
Oracle Tuxedo Globalization
Features: Multibyte Support for
the Asia Pacific Region

An Oracle White Paper
Updated June 2008

Oracle Tuxedo Globalization Features: Multibyte Support for the Asia Pacific Region Page 2

 Oracle Tuxedo Globalization Features:
Multibyte Support for the Asia Pacific Region

Introduction ... 3
Globalization Enhancements in Oracle Tuxedo .. 3
A Perspective on Software Globalization.. 4

Internationalization and Localization .. 4
Codesets and Encoding ... 5
Multibyte Encoding Conversion: Past and Present 5
Typical Conversion Scenarios ... 6

Oracle Tuxedo Multibyte Conversion Functionality 6
Managing Encoding Conversion .. 6
Processing on the Client Side.. 7
Processing on the Server Side ... 9
Customization ... 11
Encoding Alias Names... 11

Multibyte Data With Field Manipulation Language Buffers................... 12
Conclusion.. 12
Appendix 1: APIs Associated With Multibyte Data................................. 13
Appendix 2: Software Examples ... 14

A Multibyte Data Conversion Example .. 14
Client-Side Application.. 14
Server-Side Application ... 17

Using FLD_MBSTRING.. 19
Client-Side Application.. 20
Server-Side Applicaton .. 22

Custom Conversion Function... 24

 Oracle Tuxedo Globalization Features:
Multibyte Support for the Asia Pacific Region

INTRODUCTION
Internationalization and localization are integral components of the Oracle Tuxedo
system. For the Asia Pacific region, the software provides full support for multibyte
character codeset handling and enables developers to build a solution with no
language limitations. By eliminating the need to customize software to achieve
internationalization, Oracle Tuxedo allows companies to easily extend their
applications to employees and partners in multiple languages.

 Internationalization and localization are

integral components of the Oracle Tuxedo

system. For the Asia Pacific region, the

software provides full support for multibyte

character codeset handling and enables

developers to build a solution with no

language limitations.
This paper describes the globalization features of Oracle Tuxedo, illustrating
functionality through examples.

GLOBALIZATION ENHANCEMENTS IN ORACLE TUXEDO
Oracle Tuxedo provides the following internationalization enhancements:

• Support for multibyte character typed buffers for user data

• The capability for programmatic conversion on demand using the APIs or
automatic conversion between Chinese, Japanese, and Korean codeset
encodings

• The ability to “get” and “set” codeset encoding information and to turn
automatic conversion on and off—both programmatically and
administratively

• Support for easy replacement of conversion library with custom conversion
functionality

These specific enhancements use several system features, including a typed buffer
called MBSTRING, a field type called FLD_MBSTRING, and a multibyte
character transport and convert API.

With Oracle Tuxedo, programmers can manage encoding conversions both
administratively, by using the environment variables TPMBENC and
TPMBACONV, and programmatically, by using new API functions. The ability to
turn automatic conversion on and off programmatically allows an application to
limit conversions to only when they are required—providing good control over
conversion-related performance.

Oracle Tuxedo Globalization Features: Multibyte Support for the Asia Pacific Region Page 3

If the Oracle Tuxedo system is configured for automatic codeset encoding
conversion, when an MBSTRING buffer (or an FLD_MBSTRING field in an
FML32 buffer) is transmitted between processes running on different computer
platforms, the underlying system converts from one codeset encoding to another.
Specifically, the receiving side automatically converts the MBSTRING buffer from
the sender’s codeset encoding representation to the receiver’s codeset encoding. If
automatic codeset conversion is not configured manually through the environment
variables TPMBENC and TPMBACONV, the sending or receiving application can
request codeset encoding conversion on a case-by-case basis using the conversion
APIs (see Appendix 1 for specifics).

Use of the GNU iconv conversion library provides common codeset-conversion
functionality across the UNIX and Windows platforms. Use of Oracle Tuxedo
typed buffers allows easy replacement of the conversion library with custom
functionality, for example, for testing or performance tuning.

A PERSPECTIVE ON SOFTWARE GLOBALIZATION
Most software products, such as operating systems, libraries, and development
tools, are designed and developed for international environments—environments
that have very different linguistic, cultural, and presentation requirements. For
example, a large corporation with headquarters in Tokyo and branches in New
York and Seoul might require a combination of English, Japanese, and Korean
software environments. In addition, these internationally distributed computing
environments must also support location-based changes in time, numeric values,
dates, monetary formats, message representation, and codeset encoding schemes.
They must support all of these requirements spontaneously (without restarting the
application) as transactions span global locations. Software that meets these
requirements is called globalized software.

Internationalization and Localization
You achieve software globalization by addressing requirements for both
internationalization and localization. Internationalization makes software portable
between regions in which different spoken languages and customs are used. To
create internationalized software, the developer isolates the parts of a program that
depend on language and culture. For example, error messages are isolated for easy
translation to the language of the locale in which they are read. A locale is a
geographic or political region that shares the same spoken language and customs.
The internationalized program is either designed or adapted to pick up the locale-
dependent pieces during system initialization.

Internationalization makes software portable

between regions where different languages

and customs are used. Localization allows for

specific versions within the internationalized

program to be used within a geographic or

political region.

Localization is the process of creating locale-specific versions, or packages, of the
locale-dependent pieces. Localization includes the translation of text such as labels
in the user interface, error messages, and online help. It also includes the culture-
specific formatting of data items such as time, monetary values, dates, and

Oracle Tuxedo Globalization Features: Multibyte Support for the Asia Pacific Region Page 4

numbers. Oracle develops packages for localization that are made available to
customers who need them.

Codesets and Encoding
A character set is a set of elements that represent text in a given spoken language. The
English alphabet is a character set. There might be an implied ordering relationship
between the characters, but the characters are not assigned specific values. For
example, you might recite the English alphabet starting with a, b, c, and continue in
a customary way until you finish with x, y, z. Although there is this implied
ordering, there is no numeric relationship between the characters that implies this.
A codeset provides such a numeric relationship, giving computer programs a
mechanism for manipulating the character set.

A codeset, also called a coded character set, is a computer-based mapping of
characters, to unique non-negative integers. The mapping of unique binary values
for a codeset is called an encoding for that codeset. In the United States, ASCII and
Unicode are two codesets that represent the set of characters on most computer
keyboards. ASCII is also an encoding. There can be multiple encodings for a
particular codeset. For example, in Japan, computer vendors support at least three
encodings for Kanji, a Japanese codeset: EUC-JP, Shift-JIS (SJIS), and ISO-2022-
JP. Most UNIX vendors support EUC-JP and some also support SJIS. Windows,
OS/2, and Macintosh support SJIS. In Korea, the KSC5601 encoding is widely
used, whereas in China, GBK is used. Java supports its native Unicode and its
many foreign encodings.

Multibyte Encoding Conversion: Past and Present
Oracle Tuxedo supports multibyte codeset

handling functionality. Although standard

English can be accommodated with an 8-bit

(single byte) codeset encoding scheme,

Chinese, Japanese, and Korean languages

require a multibyte codeset-encoding scheme.

The alphabetic characters in European languages, including standard English, can
be accommodated with an 8-bit (single byte) codeset encoding scheme. However,
Chinese, Japanese, and Korean languages, which are based on a large set of symbols
(or ideographs), require a multibyte codeset-encoding scheme. Oracle Tuxedo
supports these Asia Pacific region character sets with multibyte codeset handling.

Before Oracle Tuxedo, the application developer had to create a custom conversion
solution to get globalization features. However, custom conversions can handle
only very specific use cases. For example, one custom solution might handle the
conversion of SJIS to EUC-JP, while another converts between SJIS and ISO-
2022-JP. There is no need to develop these types of custom conversions with
Oracle Tuxedo.

It is important to remember that Oracle Tuxedo’s codeset conversion capability is
designed for conversions between encodings for a codeset (for example, between
the encodings UTF-8 and UTF-16BE for the Unicode codeset). It is not a
conversion between codesets (for example, between ASCII and Unicode) or a
translation between languages, but a conversion between different encodings for
the same language.

Oracle Tuxedo Globalization Features: Multibyte Support for the Asia Pacific Region Page 5

Typical Conversion Scenarios
One very common multibyte conversion scenario involves different Kanji encoding
schemes running on different platforms (for example, client/server systems). When
clients and servers are hosted on platforms that use different encoding schemes, it
is necessary to perform encoding conversions between the platforms. The example
shown in Figure 1 illustrates a scenario for a distributed computing environment in
Japan. In the example, a client resides on a Windows machine that supports SJIS.
The Oracle Tuxedo server machine is UNIX based and supports EUC-JP.

Figure 1: A typical scenario of a distributed computing environment

ORACLE TUXEDO MULTIBYTE CONVERSION FUNCTIONALITY
In the previous example, multibyte character application data is transported
between the Windows client and Oracle Tuxedo server processes using a typed
buffer called MBSTRING. A set of API functions associated with this typed buffer
determine the codeset encoding name and perform multibyte data conversion using
the GNU iconv library.

Oracle Tuxedo developers implemented the MBSTRING buffer by adding a new
entry to the typed buffer switch structure (tm_typesw). This allows Oracle Tuxedo
to determine which routines to call for each typed buffer. For the MBSTRING
buffer, the system calls the internal function _mbsconv() to perform automatic
codeset multibyte data conversion. This internal function then uses the GNU
library routines to convert the user data.

Managing Encoding Conversion Conversion is inherently costly in terms of

performance. To prevent encoding

conversions from negatively impacting

performance, Oracle Tuxedo allows the user

to control conversions both administratively

and programmatically.

There are two ways of controlling encoding conversions: administratively, by using
the environment variables TPMBENC and TPMBACONV, and programmatically,
by using the API functions. If the environment variables are set for automatic
conversion, the receiving Oracle Tuxedo system converts the data in the buffer
from one encoding to another. Otherwise you can use the programmatic interface
tuxsetmbaconv() to turn automatic encoding on and off without restarting the
application, and thereby limit conversions to occur only when they are required.
Otherwise conversions can take place at each hop, which deteriorates performance.

Oracle Tuxedo Globalization Features: Multibyte Support for the Asia Pacific Region Page 6

Figure 2 illustrates the same example described in Figure 1, but it is expanded to
show details about how Oracle Tuxedo handles multibyte data. The environment
variables TPMBENC and TPMBACONV are set on each machine to identify the
encoding and the state (on or off) of automatic encoding conversion. This example,
set in a Japan locale, illustrates a Windows client that supports SJIS encoding and a
UNIX server that supports EUC-JP encoding. The typed buffer header identifies
the buffer as an MBSTRING type and provides encoding and data length
information. The buffer itself holds user data represented in the encoding identified
in the header. The client request buffer holds data represented by SJIS encoding,
and the server reply buffer holds data represented by EUC-JP encoding.

There are two things to consider when designing an application. First, conversion is
inherently costly in terms of performance. Use of automatic conversion, in the
example here, will mean that conversion is done twice for a message—once when a
request is received by the server and then again when the reply is received by the
client. Second, the size of the user data in the buffer will change depending upon
conversion. On the client side in this example, the buffer will either be the same
size after the conversion or it will be smaller. On the server side, the buffer size will
be the same or grow.

Figure 2: Data conversion using an MBSTRING typed buffer

Processing on the Client-Side
When the client process is invoked, it retrieves or sets the name of the codeset
encoding supported by the machine it is running on. For example, to retrieve the

Oracle Tuxedo Globalization Features: Multibyte Support for the Asia Pacific Region Page 7

encoding name set using the environment variable TPMBENC, the client calls
tuxgetmbenc() to search the environment list for a string of the form
TPMBENC=encodingName. If the string is present, the encoding name is passed
along with the user data when the client calls Oracle Tuxedo’s tpalloc() to allocate a
new MBSTRING buffer. The encoding name is then cached, so the call need only
be done once during the initial process invocation of the typed buffer switch
function. If the environment variable TPMBENC is not defined, or if you want to
reset it during processing, the application can use API functions to accomplish this.

Once the client calls tpalloc, Oracle Tuxedo provides buffer allocation and data
conversion, as illustrated in Figure 3. The underlying Oracle Tuxedo system
allocates memory for the new MBSTRING buffer and uses an internal version of
the tuxgetmbenc() function to get the encoding name defined for the TPMBENC
environment variable, if it is set. Oracle Tuxedo adds the encoding name to the
MBSTRING buffer header and returns the allocated buffer to the client.

Later, when the client sends the MBSTRING buffer—for example, using tpsend()
or tpcall()—Oracle Tuxedo will again intervene to perform conversion on the
receiving side, as described in the next section, “Processing on the Server-Side.”

Figure 3: Client processing with Oracle Tuxedo providing buffer allocation and data conversion

Oracle Tuxedo Globalization Features: Multibyte Support for the Asia Pacific Region Page 8

Processing on the Server-Side
The flow diagram in Figure 4 shows the underlying Oracle Tuxedo processing that
takes place when the client sends a request to a server that includes an MBSTRING
typed buffer. Note that Figure 4 also lists the same steps used when the client
receives a reply. Before passing the message on to the service, Oracle Tuxedo
receives the MBSTRING buffer. It checks the environment variable
TPMBACONV to determine if automatic conversion is set. If it is not, Oracle
Tuxedo delivers the data in the MBSTRING buffer to the server without encoding
conversion. If automatic conversion is set, Oracle Tuxedo retrieves the encoding
name defined in TPMBENC. It does some error checking to ensure that the
encoding value is set because otherwise it cannot do the conversion. If the value
were not set, it would log an error and pass control to the server.

If the TPMBENC environment variable is set, Oracle Tuxedo’s type switch
element automatically compares the client’s encoding name with the server’s and, if
the encoding names are different, Oracle Tuxedo automatically converts the
encoding of the incoming message to the encoding supported by the server’s
machine using GNU iconv-based library routines or on a user-created custom
conversion routine. (See the “Customization” section for more information about
creating custom routines.) Oracle Tuxedo delivers the converted data to the service
and passes control to it.

For more examples of server-side and client-side multibyte conversion applications,
please see Appendix 2 at the end of this document.

Oracle Tuxedo Globalization Features: Multibyte Support for the Asia Pacific Region Page 9

Figure 4: Server processing showing the underlying Oracle Tuxedo processing that occurs when the

client sends a request to a server that includes an MBSTRING typed buffer

Oracle Tuxedo Globalization Features: Multibyte Support for the Asia Pacific Region Page 10

Customization
A developer might want to create a custom conversion function if, for example,
better performance is needed to instrument or debug the use of the conversion
functions, or if there is a requirement for custom characters that the provided
libraries do not handle. You can easily install a custom automatic conversion
routine for MBSTRING by replacing the name of the default conversion function
with the name of the custom function in the definition for MBSTRING.
MBSTRING is defined in the tmtypesw.c file, which is where the Oracle Tuxedo
typed buffers are added to the process buffer type switch (tm_typesw). You can
convert a buffer independent of the automatic conversion capability using a
tpconvmb() function at the application level.

You can easily install a custom automatic

conversion routine for MBSTRING by

replacing the name of the default conversion

function with the name of the custom function

in the definition for MMSTRING.

The following fragment from the tmtypesw.c file describes a custom definition for
MBSTRING. The last line shows that the name of the default conversion function,
_mbsconv, has been replaced with the name of the custom function,
CUSTmbconv. Thus the custom conversion routine will be called instead of the
default function when Oracle Tuxedo performs automatic encoding conversion for
MBSTRING type data.

"MBSTRING", /* type */
"*", /* subtype */
0, /* dfltsize * /
_mbsinit, /* initbuf */
NULL, /* reinitbuf */
NULL, /* uninitbuf */
NULL, /* presend */
NULL, /* postsend */
NULL, /* postrecv */
NULL, /* encdec * /
NULL, /* route */
NULL, /* filter */
NULL, /* format */
NULL, /* presend2 */
CUSTmbconv /* customized multi-byte codeset conversion */

The CUSTmbconv code consists of the functions normally used for conversion,
but this is reduced to the iconv calls that are normally used on a UNIX operating
system. The sample customization function is available in Appendix 2.

Encoding Alias Names
The GNU iconv specification permits usage of a charset.alias file. This file allows a
user to define an alias for an existing encoding name. Such capability is in addition
to built-in lists that GNU has for some common names used to specify a unique
encoding, such as SJIS, SHIFT_JIS, SHIFT-JIS, MS_KANJI, CSSHIFTJIS, and so
on. Although this capability is available, there is a performance cost, so it is not
recommended. Instead choose one of the names from the GNU iconv
specification to use for your encoding.

Oracle Tuxedo Globalization Features: Multibyte Support for the Asia Pacific Region Page 11

MULTIBYTE DATA WITH FIELD MANIPULATION LANGUAGE BUFFERS
With Oracle Tuxedo, field manipulation language 32 (FML32) buffers accept a
FLD_MBSTRING field type for codeset-identified multibyte data. Fmbpack32()
and Fmbunpack32() functions provide this field with the information needed for
processing it. The packed data is sent with an FML32 buffer and the receiver of the
FML32 buffer; if the TPMBACONV environment variable is set, it automatically
executes the FML32 buffer type switch conversion function (_fmbconv32). This
function checks the FML32 buffer for FLD_MBSTRING fields and performs
conversion if the encoding name within the field information is not the same as the
local TPMBENC environment variable. As with the _mbconv function, a user can
customize by redefining the tmtypesw. An application accesses converted packed
data from the FML32 buffer using FML32 API functions and the
FLD_MBSTRING field type. It unpacks data with the Fmbunpack32() function.

See Appendix 2 for examples of using MBSTRING and FLD_MBSTRING with
FML32 buffers.

CONCLUSION
Globalized software applications that are portable between regions with different
spoken languages and customs are critical to the successful operation of a global
company. Before Oracle Tuxedo, the application developer had to create a custom
conversion solution to get globalization features. However, custom conversions can
handle only very specific use cases. The globalization capabilities provided by
Oracle Tuxedo include

Globalized software applications that
are portable between regions with

different spoken languages and
customs are critical to the successful

operation of a global company.

• Support for multibyte character typed buffers for user data

• The capability for programmatic conversion on demand using the
APIs or automatic conversion between Chinese, Japanese, and Korean
codeset encodings

• The ability to “get” and “set” codeset encoding information and to
turn automatic conversion on and off—both programmatically
and administratively

• Support for easy replacement of conversion library with custom
conversion functionality

These globalization features enable application administrators to more easily
maintain applications in multiple languages.

Oracle Tuxedo Globalization Features: Multibyte Support for the Asia Pacific Region Page 12

APPENDIX 1: APIS ASSOCIATED WITH MULTIBYTE DATA
The tables in this appendix show functions associated with the MBSTRING and
the FLD_MBSTRING commands.

tpconvmb() Converts characters from an encoding passed along with an input buffer to

a named target encoding.

tpgetmbenc()

Allows a client or server process to retrieve or reset the codeset encoding

name from an MBSTRING buffer. tpsetmbenc() returns a value indicating

whether the encoding name is set or not. Use tpsetmbenc() if the encoding

name needed by the application is different than the one specified as part of

the MBSTRING buffer.

tuxsetmbaconv()

Allows a client or server process to get or set the TPMBACONV environment

variable. If the get operation returns a value indicating the TPMBACONV is

set, then codeset data conversions will be executed automatically by the

buffer type switch functions. Executing the tuxsetmbaconv() function will

set or unset the TPMBACONV function.

tuxsetmbenc()

Allows a client or server process to get or set the TPMBENC environment

variable. The application can use the set function to set or reset TPMBENC.

The get function searches the environment list for a string of the form

TPMBENC=value. If present, it returns a pointer to the value in the current

environment.

Table 1: MBSTRING associated functions

Fmbpack32() Creates a byte stream for use as input to FML32 API functions. It takes as

inputs the codeset encoding name, the codeset multibyte data, and the

length of the input data. It returns an output data pointer containing the

above inputs in a format that FML32 can use.

Fmbunpack32() Takes the output of FML32 API functions actions on FLD_MBSTRINGs and

converts it into information that an application can use. It takes as input the

packed byte stream resulting from the FML32 function and the number of

bytes. It returns the codeset encoding name, the multibyte user data, and

the returned data length.

tpconvfmb32() Permits the application developer to execute a multibyte data conversion

separate from the typed buffer switch function. It takes an input FML32

buffer, an output FML32 buffer, and a target codeset encoding name. It

walks through the input FML32 buffer and update FLD_MBSTRING field

types that contain a codeset encoding name different from the target

encoding name argument.

Table 2: FLD_MBSTRING associated functions

Oracle Tuxedo Globalization Features: Multibyte Support for the Asia Pacific Region Page 13

APPENDIX 2: SOFTWARE EXAMPLES

A Multibyte Data Conversion Example
This example illustrates the use of API functions associated with MBSTRING in a
simple conversion scenario. A multibyte data conversion example, described in the
“Customization” section, provided the application perspective for this example.

Client-Side Application
/* #ident "@(#)apps:simpapp/simpclmb.c 1.1" */

#include <stdio.h>
#include "Uunix.h"
#include "atmi.h" /* TUXEDO Header File */
#if defined(__STDC__) || defined(__cplusplus)
main(int argc, char *argv[])
#else
main(argc, argv)
int argc;
char *argv[];
#endif
{
/*

This example will send an input string to a service
TOUPPERMB that will convert the characters to uppercase
and then return the result back to this client. This
client-side process encoding name will be defined to be
UTF-16LE, the buffer to be sent will be redefined to the
UTF-8 encoding and the server-side encoding will be UTF-
16BE. If automatic conversion is turned on for both sides,
then the server process will convert the MBSTRING from
UTF-8 to UTF-16BE before passing it on to the TOUPPERMB
service. After the service is done and returns the
MBSTRING, it will be converted at this client process
from UTF-16BE to UTF-16LE(because that is the defined
encoding for this process) before delivering the resulting
buffer as the tpcall rcvbuf argument to this application.
Finally the rcvbuf will again be converted to the UTF-8
encoding and printed out. The UTF-16LE steps are not
needed but are added to show some API usage. (ie UTF-
8<=>UTF-16BE could have been by auto conversion)

*/
char *sendbuf, *rcvbuf;
long sendlen, alloclen, rcvlen;
int ret,iolen;
if(argc != 2) {
 (void) fprintf(stderr, "Usage: simpclmb string\n");
 exit(1);
}
/* Attach to System/T as a Client Process */
if (tpinit((TPINIT *) NULL) == -1) {
 (void) fprintf(stderr, "Tpinit failed\n");
 exit(1);
}

/*

Oracle Tuxedo Globalization Features: Multibyte Support for the Asia Pacific Region Page 14

If it is desired to have automatic multibyte conversion
"OFF" then comment out, or delete, the following six
lines.
The tuxsetmbaconv will only control this client process.
The server process will need to set its own environment
variable or execute its own tuxsetmbaconv() function.
NOTE:An alternative to using these two lines is to set
the TPMBACONV
environment variable(eg export TPMBACONV="YES").

*/
ret = tuxsetmbaconv(MBAUTOCONVERSION_ON,0);
if(ret == -1) {
 (void) fprintf(stderr, "tuxsetmbaconv failed\n");
 exit(1);
}
(void) fprintf(stderr, "tuxsetmbaconv ON done.\n");

 /*

NOTE:An alternative to using the following six lines is
to set the TPMBENC environment variable(eg export
TPMBENC="UTF-16LE").

 */
ret = tuxsetmbenc("UTF-16LE",0);
if(ret == -1) {
 (void) fprintf(stderr, "tuxsetmbenc failed\n");
 exit(1);
}
(void) fprintf(stderr, "tuxsetmbenc UTF-16LE done.\n");
sendlen = strlen(argv[1]);

 /*

NOTE: This example is using an ASCII input string. The
customer specific encoding used may not work well with
the OS string functions due to an embedded NULL in the
character definition. In general the memory or wcstring
functions can be used without being concerned about the
codeset encoding having embedded NULLs. Therefore 1 is
not added to sendlen, in this example, for a NULL
terminator. Only exact bytecnt is used. It is left to
the developer to use the string functions and add the
NULL terminator to the send length.

 */

(void) fprintf(stderr,"Input: %s, Length: %d\n", argv[1],
sendlen);
/* Allocate MBSTRING buffers for the request and the
reply */ alloclen = sendlen * 4; /*max size buf ensures
min # iconv iterations*/ if((sendbuf = (char *)
tpalloc("MBSTRING", NULL, alloclen)) == NULL) {

 (void) fprintf(stderr,"Error allocating send buffer: %s\n",
 tpstrerror(tperrno));
 tpterm() ;
 exit(1);
 }

if((rcvbuf = (char *) tpalloc("MBSTRING", NULL,alloclen))
== NULL) {

 (void) fprintf(stderr,"Error allocating receive
buffer\n");

 tpfree(sendbuf);
 tpterm();
 exit(1);

Oracle Tuxedo Globalization Features: Multibyte Support for the Asia Pacific Region Page 15

}
/*

The default encoding for the newly tpalloc'd send buf is
UTF-16LE (because we did a tuxsetmbenc() above) but the
data that is being input to this client is UTF-8
encoding(ie argv[1] in UTF-8). So I need to reset the
sendbuf encoding to UTF-8.

*/
 ret = tpsetmbenc(sendbuf,"UTF-8",0);
 if(ret == -1) {
 (void) fprintf(stderr, "tpsetmbenc UTF-8 failed\n");

(void) fprintf(stderr, "Tperrno = %d\n", tperrno);
exit(1);

 }
 (void) fprintf(stderr, "tpsetmbenc UTF-8 done.\n");
 (void) memcpy(sendbuf, argv[1], (size_t)sendlen);
 /* Request the service TOUPPERMB, waiting for a reply */

ret = tpcall("TOUPPERMB", (char *)sendbuf, sendlen, (char
**)&rcvbuf, &rcvlen, (long)0);

 if(ret == -1) {
(void) fprintf(stderr, "Can't send request to
service TOUPPERMB\n");

 (void) fprintf(stderr, "Tperrno = %d\n", tperrno);
 tpfree(sendbuf) ;
 tpfree(rcvbuf);
 tpterm() ;
 exit(1);
 }

(void) fprintf(stdout, "Returned rcvbuf Length %d\n",
rcvlen);

/*

The rcvbuf was automatically converted from UTF-16BE to
UTF-16LE, (because we used tuxsetmbaconv() initially) when
this process received the reply buffer from the TOUPPERMB
service, but this application requires it to be printed
out using UTF-8 encoding so force another conversion from
UTF-16LE to UTF-8.

*/
 iolen = (int)rcvlen;
 ret = tpconvmb(&rcvbuf, &iolen, "UTF-8", (long)0);
 if(ret == -1) {
 (void) fprintf(stderr, "Can't execute tpconvmb.\n");
 (void) fprintf(stderr, "Tperrno = %d\n", tperrno);
 tpfree(sendbuf) ;
 tpfree(rcvbuf);
 tpterm() ;
 exit(1);
 }

/*

NOTE: tpconvmb reuses rcvbuf for output and will return
iolen bytes that were converted to UTF-8. To correctly
output this as a string we need to add a NULL terminator
to rcvbuf or use another char* and strncpy to it.

Oracle Tuxedo Globalization Features: Multibyte Support for the Asia Pacific Region Page 16

*/
 *(rcvbuf + iolen) = '\0';

/*output received buf from TOUPPERMB service converted to
UTF-8 */ (void) fprintf(stdout, "simpclmb output string
is: %s, Length %d\n", rcvbuf, iolen);

 /* Free Buffers & Detach from System/T */
 tpfree(sendbuf) ;
 tpfree(rcvbuf);
 tpterm();
 return(0);
}

Server-Side Application
/* #ident "@(#)apps:simpapp/simpservmb.c 1.0" */

#include <stdio.h>
#include <ctype.h>
#include <atmi.h> /* TUXEDO Header File */
#include <userlog.h> /* TUXEDO Header File */

/* tpsvrinit is executed when a server is booted, before it
begins processing requests. It is not necessary to have this
function. Also available is tpsvrdone (not used in this
example), which is called at server shutdown time.
*/

#if defined(__STDC__) || defined(__cplusplus)
tpsvrinit(int argc, char *argv[])
#else
tpsvrinit(argc, argv)
int argc;
char **argv;
#endif
{
 int ret,iolen;

 /* userlog writes to the central TUXEDO message log */
 userlog("Welcome to the simpservmb server");

 /* Some compilers warn if argc and argv aren't used. */
 argc = argc;
 argv = argv;
/*

If it is desired to have automatic multibyte conversion
"OFF" then comment out, or delete, the following six
lines.
The tuxsetmbaconv will only control this client process.
The server process will need to set it's own environment
variable or execute it's own tuxsetmbaconv() function.
NOTE: An alternative to using these two lines is to set
the TPMBACONV environment variable(eg. export
TPMBACONV="YES").

*/
 ret = tuxsetmbaconv(MBAUTOCONVERSION_ON,0);
 if(ret == -1) {
 (void) fprintf(stderr, "tuxsetmbaconv failed\n");
 exit(1);

Oracle Tuxedo Globalization Features: Multibyte Support for the Asia Pacific Region Page 17

 }
userlog("tuxsetmbaconv ON done");

/*

NOTE:An alternative to using the following six lines is
to set the TPMBENC environment variable(eg export
TPMBENC="UTF-16BE").

*/
 ret = tuxsetmbenc("UTF-16BE",0);
 if(ret == -1) {
 (void) fprintf(stderr, "tuxsetmbenc failed\n");
 exit(1);
 }
 userlog("tuxsetmbenc UTF-16LE done");
 return(0);
}

/* This function performs the actual service requested by the
client. Its argument is a structure containing among other
things a pointer to the data buffer, and the length of the data
buffer.
*/
#ifdef __cplusplus
extern "C"
#endif
void
#if defined(__STDC__) || defined(__cplusplus)
TOUPPERMB(TPSVCINFO *rqst)
#else
TOUPPERMB(rqst)
TPSVCINFO *rqst;
#endif
{
 int i,ret;
 char myenc[80];
 char *en=&myenc[0];

 userlog("TOUPPERMB Input Length: %d", rqst->len);
 /*

The automatic conversion is turned on, see the tpsvrinit
above,and the server process will have already converted
the buffer to the defined encoding before delivering it to
this service. The rqst data should now be in the UTF-16BE
encoding and the rqst length would now be twice what it
was in the UTF-8 encoding

 */
 ret = tpgetmbenc(rqst->data,en,0);
 if(ret == -1) {
 (void) fprintf(stderr, "tpgetmbenc failed.\n");
 (void) fprintf(stderr, "Tperrno = %d\n", tperrno);
 tpreturn(TPFAIL, 0, rqst->data, 0L, 0);
 }
 if(strcmp(en,"UTF-16BE") !=0) {

 (void) fprintf(stderr, "tpgetmbenc not==UTF-
16BE.Got: %s\n",en);

 (void) fprintf(stderr, "Tperrno = %d\n", tperrno);
 tpreturn(TPFAIL, 0, rqst->data, 0L, 0);
 }

userlog("tpgetmbenc check==UTF-16LE done");

Oracle Tuxedo Globalization Features: Multibyte Support for the Asia Pacific Region Page 18

/*

If it is desired to have automatic multibyte conversion
"OFF" but to do the conversion on demand in this
application then use the following 12 lines of code as an
example. If no automatic conversion is done and tpconvmb
is not executed then the rqst data bytes will be left
defined by the same encoding name as the client process(ie
UTF-8).

 if(tuxgetmbaconv(0) == MBAUTOCONVERSION_OFF) {

 ret = tpconvmb(&rqst->data, &iolen, "UTF-16BE",
(long)0);

 if(ret == -1) {
 (void) fprintf(stderr, "Can't execute
tpconvmb.\n");
 (void) fprintf(stderr, "Tperrno = %d\n",
tperrno);

 tpreturn(TPFAIL, 0, rqst->data, 0L, 0);
 }
 userlog("tpconvmb new mbstring length: %d",iolen);
 }
*/
 for(i = 0; i < rqst->len; i++) {
 if(rqst->data[i]) {

userlog("TOUPPERMB index: %d, char: %c", i, rqst-
>data[i]);

 rqst->data[i] = toupper(rqst->data[i]);
 } else {
 /*

NOTE: The danger of arbitrarily using string/print
functions on the data received: The original data was sent
in UTF-8 but the converted data received is now in UTF-
16BE and will have embedded NULLs. The LIBC string/print
functions would not work correctly or crash.

 */
 serlog("TOUPPERMB skip index: %d",i); u
 }
}
/* Return the transformed buffer to the requestor. */
tpreturn(TPSUCCESS, 0, rqst->data, rqst->len, 0);
}

Using FLD_MBSTRING
The final example illustrates the use of FLD_MBSTRIN.

Oracle Tuxedo Globalization Features: Multibyte Support for the Asia Pacific Region Page 19

Client-Side Application
#include <stdio.h>
#include <stdlib.h>
#include <atmi.h>
#include <userlog.h>
#include <fml.h>
#include <fml32.h>
#include "fmltbl32.h"
/*
 **
 The fmltbl32 header file used to generate fmltbl32.h
 is simply a single field definition:
 # name number type flags comments
 FLD4 112 mbstring - -
 **
*/
#define BUFLEN 1024
#ifdef _TMPROTOTYPES
main(int argc, char *argv[])
#else
main(argc, argv)
int argc;
char *argv[];
#endif
{
 FBFR32*fmlptr;
 long rlen;
 int ret;
 char *fldmbio;
 FLDLEN32 packedlen;
/*
 **
 This example sets two occurences of the same field to UTF- 8
 packed data and then sends it to the FML32SRV service. The
 service will return the buffer with its fields in UTF-16BE
 format which will locally be converted back to UTF-8.
 **
*/
 /* Attach to System/T as a Client Process */
 if (tpinit((TPINIT *)NULL) == -1) {
 (void) fprintf(stderr,"tpinit failed: %s\n",
tpstrerror(tperrno));
 exit(1);
 }
 ret = tuxsetmbaconv(MBAUTOCONVERSION_ON,0);
 if(ret == -1) {
(void) fprintf(stderr, "tuxsetmbaconv failed\n");
 exit(1);
 }
(void) fprintf(stderr, "tuxsetmbaconv ON done.\n");
/*
 **
 Since automatic conversion is turned on we need to set th e
 encoding for the process environment. This is so that the
 reply to the tpcall will be converted back to UTF-8 before
 being made available to this application code.
 **
*/
 ret = tuxsetmbenc("UTF-8",0);
 if(ret == -1) {
 (void) fprintf(stderr, "tuxsetmbenc failed\n");
 xit(1); e
 }
 (void) fprintf(stderr, "tuxsetmbenc UTF-8 done.\n");

Oracle Tuxedo Globalization Features: Multibyte Support for the Asia Pacific Region Page 20

 /* allocation for fml32 buffer */
 if ((fmlptr = (FBFR32 *) tpalloc("FML32", NULL, BUFLEN) ==
NULL) {

(void) fprintf(stderr,"tpalloc failed: %s\n",
tpstrerror(tperrno));

 tpterm() ;
 exit(1);
 }

/* create and pack datastream input for FLD_MBSTRING
fields */ packedlen = 256;/*excessive space, actual bytes
used is very little*/ fldmbio =
(char*)malloc((size_t)packedlen);
if (Fmbpack32("UTF-8", "hello", 5, fldmbio,
&packedlen,0) < 0) {

(void) fprintf(stderr,"Fmbpack32 on hello failed:
%d\n", Ferror32);

 exit(1);
 }
 /*set 1st occurence of FLD_MBSTRING field FLD4*/
 if (Fchg32(fmlptr, FLD4, (FLDOCC32)-1, fldmbio, packedlen)
< 0) {
 (void) fprintf(stderr,"Fchg on FLD4,0 failed: %d\n",
Ferror32);
 exit(1);
 }
 userlog("Fchg on FLD4,0 passed. packedlen: %d", packedlen);

 packedlen = 256;
 if (Fmbpack32("UTF-8", "world", 5, fldmbio, &packedlen,0)
< 0) {
 (void) fprintf(stderr,"Fmbpack32 on bobf failed:
%d\n", Ferror32);
 exit(1);
 }
 /*set 2nd occurence of mbstring field FLD4*/
 if (Fchg32(fmlptr, FLD4, (FLDOCC32)-1, fldmbio, packedlen)
< 0) {
 (void) fprintf(stderr,"Fchg on FLD4,1 failed: %d\n",
Ferror32);
 exit(1);
 }
 userlog("Fchg on FLD4,1 passed. packedlen: %d", packedlen);
/*
 **
 Note: Since all fields are defined using the same encoding,
 an alternative to setting each encoding separately would be
 to use tpsetmbenc(UTF-8) on the FML32 buffer and then use
 Fmbpack32() with FBUFENC for the flag arg and NULL for the
 encoding arg. This would reduce the total size of the buffer
 used.
 **
*/
 puts("The FML32 buffer sent : -");

 Fprint32(fmlptr);
 userlog("Fchg32 : successful");
 /*send the FML32 buffer to the FMLSRV32 service*/
 if(tpcall("FMLSRV32",(char*)fmlptr,0,(char**)&fmlptr,&rle

n,TPNOTIME) == - 1) {
(void) fprintf(stderr,"tpcall failed: %s\n",
tpstrerror(tperrno));

 exit(1);

Oracle Tuxedo Globalization Features: Multibyte Support for the Asia Pacific Region Page 21

 }

 puts("The FML32 buffer got : -");
 Fprint32(fmlptr);

 tpfree((char *)fmlptr);
 tpterm() ;
 exit(0);
}

Server-Side Application
#include <stdio.h>
#include <ctype.h>
#include <atmi.h> /* TUXEDO Header File */
#include <userlog.h> /* TUXEDO Header File */
#include <fml.h>
#include <fml32.h>
#include "fmltbl32.h"

/* tpsvrinit is executed when a server is booted, before it
begins processing requests. It is not necessary to have this
function. Also available is tpsvrdone (not used in this
example), which is called at server shutdown time.
*/

#if defined(__STDC__) || defined(__cplusplus)
tpsvrinit(int argc, char *argv[])
#else
tpsvrinit(argc, argv)
int argc;
char **argv;
#endif
{
 int ret=0;
 /* Some compilers warn if argc and argv aren't used. */
 argc = argc;
 argv = argv;

 /* userlog writes to the central TUXEDO message log */
 userlog("Welcome to the simple server");

 ret = tuxsetmbaconv(MBAUTOCONVERSION_ON,0);
 if(ret == -1) {
 (void) fprintf(stderr, "tuxsetmbaconv failed\n");
 exit(1);
 }
 userlog("tuxsetmbaconv ON done");

 ret = tuxsetmbenc("UTF-16BE",0);
 if(ret == -1) {
 (void) fprintf(stderr, "tuxsetmbenc failed\n");

 exit(1);
 }
 userlog("tuxsetmbenc UTF-16BE done");

 return(0);
}

/* This function performs the actual service requested by the
client. Its argument is a structure containing among other

Oracle Tuxedo Globalization Features: Multibyte Support for the Asia Pacific Region Page 22

things a pointer to the data buffer, and the length of the data
buffer.
*/

#ifdef __cplusplus
extern "C"
#endif
void
#if defined(__STDC__) || defined(__cplusplus)
FMLSRV32(TPSVCINFO *rqst)
#else
FMLSRV32(rqst)
TPSVCINFO *rqst;
#endif
{
 char buf[1024];
 char odata[1024];
 char pckdata[1024] ;
 char encname[256];
 char *bufptr = (char *)(rqst->data);
 int i=0,occ=0;
 FLDLEN32 odatalen=0,packedlen=0,buflen=0;
 userlog("Welcome to the fml32srv server");
/*
 **
 Since automatic conversion is turned on the FML32 buffer
 that this FMLSRV32 service will receive will have been
 converted to the local encoding(ie UTF-16BE). The following
 code will get the fields from the fml32 buffer, extract th e
 userdata from the fields, manipulate the date(ie change to
 uppercase), repack it, change the fields and then send the
 fml32 buffer back to the client.
 **
*/

 for (occ = 0;occ < 2; occ++) {
 buflen = 1024;
 /*get FLD_MBSTRING field from FML32 buffer*/

if (Fget32((FBFR32 *)bufptr, FLD4, occ, buf, &buflen)
== -1) { userlog ("Fget32 FLD4,%d failed: %d", occ,
Ferror32); tpreturn(TPFAIL, 0, rqst->data, 0L, 0);

 }
 userlog("FMLSRV32 Fget32 FLD4,%d passed buflen: %d",

occ, buflen);
 odatalen = 1024;

/*unpack the field into user data and encoding
info*/

 if (Fmbunpack32(buf, 20, encname,odata,&odatalen,0) ==
-1) { userlog ("Fmbunpack32 FLD4,%d failed", occ);

 tpreturn(TPFAIL, 0, rqst->data, 0L, 0);
 }
 userlog("FMLSRV32 FLD4,%d encname: %s", occ, encname);

/*change relevant bytes to uppercase*/

 for(i = 0; i < odatalen; i++) {
 if(odata[i]) {

userlog("FMLSRV32 FLD4,%d index: %d, char:
%c",occ,i,odata[i]); odata[i] = toupper(odata[i]);

 } else {
userlog("FMLSRV32 FLD4,%d skip index: %d", occ,
); i

 }
 }
 packedlen = 1024;

Oracle Tuxedo Globalization Features: Multibyte Support for the Asia Pacific Region Page 23

 /*pack encoding name and user data into field data*/
if (Fmbpack32("UTF-
16BE",odata,odatalen,pckdata,&packedlen,0) < 0) {

userlog("Fmbpack32 on FLD4,%d failed: %d", occ,
Ferror32);

 tpreturn(TPFAIL, 0, rqst->data, 0L, 0);
 }
 /*set the FLD_MBSTRING with new packed data*/

if (Fchg32((FBFR32
*)bufptr,FLD4,(FLDOCC32)occ,pckdata,packedlen) < 0) {
userlog("Fchg32 on FLD4,%d failed: %d", occ,
Ferror32);

 tpreturn(TPFAIL, 0, rqst->data, 0L, 0);
 }
 userlog("Fchg32 on FLD4,%d passed. packedlen: %d ",

occ, packedlen);
 }
 userlog("Successfully done with the fml32srv server");

 /* Return the transformed buffer to the requestor. */
 tpreturn(TPSUCCESS, 0, rqst->data, 0L, 0);
}

Custom Conversion Function
/*
 * CUSTmbconv
 *
 * This function will convert characters from a source
encoding, defined in the TCM, to a targe codest.
 *
 * INPUT
 * *iptr - pointer to an input buffer
 * ilen - Length of input buffer
 * *target_enc - Characters in iptr will get converted

to the code set defined by this name.
 * *flags - valid values are TMUSEIPTR or TMUSEOPTR.
Where results put.
 *
 * OUTPUT
 * *optr - pointer to an output buffer. If null, use
iptr to output.
 * olen - Length of output buffer. If optr is null,
use ilen.
 * *flags - valid values are TMUSEIPTR or TMUSEOPTR.
Where results put.
 *
 * RETURNS
 * -1 - Failure (check errno for reason)
 * positive # - Success. Return val is num of bytes
used in result.
 * negative # - Not enough space. Value is -1*(guess
of bytes needed)
 */
/*ARGSUSED*/
long
#ifdef _TMPROTOTYPES
_TMDLLENTRY
CUSTmbconv(char _TM_FAR *iptr, long ilen, char _TM_FAR
*target_enc, char _TM_FAR
 *optr, long olen, long _TM_FAR *flags)
#else

CUSTmbconv(iptr, ilen, target_enc, optr, olen, flags)
char *iptr;

Oracle Tuxedo Globalization Features: Multibyte Support for the Asia Pacific Region Page 24

long ilen;
char *target_enc;
char *optr ;
long olen;
long *flags;
#endif
{
 iconv_t cd;
 char *tptr;
 char *to = (char *)NULL;
 char *fptr;
 size_t ileft, oleft, ret,used=0;
 char encname[56];
 char *src_enc = &encname[0];

 if ((target_enc == NULL) || (*target_enc == '\0')) {
 /* missing target encoding argument */;
 return(-1);/*WILL NEED TO SET TPERRNO for return -1*/
 }

 if(tpgetmbenc(iptr,src_enc,0) < 0) {
 /* missing source encoding name */;
 return(-1);
 }

/* convert characters from source encoding to target
encoding format */
cd = iconv_open((const char *)target_enc, (const char
*)src_enc);

 if (cd == (iconv_t)-1) {
 /* iconv_open failure */
 return (-1);
 }

 if(optr == NULL) {

/* If no output buf given and if conversion fails due
to insufficient*/
/* buf size then the input buf would be unusable when
sent back for */
/* a retry attempt. So use tmp buffer for output until
conversion is */
/* clean and copy it back to the input buffer upon
successful conv*/

 if(olen == 0) {
/*probably will throw E2BIG error with correct size
to use*/

 olen = ilen;
 }
 /*if olen!=0 then it should be the max size of the iptr
buffer*/
 if ((to = (char *)malloc((size_t)olen)) == NULL) {
 return (-1);
 }

 } else {
 to = optr;
 }
 tptr = to;
 fptr = iptr;
 ileft = ilen;
 oleft = olen;

 (void) iconv(cd,NULL,NULL,NULL,NULL); /* go to the initial

Oracle Tuxedo Globalization Features: Multibyte Support for the Asia Pacific Region Page 25

state */
 for (;;) {
 ret = iconv(cd, &fptr, &ileft, &tptr, &oleft);
 if (ret != (size_t)-1) {
 /* iconv succeeded. NOTE: Some characters may not

have needed */

/* conversion and are the same as input value
representation */

 used = used + (olen - oleft);
 olen = oleft;
 if(ileft != 0) {
 /* iconv not done, execute again*/
 continue;
 }
 if(optr == NULL) {
 /* no output buffer given,copy tptr buf back to

input buffer*/
 (void) memcpy(iptr,to,used);/*DANGER:iptr len

must be >= used*/
 free(to);
 *flags |= TMUSEIPTR;
 } else {
 /* characters from iconv exec in output buffer,
optr */
 *flags |= TMUSEOPTR;
 }

(void) iconv(cd,NULL,NULL,NULL,NULL);/* reset to
initial state */

 (void) iconv_close(cd);
 return (used);/*return #bytes used in output

buffer*/
 } else {
 /* iconv failed */
 (void) iconv(cd,NULL,NULL,NULL,NULL);/* reset to

initial state */
 (void) iconv_close(cd);
 if(optr == NULL) {
 free(to);
 }
 if (errno == E2BIG) {
 olen = (ilen + (4 * ileft)) * -1;
 *flags |= TMUSEIPTR;
 return (olen);/*return guesstimate of size iptr

should be*/
 } else if (errno == EINVAL) {
 /* Incomplete char/shift sequence */
 } else if (errno == EILSEQ) {
 /* NOTE: We do not handle code set state

dependent sequences */
 } else if (errno == EBADF) {
 /* Actually, this should happen above

ring iconv_open */ du
 } else {
 /* Undefined error */
 }
 return(-1);
 }
 }
}

Oracle Tuxedo Globalization Features: Multibyte Support for the Asia Pacific Region Page 26

Oracle Tuxedo Globalization Features: Multibyte Support for the Asia Pacific Region
Updated June 2008

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

Copyright © 2008, Oracle and/or its affiliates. All rights reserved.
This document is provided for information purposes only and the
contents hereof are subject to change without notice.
This document is not warranted to be error-free, nor subject to any
other warranties or conditions, whether expressed orally or implied
in law, including implied warranties and conditions of merchantability
or fitness for a particular purpose. We specifically disclaim any
liability with respect to this document and no contractual obligations
are formed either directly or indirectly by this document. This document
may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners. 0408

