

Mapping Simple Types . 75

Column Mappings . 76

Lazy Fetching . 77

Large Objects . 79

Enumerated Types . 79

Temporal Types . 81

Transient State . 82

Mapping the Primary Key . 83

Identifier Generation . 83

Relationships . 88

Relationship Concepts . 89

Mappings Overview . 92

Single-Valued Associations . 92

Collection-Valued Associations . 99

Lazy Relationships . 108

Summary . 108

■CHAPTER 5 Entity Manager . 111

Persistence Contexts . 111

Entity Managers . 112

Container-Managed Entity Managers . 112

Application-Managed Entity Managers . 117

Transaction Management . 119

JTA Transaction Management . 119

Resource-Local Transactions . 128

Transaction Rollback and Entity State . 131

Choosing an Entity Manager . 131

Entity Manager Operations . 132

Persisting an Entity . 132

Finding an Entity . 133

Removing an Entity . 135

Cascading Operations . 136

Clearing the Persistence Context . 138

Keith_6455FRONT.fm Page ix Tuesday, April 11, 2006 4:29 PM

x ■C O N T E N T S

Synchronization with the Database . 139

Detachment and Merging . 141

Detachment . 142

Merging Detached Entities. 143

Working with Detached Entities . 147

Summary . 161

■CHAPTER 6 Using Queries . 163

Java Persistence QL . 163

Getting Started . 164

Filtering Results . 165

Projecting Results . 165

Joins Between Entities . 165

Aggregate Queries . 166

Query Parameters . 166

Defining Queries . 167

Dynamic Query Definition . 167

Named Query Definition . 170

Parameter Types . 171

Executing Queries . 173

Working with Query Results . 175

Query Paging . 178

Queries and Uncommitted Changes . 180

Bulk Update and Delete . 183

Using Bulk Update and Delete . 183

Bulk Delete and Relationships. 186

Query Hints . 187

Query Best Practices . 188

Named Queries . 188

Report Queries . 188

Query Hints . 189

Stateless Session Beans . 189

Bulk Update and Delete . 189

Provider Differences . 189

Summary . 190

Keith_6455FRONT.fm Page x Tuesday, April 11, 2006 4:29 PM

■C O N T E N T S xi

■CHAPTER 7 Query Language . 191

Introduction . 191

Terminology. 192

Example Data Model. 192

Example Application . 193

Select Queries . 195

The SELECT Clause . 197

The FROM Clause . 200

The WHERE Clause . 206

The ORDER BY Clause . 214

Aggregate Queries . 214

Aggregate Functions. 216

The GROUP BY Clause . 216

The HAVING Clause. 217

Update Queries . 218

Delete Queries . 218

Summary . 219

■CHAPTER 8 Advanced Object-Relational Mapping 221

Embedded Objects . 221

Sharing Embedded Object Classes . 224

Compound Primary Keys . 225

Id Class . 226

Embedded Id Class . 228

Advanced Mapping Elements . 229

Read-Only Mappings . 229

Optionality . 230

Advanced Relationships . 231

Compound Join Columns . 231

Identifiers That Include a Relationship . 233

Mapping Relationship State . 235

Multiple Tables . 237

Inheritance . 241

Class Hierarchies . 241

Inheritance Models . 246

Mixed Inheritance . 253

Summary . 255

Keith_6455FRONT.fm Page xi Tuesday, April 11, 2006 4:29 PM

xii ■C O N T E N T S

■CHAPTER 9 Advanced Topics . 257

SQL Queries . 257

Native Queries vs. JDBC . 258

Defining and Executing SQL Queries . 260

SQL Result Set Mapping . 262

Parameter Binding . 268

Lifecycle Callbacks . 268

Lifecycle Events . 269

Callback Methods . 270

Entity Listeners . 271

Inheritance and Lifecycle Events . 274

Concurrency . 279

Entity Operations. 279

Entity Access . 279

Refreshing Entity State . 279

Locking . 282

Optimistic Locking . 282

Versioning . 284

Additional Locking Strategies . 285

Recovering from Optimistic Failures. 290

Schema Generation . 293

Unique Constraints . 293

Null Constraints. 294

String-Based Columns . 295

Floating Point Columns . 295

Defining the Column . 296

Summary . 297

■CHAPTER 10 XML Mapping Files . 299

The Metadata Puzzle . 300

The Mapping File . 301

Disabling Annotations. 301

Persistence Unit Defaults . 303

Mapping File Defaults. 306

Queries and Generators . 308

Managed Classes and Mappings . 312

Summary . 333

Keith_6455FRONT.fm Page xii Tuesday, April 11, 2006 4:29 PM

■C O N T E N T S xiii

■CHAPTER 11 Packaging and Deployment . 335

Configuring Persistence Units . 335

Persistence Unit Name . 336

Transaction Type . 336

Persistence Provider. 337

Data Source . 337

Mapping Files . 338

Managed Classes . 339

Adding Vendor Properties . 341

Building and Deploying . 342

Deployment Classpath . 342

Packaging Options . 343

Persistence Unit Scope . 347

Outside the Server . 348

Configuring the Persistence Unit. 348

Specifying Properties at Runtime . 350

System Classpath . 351

Summary . 351

■CHAPTER 12 Testing . 353

Testing Enterprise Applications . 353

Terminology. 354

Testing Outside the Server . 355

Test Frameworks . 356

Unit Testing . 357

Testing Entities . 357

Testing Entities in Components. 359

The Entity Manager in Unit Tests . 361

Integration Testing . 364

Using the Entity Manager . 364

Components and Persistence . 370

Best Practices . 383

Summary . 384

Keith_6455FRONT.fm Page xiii Tuesday, April 11, 2006 4:29 PM

xiv ■C O N T E N T S

■CHAPTER 13 Migration . 385

Migrating from CMP Entity Beans . 385

Scoping the Challenge . 386

Entity Bean Conversion . 387

Migrating from JDBC . 396

Migrating from Other ORM Solutions . 397

Leveraging Design Patterns . 397

Transfer Object . 398

Session Façade . 401

Data Access Object. 403

Business Object . 408

Fast Lane Reader . 408

Active Record . 409

Summary . 409

■APPENDIX Quick Reference . 411

Metadata Reference . 411

Enumerated Types . 426

Mapping File-Level Metadata Reference . 426

Persistence-Unit-Level Metadata Reference . 427

EntityManager Interface . 428

Query Interface . 430

EntityManagerFactory Interface . 431

EntityTransaction Interface . 431

■INDEX . 433

Keith_6455FRONT.fm Page xiv Tuesday, April 11, 2006 4:29 PM

17

■ ■ ■

C H A P T E R 2

Getting Started

From the outset, one of the main goals when creating the Java Persistence API was to ensure
that it is simple to use and easy to understand. Although the problem domain cannot be trivi-
alized or watered down, the technology that enables one to deal with it can be straightforward
and intuitive. In this chapter we will show how effortless it is to develop and use entities.

We will start this chapter off by describing the basic characteristics of entities. We’ll define
what an entity is and how to create, read, update, and delete them. We’ll also introduce entity
managers and how they are obtained and used. Then we’ll take a quick look at queries and how
to specify and execute a query using the EntityManager and Query objects. The chapter will
conclude by showing a simple working application that runs in a standard Java SE 5 environ-
ment and that demonstrates all of the example code in action.

Entity Overview
The entity is not a new thing. In fact, entities have been around longer than many program-
ming languages and certainly longer than Java. They were first introduced by Peter Chen in his
seminal paper on entity-relationship modeling.1 He described entities as things that have
attributes and relationships. The expectation was that the attributes were going to be persisted
in a relational database, as were the relationships.

Even now, the definition still holds true. An entity is essentially a noun, or a grouping of state
associated together as a single unit. It may participate in relationships to any number of other
entities in a number of standard ways. In the object-oriented paradigm, we would add behavior
to it and call it an object. In the Java Persistence API, any application-defined object can be an
entity, so the important question might be, What are the characteristics of an object that has
been turned into an entity?

Persistability
The first and most basic characteristic of entities is that they are persistable. This generally just
means that they can be made persistent. More specifically it means that their state can be rep-
resented in a data store and can be accessed at a later time, perhaps well after the end of the
process that created it.

1. Peter C. Chen, “The entity-relationship model—toward a unified view of data,” ACM Transactions on
Database Systems 1, no. 1 (1976): 9–36.

Keith_6455C02.fm Page 17 Wednesday, March 29, 2006 1:58 PM

18 C H A P T E R 2 ■ G E T T I N G S T A R T E D

We could call them persistent objects, and many people do, but it is not technically cor-
rect. Strictly speaking, a persistent object becomes persistent the moment it is instantiated. If
a persistent object exists, then by definition it is already persistent.

An entity is persistable because it can be created in a persistent store. The difference is that
it is not automatically persisted and that in order for it to have a persistent representation the
application must actively invoke an API method to initiate the process. This is an important
distinction because it leaves control over persistence firmly in the hands of the application. It
offers the application the flexibility to manipulate data and perform business logic on the
entity, and then only when the application decides that it is the right time to persist the entity,
actually causing it to be persistent. The lesson is that entities may be manipulated without nec-
essarily having persistent repercussions, and it is the application that decides whether or not
they do.

Identity
Like any other Java object, an entity has an object identity, but when it exists in the data store it
also has a persistent identity. Persistent identity, or an identifier, is the key that uniquely identifies
an entity instance and distinguishes it from all of the other instances of the same entity type. An
entity has a persistent identity when there exists a representation of it in the data store, that is, a
row in a database table. If it is not in the database then even though the in-memory entity may
have its identity set in a field, it does not have a persistent identity. The entity identifier, then, is
equivalent to the primary key in the database table that stores the entity state.

Transactionality
Entities are what we might call quasi-transactional. They are normally only created, updated,
and deleted within a transaction,2 and a transaction is required for the changes to be commit-
ted in the database. Changes made to the database either succeed or fail atomically, so the
persistent view of an entity should indeed be transactional.

In memory it is a slightly different story in the sense that entities may be changed without
the changes ever being persisted. Even when enlisted in a transaction, they may be left in an
undefined or inconsistent state in the event of a rollback or transaction failure. The in-memory
entities are simple Java objects that obey all of the rules and constraints that are applied by the
Java virtual machine to other Java objects.

Granularity
Finally, we can also learn something about what entities are by describing what they are not.
They are not primitives, primitive wrappers, or built-in objects. These are no more than scalars
and do not have any designated semantic meaning to an application. A string, for example is
too fine-grained an object to be an entity because it does not have any domain-specific conno-
tation. Rather, a string is well-suited and very often used as a type for an entity attribute and
given meaning according to the entity attribute that it is typing.

2. In most cases this is a requirement, but in certain configurations the transaction may not be present
until later.

Keith_6455C02.fm Page 18 Wednesday, March 29, 2006 1:58 PM

C H A P T E R 2 ■ G E T T I N G S T A R T E D 19

Entities are fine-grained objects that have a set of aggregated state that is normally stored
in a single place, such as a row in a table, and typically have relationships to other entities. In
the most general sense they are business domain objects that have specific meaning to the
application that accesses them.

While it is certainly true that entities may be defined in exaggerated ways to be as fine-
grained as storing a single string or coarse-grained enough to contain 500 columns’ worth of
data, the suggested granularity of an entity is definitely on the smaller end of the spectrum.
Ideally, entities should be designed and defined as fairly lightweight objects of equal or smaller
size than that of the average Java object.

Entity Metadata
Associated with every entity is metadata in some amount, possibly small, that describes it. This
metadata enables the persistence layer to recognize, interpret, and properly manage the entity
from the time it is loaded through to its runtime invocation.

The metadata that is actually required for each entity is minimal, rendering entities easy to
define and use. However, like any sophisticated technology with its share of switches, levers, and
buttons, there is also the possibility to specify much, much more metadata than is required. It
may be extensive amounts, depending upon the application requirements, and may be used to
customize every detail of the entity configuration or state mappings.

Entity metadata may be specified in one of two ways—annotations or XML. Each is equally
valid, but the one that you use will depend upon your development preferences or process.

Annotations
Annotation metadata is a language feature that allows structured and typed metadata to be
attached to the source code. It was introduced as part of Java SE 5 and is a key part of the EJB
3.0 and Java EE 5 specifications.3 Although annotations are not required by the Java Persis-
tence API, they are a convenient way to learn and use the API. Because annotations co-locate
the metadata with the program artifacts, it is not necessary to escape to an additional file and
additional language (XML) just to specify the metadata.

Annotations are used throughout both the examples and the accompanying explanations
in this book. All of the API annotations that are shown and described, except for Chapter 3,
which talks about Java EE annotations, are defined in the javax.persistence package.
Example code snippets can be assumed to have an implicit import of the form import
javax.persistence.*;.

XML
For those who prefer to use the traditional XML descriptors, this option is still available. It
should be a fairly straightforward process to switch to using XML descriptors after having
learned and understood the annotations since the XML has in large part been patterned after
the annotations. Chapter 10 describes how to use XML to specify or override entity mapping
metadata.

3. The Java EE 5 platform specification and all of its sub-specifications require the use of Java SE 5.

Keith_6455C02.fm Page 19 Wednesday, March 29, 2006 1:58 PM

20 C H A P T E R 2 ■ G E T T I N G S T A R T E D

Configuration by Exception
The notion of configuration by exception means that the persistence engine defines defaults
that apply to the majority of applications and that users need to supply values only when they
want to override the default value. In other words, having to supply a configuration value is the
exception to the rule, not a requirement.

Configuration by exception is ingrained in the Java Persistence API and is a strong contrib-
uting factor to its usability. The majority of configuration values have defaults, rendering the
metadata that does have to be specified more relevant and concise.

The extensive use of defaults and the ease of use that it brings to configuration comes with
a price, however. When defaults are embedded into the API and do not have to be specified,
then they are not visible or obvious to users. This can make it possible for users to be unaware
of the complexity of developing persistence applications, making it slightly more difficult to
debug or to change the behavior when it becomes necessary.

ANNOTATIONS

Java annotations are specially defined types that may annotate (be attached to or placed in front of) Java pro-
gramming elements including classes, methods, fields, and variables. When they annotate a program element,
the compiler reads the information contained in them and may retain it in the class files or dispose of it accord-
ing to what was specified in the annotation type definition. When retained in the class files the elements
contained in the annotation may be queried at runtime through a reflection-based API. A running program can
in this way obtain the metadata that exists on a Java program element. An example of a custom annotation
type definition that could be used to indicate classes that should be validated (whatever validate means to the
application or tool that is processing it) is:

@Target(TYPE) @Retention(RUNTIME)
public @interface Validate {
 boolean flag;
}

This annotation definition is in fact itself annotated by @Target and @Retention built-in annotations that
determine what kinds of program elements the annotation may annotate and at what point the annotation
metadata should be discarded from the class. The annotation defined above may annotate any type and will
not be discarded from the class (that is, it will be retained in the class file even at runtime). This annotation
may, for example, annotate any given class definition. An example usage of this annotation could be:

@Validate(flag=true)
public class MyClass {
 ...
}

An application that looks at all classes in the system for this annotation will be able to determine that
MyClass should be validated and perform that validation whenever it makes sense. The semantic meaning
of @Validate is completely up to the component that defines the annotation type and the one that reads and
processes the annotation.

Keith_6455C02.fm Page 20 Wednesday, March 29, 2006 1:58 PM

C H A P T E R 2 ■ G E T T I N G S T A R T E D 21

Defaults are not meant to shield users from the often complex issues surrounding persis-
tence. They are meant to allow a developer to get started easily and quickly with something
that will work and then iteratively improve and implement additional functionality as the com-
plexity of their application increases. Even though the defaults may be what you want to have
happen most of the time, it is still fairly important for developers to be familiar with the default
values that are being applied. For example, if a table name default is being assumed, then it is
important to know what table the runtime is expecting, or if schema generation is used, what
table will be generated.

For each of the annotations we will also discuss the default value so that it is clear what will
be applied if the annotation is not specified. We recommend that you remember these defaults
as you learn them. After all, a default value is still part of the configuration of the application; it
was just really easy to configure!

Creating an Entity
Regular Java classes are easily transformed into entities simply by annotating them. In fact, by add-
ing a couple of annotations, virtually any class with a no-arg constructor can become an entity.

Let’s start by creating a regular Java class for an employee. Listing 2-1 shows a simple
Employee class.

Listing 2-1. Employee Class

public class Employee {
 private int id;
 private String name;
 private long salary;

 public Employee() {}
 public Employee(int id) { this.id = id; }

 public int getId() { return id; }
 public void setId(int id) { this.id = id; }
 public String getName() { return name; }
 public void setName(String name) { this.name = name; }
 public long getSalary() { return salary; }
 public void setSalary (long salary) { this.salary = salary; }
}

You may notice that this class resembles a JavaBean-style class with three properties: id,
name, and salary. Each of these properties is represented by a pair of accessor methods to get
and set the property and is backed by a member field. Properties or member fields are the units
of state within the entity that we want to persist.

To turn Employee into an entity we first need to annotate the class with @Entity. This is pri-
marily just a marker annotation to indicate to the persistence engine that the class is an entity.

The second annotation that we need to add is @Id. This annotates the particular field or
property that holds the persistent identity of the entity (the primary key) and is needed so the
provider knows which field or property to use as the unique identifying key in the table.

Keith_6455C02.fm Page 21 Wednesday, March 29, 2006 1:58 PM

22 C H A P T E R 2 ■ G E T T I N G S T A R T E D

Adding these two annotations to our Employee class, we end up with pretty much the same
class that we had before, except that now it is an entity. Listing 2-2 shows the entity class.

Listing 2-2. Employee Entity

@Entity
public class Employee {
 @Id private int id;
 private String name;
 private long salary;

 public Employee() {}
 public Employee(int id) { this.id = id; }

 public int getId() { return id; }
 public void setId(int id) { this.id = id; }
 public String getName() { return name; }
 public void setName(String name) { this.name = name; }
 public long getSalary() { return salary; }
 public void setSalary (long salary) { this.salary = salary; }
}

When we say that the @Id annotation is placed on the field or property, we mean that the
user can choose to annotate either the declared field, or the getter method4 of a JavaBean-style
property. Either field or property strategy is allowed, depending upon the needs and tastes of
the entity developer, but whichever strategy is chosen, it must be followed for all persistent
state annotations in the entity. We have chosen in this example to annotate the field because it
is simpler; in general, this will be the easiest and most direct approach. We will learn more
about the details of annotating persistent state using field or property access in subsequent
chapters.

Automatic State Mapping
The fields in the entity are automatically made persistable by virtue of their existence in the
entity. Default mapping and loading configuration values apply to these fields and enable
them to be persisted when the object is persisted. Given the questions that were brought up in
the last chapter, one might be led to ask, “How did the fields get mapped, and where do they
get persisted to?”

To find the answer we must first take a quick detour to dig inside the @Entity annotation
and look at an element called name that uniquely identifies the entity. The entity name may be
explicitly specified for any entity by using this name element in the annotation, as in
@Entity(name="Emp"). In practice this is seldom specified because it gets defaulted to be
the unqualified name of the entity class. This is almost always both reasonable and adequate.

Now we can get back to the question about where the data gets stored. It turns out that the
default name of the table used to store any given entity of a particular entity type is the name

4. Annotations on setter methods will just be ignored.

Keith_6455C02.fm Page 22 Wednesday, March 29, 2006 1:58 PM

C H A P T E R 2 ■ G E T T I N G S T A R T E D 23

of the entity. If we have specified the name of the entity, then that will be the default table
name, but if we have not, then the default value of the entity name will be used. We just stated
that the default entity name was the unqualified name of the entity class, so that is effectively
the answer to the question of which table gets used. In our Employee example all entities of type
Employee will get stored in a table called EMPLOYEE.

Each of the fields or properties has individual state in it and needs to be directed to a par-
ticular column in the table. We know to go to the EMPLOYEE table, but we don’t know which
column to use for any given field or property. When no columns are explicitly specified, then
the default column is used for a field or property, which is just the name of the field or property
itself. So our employee id will get stored in the ID column, the name in the NAME column, and
the salary in the SALARY column of the EMPLOYEE table.

Of course these values can all be overridden to match an existing schema. We will discuss
how to override them when we get to Chapter 4 and discuss mapping in more detail.

Entity Manager
In the Entity Overview section, it was stated that a specific API call needs to be invoked before
an entity actually gets persisted to the database. In fact, separate API calls are needed to per-
form many of the operations on entities. This API is implemented by the entity manager and
encapsulated almost entirely within a single interface called EntityManager. When all is said
and done, it is to an entity manager that the real work of persistence is delegated. Until an
entity manager is used to actually create, read, or write an entity, the entity is nothing more
than a regular (non-persistent) Java object.

When an entity manager obtains a reference to an entity, either by having it explicitly
passed in or because it was read from the database, that object is said to be managed by the
entity manager. The set of managed entity instances within an entity manager at any given
time is called its persistence context. Only one Java instance with the same persistent identity
may exist in a persistence context at any time. For example, if an Employee with a persistent
identity (or id) of 158 exists in the persistence context, then no other object with its id set to 158
may exist within that same persistence context.

Entity managers are configured to be able to persist or manage specific types of objects,
read and write to a given database, and be implemented by a particular persistence provider (or
provider for short). It is the provider that supplies the backing implementation engine for the
entire Java Persistence API, from the EntityManager through to Query implementation and
SQL generation.

All entity managers come from factories of type EntityManagerFactory. The configuration
for an entity manager is bound to the EntityManagerFactory that created it, but it is defined sep-
arately as a persistence unit. A persistence unit dictates either implicitly or explicitly the settings
and entity classes used by all entity managers obtained from the unique EntityManagerFactory
instance bound to that persistence unit. There is, therefore, a one-to-one correspondence
between a persistence unit and its concrete EntityManagerFactory.

Persistence units are named to allow differentiation of one EntityManagerFactory from
another. This gives the application control over which configuration or persistence unit is to be
used for operating on a particular entity.

Keith_6455C02.fm Page 23 Wednesday, April 12, 2006 7:06 AM

24 C H A P T E R 2 ■ G E T T I N G S T A R T E D

Figure 2-1. Relationships between Java Persistence API concepts

Figure 2-1 shows that for each persistence unit there is an EntityManagerFactory and that
many entity managers can be created from a single EntityManagerFactory. The part that may
come as a surprise is that many entity managers can point to the same persistence context. We
have talked only about an entity manager and its persistence context, but later on we will see
that this is indeed the case and that there may be multiple references to different entity man-
agers which all point to the same group of managed entities.

Obtaining an Entity Manager
An entity manager is always obtained from an EntityManagerFactory. The factory from which
it was obtained determines the configuration parameters that govern its operation. While there
are shortcuts that veil the factory from the user view when running in a Java EE application
server environment, in the Java SE environment we can use a simple bootstrap class called
Persistence. The static createEntityManagerFactory() method in the Persistence class
returns the EntityManagerFactory for the specified persistence unit name. The following
example demonstrates creating an EntityManagerFactory for the persistence unit named
“EmployeeService”:

EntityManagerFactory emf =
 Persistence.createEntityManagerFactory("EmployeeService");

The name of the specified persistence unit “EmployeeService” passed into the
createEntityManagerFactory() method identifies the given persistence unit
configuration that determines such things as the connection parameters that entity
managers generated from this factory will use when connecting to the database.

Keith_6455C02.fm Page 24 Wednesday, March 29, 2006 1:58 PM

C H A P T E R 2 ■ G E T T I N G S T A R T E D 25

Now that we have a factory, we can easily obtain an entity manager from it. The following
example demonstrates creating an entity manager from the factory that we acquired in the
previous example:

EntityManager em = emf.createEntityManager();

With this entity manager, we are now in a position to start working with persistent entities.

Persisting an Entity
Persisting an entity is the operation of taking a transient entity, or one that does not yet have
any persistent representation in the database, and storing its state so that it can be retrieved
later. This is really the basis of persistence—creating state that may outlive the process that
created it. We are going to start by using the entity manager to persist an instance of Employee.
Here is a code example that does just that:

Employee emp = new Employee(158);
em.persist(emp);

The first line in this code segment is simply creating an Employee instance that we want to per-
sist. If we ignore the sad fact that we seem to be employing a nameless individual and paying
them nothing (we are setting only the id, not the name or salary) the instantiated Employee is
just a regular Java object.

The next line obtains an entity manager and uses it to persist the entity. Calling persist()
is all that is required to initiate it being persisted in the database. If the entity manager encoun-
ters a problem doing this, then it will throw an unchecked PersistenceException; otherwise
the employee will be stored in the database. When the persist() call returns, emp will be a
managed entity within the entity manager’s persistence context.

Listing 2-3 shows how to incorporate this into a simple method that creates a new
employee and persists it to the database.

Listing 2-3. Method for Creating an Employee

public Employee createEmployee(int id, String name, long salary) {
 Employee emp = new Employee(id);
 emp.setName(name);
 emp.setSalary(salary);
 em.persist(emp);
 return emp;
}

This method assumes the existence of an entity manager in the em field of the instance and
uses it to persist the Employee. Note that we do not need to worry about the failure case in this
example. It will result in a runtime PersistenceException being thrown, which will get prop-
agated up to the caller.

Keith_6455C02.fm Page 25 Wednesday, March 29, 2006 1:58 PM

26 C H A P T E R 2 ■ G E T T I N G S T A R T E D

Finding an Entity
Once an entity is in the database, then the next thing one typically wants to do is find it again.
In this section we will show how an entity can be found using the entity manager. There is
really only one line that we need to show:

Employee emp = em.find(Employee.class, 158);

We are passing in the class of the entity that is being sought (in this example we are looking for
an instance of Employee) and the id or primary key that identifies the particular entity (in our
case we want to find the entity that we just created). This is all the information needed by the
entity manager to find the instance in the database, and when the call completes, the employee
that gets returned will be a managed entity, meaning that it will exist in the current persistence
context associated with the entity manager.

PARAMETERIZED TYPES

Another of the principal features included in Java SE 5 was the introduction of generics. The abstraction of
Java types allowed them to be parameterized and used generically by a class or method. Such classes or
methods that make use of type parameterization are called generic types or generic methods. An example of
a generic class is one that defines a parameterized type variable in its definition. It could then use that type in
the signature of its methods just as does the following generic class:

public class Holder<T> {
 T contents;
 public void setContents(T obj) { contents = obj; }
 public T getContents() { return contents; }
}

This Holder class is parameterized by the T type variable making it possible to create an instance that can
hold a given type. Why is this better than simply using Object everywhere where T is used? The reason is
because once the type is supplied and the Holder is instantiated to be of a given type, then only instances of
that type will be allowed to be stored. This makes any given Holder instance strongly typed for the type of
our choice. For example, we can do the following:

Holder<String> stringHolder = new Holder<String>();
stringHolder.setContents(“MyOwnString”);
Holder<Integer> intHolder = new Holder<Integer>();
intHolder.setContents(100);
String s = stringHolder.getContents();
stringHolder.setContents(101); // compile error

We have a Holder that stores String objects or anything we want, but once we define it then we get the strong
compile-time type checking that frees us from having to type-check at runtime. ClassCastExceptions can
be a thing of the past (well, almost!). As an added bonus, we don’t have to cast. The getContents() generic
method returns precisely the type that was passed to Holder as the type parameter, so the compiler can type-
check and safely assign as needed.

Keith_6455C02.fm Page 26 Wednesday, March 29, 2006 1:58 PM

C H A P T E R 2 ■ G E T T I N G S T A R T E D 27

You may have noticed that there is no cast required to make the return result an Employee
object, even though the find() method call can be used for any type of entity. Those who have
used Java SE 5 will recognize that this is just because the return type of the find() method is
parameterized to return the same class that was passed in, so if Employee was passed as the
entity class, then it will also be the return type.

What happens if the object has been deleted or if we supplied the wrong id by accident? In
the event that the object was not found, then the find() call simply returns null. We would
need to ensure that a null check is performed before the next time the emp variable is used.

The code for a method that looks up and returns the Employee with a given id is now trivial
and shown in Listing 2-4.

Listing 2-4. Method for Finding an Employee

public Employee findEmployee(int id) {
 return em.find(Employee.class, id);
}

In the case where no employee exists for the id that is passed in, then the method will
return null, since that is what find() will return.

Removing an Entity
Removal of an entity from the database is not as common a thing as some might think. Many
applications simply never delete objects, or if they do they just flag the data as being out of date
or no longer valid and then just keep it out of sight of clients. We are not talking about that kind
of application-level logical removal, where the data is not actually even removed from the
database. We are talking about something that results in a DELETE statement being made across
one or more tables.

In order to remove an entity, the entity itself must be managed, meaning that it is present
in the persistence context. This means that the calling application should have already loaded
or accessed the entity and is now issuing a command to remove it. This is not normally a prob-
lem given that most often the application will have caused it to become managed as part of the
process of determining that this was the object that it wanted to remove.

A simple example for removing an employee is:

Employee emp = em.find(Employee.class, 158);
em.remove(emp);

In this example we are first finding the entity using the find() call, which returns a managed
instance of Employee, and then removing the entity using the remove() call on the entity man-
ager. Of course, we learned in the previous section that if the entity was not found then the
find() method will return null. We would get a java.lang.IllegalArgumentException if it
turned out that we passed null into the remove() call because we forgot to include a null check
before calling remove().

In our application method for removing an employee, we can fix the problem by checking
for the existence of the employee before we issue the remove() call, as shown in Listing 2-5.

Keith_6455C02.fm Page 27 Wednesday, March 29, 2006 1:58 PM

28 C H A P T E R 2 ■ G E T T I N G S T A R T E D

Listing 2-5. Method for Removing an Employee

public void removeEmployee(int id) {
 Employee emp = em.find(Employee.class, id);
 if (emp != null) {
 em.remove(emp);
 }
}

This method will ensure that the employee with the given id is removed from the database.
It will return successfully whether the employee exists or not.

Updating an Entity
An entity may be updated in a few different ways, but for now we will illustrate the most com-
mon and simple case. This is the case where we have a managed entity and want to make
changes to it. If we do not have a reference to the managed entity, then we must first obtain one
using find() and then perform our modifying operations on the managed entity. This code
adds $1,000 to the salary of the employee with id 158:

Employee emp = em.find(Employee.class, 158);
emp.setSalary(emp.getSalary() + 1000);

Note the difference between this operation and the others. In this case we are not calling into
the entity manager to modify the object but directly on the object itself. For this reason it is
important that the entity be a managed instance, otherwise the persistence provider will have
no means of detecting the change, and no changes will be made to the persistent representa-
tion of the employee.

Our method to raise the salary of a given employee will take the id and amount of the raise,
find the employee, and change the salary to the adjusted one. Listing 2-6 demonstrates this
approach.

Listing 2-6. Method for Updating an Employee

public Employee raiseEmployeeSalary(int id, long raise) {
 Employee emp = em.find(Employee.class, id);
 if (emp != null) {
 emp.setSalary(emp.getSalary() + raise);
 }
 return emp;
}

If we can’t find the employee, then we return null so the caller will know that no change
could be made. We indicate success by returning the updated employee.

Transactions
The keen reader may have noticed something in the code to this point that was inconsistent
with earlier statements made about transactionality when working with entities. There were no

Keith_6455C02.fm Page 28 Wednesday, March 29, 2006 1:58 PM

C H A P T E R 2 ■ G E T T I N G S T A R T E D 29

transactions in any of the above examples, even though we said that changes to entities must
be made persistent using a transaction.

In all the examples except the one that only called find(), we assume that a transaction
enclosed each method. The find() call is not a mutating operation, so it may be called any
time, with or without a transaction.

Once again, the key is the environment in which the code is being executed. The typical
situation when running inside the Java EE container environment is that the standard Java
Transaction API (JTA) is used. The transaction model when running in the container is to
assume the application will ensure that a transactional context is present when one is required.
If a transaction is not present, then either the modifying operation will throw an exception or
the change will simply never be persisted to the data store. We will come back to discussing
transactions in the Java EE environment in more detail in Chapter 3.

In our example in this chapter, though, we are not running in Java EE. We are in a Java SE envi-
ronment, and the transaction service that should be used in Java SE is the EntityTransaction
service. When executing in Java SE we either need to begin and to commit the transaction in
the operational methods, or we need to begin and to commit the transaction before and after call-
ing an operational method. In either case, a transaction is started by calling getTransaction() on
the entity manager to get the EntityTransaction and then invoking begin() on it. Likewise, to
commit the transaction the commit() call is invoked on the EntityTransaction obtained from the
entity manager. For example, starting and committing before and after the method would produce
code that creates an employee the way it is done in Listing 2-7.

Listing 2-7. Beginning and Committing an EntityTransaction

em.getTransaction().begin();
createEmployee(158, "John Doe", 45000);
em.getTransaction().commit();

Further detail about resource-level transactions and the EntityTransaction API are con-
tained in Chapter 5.

Queries
In general, given that most developers have used a relational database at some point or other
in their lives, most of us pretty much know what a database query is. In the Java Persistence
API, a query is similar to a database query, except that instead of using Structured Query
Language (SQL) to specify the query criteria, we are querying over entities and using a language
called Java Persistence Query Language (which we will abbreviate as JPQL).

A query is implemented in code as a Query object. Query objects are constructed using the
EntityManager as a factory. The EntityManager interface includes a variety of API calls that
return a new Query object. As a first class object, this query can in turn be customized accord-
ing to the needs of the application.

A query can be defined either statically or dynamically. A static query is defined in either
annotation or XML metadata, and it must include both the query criteria as well as a user-
assigned name. This kind of query is also called a named query, and it is later looked up by its
name at the time it is executed.

A dynamic query can be issued at runtime by supplying only the JPQL query criteria. These
may be a little more expensive to execute because the persistence provider cannot do any

Keith_6455C02.fm Page 29 Wednesday, March 29, 2006 1:58 PM

30 C H A P T E R 2 ■ G E T T I N G S T A R T E D

query preparation beforehand, but they are nevertheless very simple to use and can be issued
in response to program logic or even user logic.

Following is an example showing how to create a query and then execute it to obtain all of
the employees in the database. Of course this may not be a very good query to execute if the
database is large and contains hundreds of thousands of employees, but it is nevertheless a
legitimate example. The simple query is as follows:

Query query = em.createQuery("SELECT e FROM Employee e");
Collection emps = query.getResultList();

We create a Query object by issuing the createQuery() call on the EntityManager and
passing in the JPQL string that specifies the query criteria. The JPQL string refers not to an
EMPLOYEE database table but the Employee entity, so this query is selecting all Employee objects
without filtering them any further. We will be diving into queries in Chapter 6 and JPQL in
Chapters 6 and 7. You will see that you can be far more discretionary about which objects you
want to be returned.

To execute the query we simply invoke getResultList() on it. This returns a List (a sub-
interface of Collection) containing the Employee objects that matched the query criteria. Note
that a List<Employee> is not returned. Unfortunately this is not possible, since no class is
passed into the call, so no parameterization of the type is able to occur. The return type is
inferred by the persistence provider as it processes the JPQL string. We could cast the result to
a Collection<Employee>, however, to make a neater return type for the caller. Doing so, we
can easily create a method that returns all of the employees, as shown in Listing 2-8.

Listing 2-8. Method for Issuing a Query

public Collection<Employee> findAllEmployees() {
 Query query = em.createQuery("SELECT e FROM Employee e");
 return (Collection<Employee>) query.getResultList();
}

This example shows how simple queries are to create, execute, and process, but what this
example does not show is how powerful they are. In Chapter 6 we will examine many other
extremely useful and interesting ways of defining and using queries in an application.

Putting It All Together
We can now take all of the methods that we have created and combine them into a class. The
class will act like a service class, which we will call EmployeeService, and will allow us to per-
form operations on employees. The code should be pretty familiar by now. Listing 2-9 shows
the complete implementation.

Listing 2-9. Service Class for Operating on Employee Entities

import javax.persistence.*;
import java.util.Collection;

Keith_6455C02.fm Page 30 Wednesday, March 29, 2006 1:58 PM

C H A P T E R 2 ■ G E T T I N G S T A R T E D 31

public class EmployeeService {
 protected EntityManager em;

 public EmployeeService(EntityManager em) {
 this.em = em;
 }

 public Employee createEmployee(int id, String name, long salary) {
 Employee emp = new Employee(id);
 emp.setName(name);
 emp.setSalary(salary);
 em.persist(emp);
 return emp;
 }

 public void removeEmployee(int id) {
 Employee emp = findEmployee(id);
 if (emp != null) {
 em.remove(emp);
 }
 }

 public Employee raiseEmployeeSalary(int id, long raise) {
 Employee emp = em.find(Employee.class, id);
 if (emp != null) {
 emp.setSalary(emp.getSalary() + raise);
 }
 return emp;
 }

 public Employee findEmployee(int id) {
 return em.find(Employee.class, id);
 }

 public Collection<Employee> findAllEmployees() {
 Query query = em.createQuery("SELECT e FROM Employee e");
 return (Collection<Employee>) query.getResultList();
 }
}

This is a simple yet fully functional class that can be used to issue the typical CRUD (create,
read, update, and delete) operations on Employee entities. This class requires that an entity
manager is created and passed into it by the caller and also that any required transactions are
begun and committed by the caller. This may seem strange at first, but decoupling the transac-
tion logic from the operation logic makes this class more portable to the Java EE environment.
We will revisit this example in the next chapter, where we focus on Java EE applications.

A simple main program that uses this service and performs all of the required entity man-
ager creation and transaction management is shown in Listing 2-10.

Keith_6455C02.fm Page 31 Wednesday, March 29, 2006 1:58 PM

32 C H A P T E R 2 ■ G E T T I N G S T A R T E D

Listing 2-10. Using EmployeeService

import javax.persistence.*;
import java.util.Collection;

public class EmployeeTest {

 public static void main(String[] args) {
 EntityManagerFactory emf =
 Persistence.createEntityManagerFactory(“EmployeeService”);
 EntityManager em = emf.createEntityManager();
 EmployeeService service = new EmployeeService(em);

 // create and persist an employee
 em.getTransaction().begin();
 Employee emp = service.createEmployee(158, "John Doe", 45000);
 em.getTransaction().commit();
 System.out.println("Persisted " + emp);

 // find a specific employee
 emp = service.findEmployee(158);
 System.out.println("Found " + emp);

 // find all employees
 Collection<Employee> emps = service.findAllEmployees();
 for (Employee e : emps)
 System.out.println("Found employee: " + e);

 // update the employee
 em.getTransaction().begin();
 emp = service.raiseEmployeeSalary(158, 1000);
 em.getTransaction().commit();
 System.out.println("Updated " + emp);

 // remove an employee
 em.getTransaction().begin();
 service.removeEmployee(158);
 em.getTransaction().commit();
 System.out.println("Removed Employee 158");

 // close the EM and EMF when done
 em.close();
 emf.close();
 }
}

Keith_6455C02.fm Page 32 Wednesday, March 29, 2006 1:58 PM

C H A P T E R 2 ■ G E T T I N G S T A R T E D 33

Packaging It Up
Now that we know the basic building blocks of the Java Persistence API, we are ready to orga-
nize the pieces into an application that runs in Java SE. The only thing left to discuss is how to
put it together so that it runs.

Persistence Unit
The configuration that describes the persistence unit is defined in an XML file called
persistence.xml. Each persistence unit is named, so when a referencing application wants
to specify the configuration for an entity it need only reference the name of the persistence unit
that defines that configuration. A single persistence.xml file may contain one or more named
persistence unit configurations, but each persistence unit is separate and distinct from the
others, and they can be logically thought of as being in separate persistence.xml files.

Many of the persistence unit elements in the persistence.xml file apply to persistence
units that are deployed within the Java EE container. The only ones that we need to specify for
our example are name, transaction-type, class, and properties. There are a number of other
elements that can be specified in the persistence unit configuration in the persistence.xml
file, but these will be discussed in more detail in Chapter 11. Listing 2-11 shows the relevant
part of the persistence.xml file for this example.

Listing 2-11. Elements in the persistence.xml File

<persistence>
 <persistence-unit name="EmployeeService" transaction-type="RESOURCE_LOCAL">
 <class>examples.model.Employee</class>
 <properties>
 <property name="toplink.jdbc.driver"
 value="org.apache.derby.jdbc.ClientDriver"/>
 <property name="toplink.jdbc.url"
 value="jdbc:derby://localhost:1527/EmpServDB;create=true"/>
 <property name="toplink.jdbc.user" value="APP"/>
 <property name="toplink.jdbc.password" value="APP"/>
 </properties>
 </persistence-unit>
</persistence>

The name element indicates the name of our persistence unit and is the string that we
specify when we create the EntityManagerFactory. We have used “EmployeeService” as the
name. The transaction-type element indicates that our persistence unit uses resource level
EntityTransaction instead of JTA transactions. The class element lists the entity that is part
of the persistence unit. Multiple class elements may be specified when there is more than
one entity. These would not normally be needed when deploying in a Java EE container, but
they are needed for portable execution when running in Java SE. We only have a single
Employee entity.

The last part that we use is a list of properties that are vendor-specific. The login parameters
to a database must be specified when running in a Java SE environment, so these properties exist

Keith_6455C02.fm Page 33 Wednesday, March 29, 2006 1:58 PM

34 C H A P T E R 2 ■ G E T T I N G S T A R T E D

to tell the provider what to connect to. Other provider properties, such as logging options, are
also useful.

Persistence Archive
The persistence artifacts are packaged in what we will loosely call a persistence archive. This is
really just a JAR-formatted file that contains the persistence.xml file in the META-INF directory
and normally the entity class files.

Since we are running as a simple Java SE application, all we have to do is put the applica-
tion JAR, the persistence provider JARs, and the Java Persistence API JAR on the classpath when
the program is executed.

Summary
In this chapter we discussed just enough of the basics of the Java Persistence API to develop
and run a simple application in a Java SE runtime.

We started out discussing the entity, how to define one, and how to turn an existing Java
class into one. We discussed entity managers and how they are obtained and constructed in
the Java SE environment.

The next step was to instantiate an entity instance and use the entity manager to persist it
in the database. After we inserted some new entities, we were able to retrieve them again and
then remove them. We also made some updates and ensured that the changes were written
back to the database.

We talked about the resource-local transaction API and how to use it. We then went over
some of the different types of queries and how to define and execute them. Finally, we aggre-
gated all of these techniques and combined them into a simple application that we can execute
in isolation from an enterprise environment.

In the next chapter, we will look at the impact of the Java EE environment when develop-
ing enterprise applications using the Java Persistence API.

Keith_6455C02.fm Page 34 Wednesday, March 29, 2006 1:58 PM

