ORACLE"
FUSION MIDDLEWARE

An Oracle White Paper
July 2012

Achieving High Availability
with Oracle Tuxedo

ORACLE

Achieving High Availability with Oracle Tuxedo

INEFOAUCTION ... 2
Tuxedo High Availabilitycoeeiiiiiiiiee e, 3
System Availability ... 3
Tuxedo platform and INfrastruCturecccovvveeiiiiiiiiiiiiiennes 4
TEIMINOIOGY ...ttt 6
Oracle Tuxedo in High Availability Configurationsc..ooou. 7
Administrative INfrastruCture ..., 7
Failure Detection & Automatic RECOVEIYcuvvvieeieeeeeiiiiiiiinnnn. 8
Maintenance of Data Integrity on Failurecooeeeeeeeieeeee, 11
Maintaining Operations During Failure............ccccoooeeeieeeeee, 12
Restoring OPerationsS...........cceiieeeiiiiiiiiiee e 16

CONCIUSION <. 17

Achieving High Availability with Oracle Tuxedo

Introduction

On-Line Transaction Processing (OLTP) applications support the core processes of much of
the world's businesses. These systems are high volume and mission critical, where failure can
have significant consequences to the survival of the business. The following requirements are
typically associated with OLTP applications:

o Capacity to support thousands of concurrent users

« Capacity to handle large volumes of data

« High transactional throughput

« Predictable, short response times

« High data integrity and security

« Concurrent database access

« High (often 7 x 24) application availability

A critical requirement for most OLTP systems is that they operate 7 x 24 despite any
component outages or required application upgrades. Downtime is a critical problem for
businesses, who use computing systems as backbone of their operations, since downtime
translates into lost money, unhappy customers and lost business.

Oracle Tuxedo provides numerous built-in capabilities that customers can use to deploy and
run highly available application services. Tuxedo can also be combined with Oracle RAC and
3rd party clustering solutions such as with Veritas Cluster Server, HP’s MC ServiceGuard, and
others to further increase the availability and robustness of the deployed applications.

This white paper summarizes the high availability features of Oracle Tuxedo. It focuses on

system availability in cases of hardware and software failures within the data center. It does
not cover environmental, operational and remote client machine failures.

Achieving High Availability with Oracle Tuxedo

Tuxedo High Availability

System Availability

The availability of a system is defined as the percentage of time during which that system is available.
Availability is reduced by two factors: the rate at which a system fails and the recovery time. The
following two measures quantify these factors. Mean Time Between Failures (MTBF) is the average
time the system runs before it fails and is a measure of system reliability. Mean Time to Repair or
Recover (MTTR) is how long it takes to fix the system after it fails or for the system to automatically
recover. So availability can be defined as

Availability = MTBF/(MTBF + MTTR)

Thus, availability improves when reliability increases and recovery time decreases.

Causes of System Outages

The various outages in generic computer systems and applications can be divided into planned and
unplanned. Planned outages are caused when the system has to be taken offline for hardware or
software upgrade, backup, or other sorts of maintenance. Modern systems can be architected to
completely eliminate the need for planned outages through combination of redundant and hot-
pluggable hardware components, online OS updates, and ability to upgrade applications while in
operations. Upgrades that are transparent to Tuxedo will not affect the applications, and for those that
are not transparent, Tuxedo can shift running services among multiple nodes to support a rolling

upgrade without an outage.

Unplanned outages are caused by some sort of failure in the operating environment, and these can be

divided into the following classes:
o Environmental Failures (e.g., power, communications, air-conditioning, etc.)
o Operations Failures (e.g., human errors in configuration, operation, etc.)

o Hardware Failures (all hardware devices like processor, memory, I/O controllers, network

equipment, etc.)
o Software Failures (operating system, database, transaction monitor, application)

In recent years, the increased robustness of hardwate and software has made operations,

administration, and maintenance the primary cause of downtime as can be seen in table 1.

TABLE 1. DOWNTIME ANALYSIS

PERCENTAGE CATEGORY CAUSE
20% Hardware Disk, Network, Memory, Processor
30% Software Application, Middleware, Database

50% Operation, * Scheduled maintenance

Achieving High Availability with Oracle Tuxedo

administration, « Unintentional — Wrong configuration, shutdown wrong host, disconnected
maintenance wrong cable, etc.

« Intentional — Hacking, denial of service attacks, etc

Maximizing System Availability

High Availability (HA) systems aim to shield users from an impact of a component failure and reduce
the application environment’s MTTR by automating recovery from these failures. To understand the
methods for this, we must first define the various levels of availability.

Normal Availability systems are general-purpose computers that have no hardware redundancy or
software enhancement to provide fault-processing recovery. They require manual, human intervention

to identify and repair failures and restart the system before resuming normal operations.

High Availability systems use hardware and software redundancy together with health monitoring, often
through the use of loosely coupled computer clusters, which, provide redundancy at the node level.
The cluster is managed by software (a cluster manager) that provides automated fault detection and
correction procedures. These clustered systems require no manual intervention to identify a failure,
execute a procedure to bypass the affected computer and notify system administrators. They respond
automatically to most kinds of failures and restore access to services with minimal interruption. There

are two distinct high availability models for client-server architectures:
 Replicated Services Model

This model utilizes distributed applications and distributed databases on multiple servers. The
application services are available on more than one server, so an individual failure will not prevent the
request from being processed by an alternate server offering the same service. The data is replicated to
some or all of the servers, or is otherwise visible from more than one system (e.g. via a parallel
database system like Oracle RAC). Therefore, when a server failure occurs, the data and applications

are accessible from an alternate node.
o Failover Model

This model utilizes duplicate hardware configurations in which one system has the role of a primary
server for data and application services, and the other is a backup server that monitors the state of the
primary system. When the backup node detects a failure on the primary server, it takes over the role
and identity of the primary.

Fanlt Tolerant systems consist of proprietaty, expensive, and tightly coupled duplicated components.
Fault handling capabilities are integrated into and become a function of the operating system. These
systems requite no manual intervention to identify a failed component and execute a procedure to
avert a system failure. They have spontancous and fully automatic response to failures and provide

completely uninterrupted services.

Tuxedo platform and infrastructure

A TP Monitor provides an execution environment for server-based OLTP applications which run
continuously in production. Oracle Tuxedo is the leading TP Monitor for open systems, providing

Achieving High Availability with Oracle Tuxedo

distributed Transaction Processing and messaging middleware. It combines the capabilities of an
application server for hosting COBOL, C, and C++ applications with service bus capabilities for high-
speed reliable messaging, supporting synchronous, asynchronous, conversational, and event-based
publish-subscribe messaging models. It features a high-level API for building distributed application
components connected via message-based communications. Components execute in a managed server
environment (containers) implemented by cote Oracle Tuxedo services. These services implement a
sophisticated set of transaction and application management functions, and comprehensive distributed

systems administration including:

o Transparent two-phase commit for data integrity and atomic updates
 Transaction and error logging

o An administration framework for managing centralized or distributed transactions

o Fast-cache access methods, automatic server spawning, buffer management, and routing capabilities

to optimize transactional throughput
Tuxedo provides rich built-in high availability features, which include:
o Built-in redundancy, replication, distribution, clustering

o Monitoring and fault detection for server and client processes with buddy system and heartbeat

mechanisms

o Automatic failover migration for server processes in case of unavailable node in a multi-node

domain or cluster environment
o Fault recovery features: restatt, re-route, and failover
o Failover mode of data dependent routing

o Distributed transactions with ACID properties

In addition, Tuxedo service virtualization capabilities support transparency of implementation,
location, replication, failover, and recovery, and enable dynamic routing, load balancing, and
failover/failback. Tuxedo applications can be deployed in a single machine domain, multi-node domain
or cluster, and multiple domains as required by separation of application concerns, secutity zones, or

other considerations.

Tuxedo clustering — MP Domain

Tuxedo provides built-in clustering capabilities, which enable customers to deploy Tuxedo applications
across multiple nodes without any additional clustering software or hardware. In a Tuxedo cluster (also
known as MP domain), services can be transparently shared and load balanced across a mixed set of
platform architectures. This environment has no single point of failure and can be dynamically
administered to add/remove machines, servers (processes), and services for continuous operation.
These capabilities also enable rolling upgrades of the Tuxedo platform and the application, without
impacting end-user availability of the services.

Achieving High Availability with Oracle Tuxedo

Tuxedo domains can be used to achieve either of the two HA models described above:
o Failover model using Active/Passive configuration

This commonly used model requires a mirrored configuration, which uses twice the hardware and
software requirements but supports only half of the total workload capacity. The data replication (files,
databases) must be provided by facilities like Oracle Data Guard or similar 3rd party data replication
solutions. Unlike an Active/Active configuration where the node taking over is already running
services, the Passive system has to go through a startup process to take over a failing node, and this can

potentially create reliability issues unless tested periodically.

» Replicated services model using Active/Active configuration

In this configuration Tuxedo can support multiple domains of single or multiple machines. Because all
resources are in use, the ability of a node or domain to take over the workload of a failing node or
domain is assured, though its performance may degrade. Active/Active configuration also provides an
additional benefit in that the system can be scaled by replication of services and data dependent
routing. This combination of highest availability and scalability makes Active/Active configurations the
best choice for large scale OLTP workloads.

Terminology

Node - one or more CPUs with shared memory, running one copy of an OS, having network

connections, and disk storage.

Cluster or Domain -one or more Nodes possibly sharing disk storage and networks, and connected
by private interconnect over which control information and heartbeats can flow. From an application
perspective a Tuxedo domain is a set of Tuxedo system, client, and server processes administered as a
single unit from a single Tuxedo configuration file. A Tuxedo domain consists of many system
processes, one or more application client processes, one or more application server processes, and one
or more computer machines connected over a network. A Tuxedo domain may provide ATMI
services, CORBA objects, or both.

Logical Host - a Virtual Node which is defined to reside on a Physical Host (Node) and may be
migrated to another Physical Host. More than one Logical Host may be defined on a Physical Host.

Logical Machine - the terminology Oracle Tuxedo uses to refer to a Virtual Node. In a Oracle
Tuxedo configuration, a Virtual Node is identified by a Logical Machine ID (LMID).

Master/Slave Node -In the Tuxedo System, the computer configured as the master for an application
is called “Master Node”. It contains the master copy of the configuration and is the computer where
DBBL runs. The other nodes are called “Slave Nodes”. One of the slave nodes can be configured as

“backup node”, where the master node can be migrated to, and becomes the new master node.

Backup Master - the Oracle Tuxedo Logical Machine which can inherit the Master role, i.e. taking
over in the event of a failure of the Oracle Tuxedo Master Logical Machine.

Achieving High Availability with Oracle Tuxedo

Primary/Backup Node: For each Tuxedo server group, two nodes - one primary node, one backup
node - can be configured. Then this server group will be booted in the primary node at first, and can
be manually migrated to the backup node.

Oracle Tuxedo in High Availability Configurations

Oracle Tuxedo is the industry's #1 platform for distributed transaction processing. It provides
mainframe-class scale and performance on open, distributed systems for software written in C, C++,
and COBOL, and is the premier platform for building new eXtreme Transaction Processing (XTP)
applications and re-hosting mainframe applications on open systems platforms and grid infrastructures.
Oracle Tuxedo provides cost-effective reliability, extreme scalability up to hundreds of thousands of
transactions per second, and investment protection by extending the life of existing IT assets as part of
modern architectures such as SOA. Oracle Tuxedo is Oracle Fusion Middleware's strategic transaction

processing product.

As the #1 transaction processing application platform for open systems, Oracle Tuxedo has long
maintained a history of setting the standards for Open OLTP technology, application performance,
portability, scalability, and availability. It offers rich features that enable the stringent demands of
distributed mission-critical applications. In particular, Oracle Tuxedo provides powerful high
availability capabilities relative to traditional TP Monitors. The key to this strength is centralized system
configuration providing key parameters of system components for use by the Oracle Tuxedo run-time
monitor, diagnostic, and repair facilities. The configuration captures the relevant characteristics of all
components: server processes, service instantiations, client processes, processor nodes, network

connections, resources, and, especially, reconfiguration options.

The following subsections examine the Oracle Tuxedo features which intrinsically contribute to high
availability. For additional background information on Tuxedo or specific features not covered here

see http://www.oracle.com/tuxedo.

Administrative Infrastructure

Oracle Tuxedo supportts an architected solution to the critical problem of distributed application
administration. The management infrastructure within Oracle Tuxedo implements a Manager/Agent
model, built around a Management Information Base (MIB).

Oracle Tuxedo’s MIB enables application administrators to define in one centralized application
configuration the hardware, software, and networking resources that make up an application.
Application designers can state where servers and services should run, as well as where they should be
migrated in the event of a processor failure. They may assign various characteristics to the application's

servers, including scheduling information, process recovery critetia, and time-out periods.

Administrative interfaces implemented atop the MIB include a comprehensive command-line tool, a
programmatic interface (including scripting), and an SNMP agent for integrating Oracle Tuxedo as a
managed application within a larger administrative environment. A GUI-based administration

application also takes advantage of the MIB by providing a single point of high-level control over the

Oracle Tuxedo environment.

Achieving High Availability with Oracle Tuxedo

In addition to allowing all system parameters to be polled (and modified where permitted), the MIB
supports a full range of System Events. These events ate posted whenever significant state changes

occur within the Oracle Tuxedo environment.

Oracle Tuxedo also has a rich set of internal mechanisms which provide the runtime support for

application availability:

o BBL — The Bulletin Board Liaison is the node monitor, responsible for overseeing all processes

(application and administrative) on a node.

o DBBL - The Distinguished BBL is the master monitor, responsible for overseeing the BBL on each
node. Also for networked applications, a backup node may be designated for the DBBL.

o BRIDGE - these servers provide inter-node communications in a networked application.

o TMS — The Transaction Management Server is a transaction manager server dedicated to a particular

DBMS (or other resource, e.g., MQ queue) when distributed transaction processing is employed.

Other, optional, system servers such as various Client Handlers, Event Brokers and Queue Managers
may be in use as well. All of these servers are started at system boot time in accordance with the central

configuration.

Failure Detection & Automatic Recovery

Run Time Facilities

Oracle Tuxedo run-time administration provides automatic detection and correction of software faults.
The primary facilities are illustrated in Figure 1. Nodes, network connections, application servers,
clients as well as the Oracle Tuxedo administrative servers themselves (including DBBL, BBL, and
BRIDGE) are all monitored. Additionally, an attempt to correct failures, without operator
intervention, is always performed. Errors are reported by posting System Events which may be
subscribed to by applications, thereby extending failure detection coverage and enabling application-
driven recovery. All errors are also recorded in the Oracle Tuxedo error log (ULOG), itself accessible
by applications. The log files are maintained on a per machine basis, but may be consolidated for
monitoring using Oracle Manager Log Central.

Achieving High Availability with Oracle Tuxedo

| S |
IHAE | RS
BB M
nude Iransyciion
titmers tiser
B
baxlfrestao
'l1u]li:w|{
et 14141 (L] |
. - sheprisil{}
q’_‘lH-‘lJlJ:l:!.‘Lt‘l‘U reest/rephy reimeslreply irpguire(y
EEMvics TS TiErS b
Services
Crrars tin -
— g restart
L0 BRI E BRIDCH
cOmmRiE TN COTTHNITCATIonS
Limeers Linecrs
Thlawler Aee

TLAERAD TLLEER
. e Minde

Figure 1. 2-node Tuxedo Cluster with Key Servers

Node Status Checks

The DBBL expects a periodic heartbeat from each BBL. If the heartbeat does not occur, the master
will attempt to restart the BBL on the afflicted node. If the BBL cannot be restarted, the node is
marked as “partitioned” (i.e., unavailable). The BRIDGE server will also cause a node to be marked as
partitioned if a communications time-out occurs and communications cannot be reestablished. (See the
Network Connections section for more details.) Because the permanence of a failure is not known,
partitioned nodes are not automatically removed from service. The occurrence of the partition is
reported via a System Event and recorded in the error log. If the problem is a transient
communications outage, connectivity will be automatically restored once communications are re-
established. If the problem is severe, the administrator will remove the node from service via

administrative command. The nodes that remain will continue to operate as one application.

Oracle Tuxedo also provides automatic migration of node fault. In a cluster environment that
configured migration and failover functionality, in case of the master node down or network issue, the
BBL at backup site will start new DBBL and form a new cluster when a specific check threshold
reached. After the network is recovered, the DBBL on original node checks DBBL failover is already
done, and it will exit. The original node rejoins this cluster and reform a cluster.

Server Status Check

The BBL periodically checks the availability of each application server (process) executing on its node.
If a failure is detected, Oracle Tuxedo will abort any outstanding transactions and may be configured to
automatically restart the application server. Only the service request being processed is lost; in this
case, the requester is properly notified and may take appropriate action (e.g., re-try). Any waiting
service requests will be processed as usual. Further, Oracle Tuxedo may be configured to automatically
invoke an application defined process in conjunction with re-starting the application server. Note that

Achieving High Availability with Oracle Tuxedo

if the application requires automatic resubmission of failed service requests, then persistent queues may

be employed.

Oracle Tuxedo also provides automatic setver group migration of node fault. In a cluster environment,
in case of a node down or network issue, if a server group that is configured as automatic migration on
this node, this setver group will be automatically migrated to its backup node. The prerequisite is that
the corresponding binaries must have already deployed in backup node.

Administrative Self Checks

The DBBL and BBL periodically check the status of each other and, if necessary, automatically restart
each other. Loss of the master node requires migration of the DBBL as specified in the central
configuration. This migration can be performed manually or automated with Oracle Enterprise
Manager Grid Control or 3 party clustering software.

Client Status

The BBL checks the status of client processes and effects cleanup upon detection of abnormal
termination. In the case of native clients (running directly on a Oracle Tuxedo server node), this is
determined by process status. Native client process failures are also detected via a timeout maintained

by the BBL on reply queues.

In the case of remote clients, detection of abnormal termination is based on an inactivity timeout.
(Sputious timeouts are prevented by using a "keep-alive" protocol to the client.) Upon detection of a
client failure, any communications in progress are terminated and the client state is cleaned up. The
user has to re-logon and resume work. However, for Tuxedo workstation client (WS), multiple
Workstation Listener (WSL) server addresses can be specified, allowing WS client to failover among

them in a round-robin manner.

Network Connections

BRIDGE processes maintain inter-node communication via a hierarchy of multiple network addresses
as specified in the central configuration. The BRIDGE uses the highest priority connection available,
automatically failing over to the next lower priority connection in the event of a network outage, and
failing back to the higher priority connection when it becomes available. (Additionally, the BRIDGE
process will use a second network address at the same priority if the first one becomes blocked,
facilitating increased throughput for heavily loaded networks.) Since these network addresses may be
supported by multiple network interfaces, the failure of a host adapter card, connector, or network

cable need not result in a loss of communication.

Communication between nodes is monitored by timeouts maintained by the BRIDGE servers.
Detection of a failure on any given connection automatically initiates an attempt to reestablish
communications. If communications via every network address ate lost and cannot be reestablished,
then the nodes that remain in communication will continue to operate as an application. Note in

particular that the application may be partitioned, with each partition continuing to operate.

Transactions

10

Achieving High Availability with Oracle Tuxedo

With Distributed Transaction Processing enabled, each global transaction is monitored by a timeout. If
the threshold is exceeded, the transaction is aborted. Once a transaction is begun, Oracle Tuxedo

tracks all DBMSs (and other XA-compliant resources, such as JMS or MQ queues) that are accessed. If
a timeout occurs at any time prior to completion of the transaction pre-commit, or, if the transaction is
explicitly aborted by the application, all DBMSs are instructed to roll back the updates made within the
transaction scope. Rollback will be carried out even if a participating node fails. The rollback will in this

case occur when the node is brought back on-line. (See also the discussion of data integrity.)

Application Error Returns

Errors detected by an application can be reported to the administrator via System Events and recorded
in the error log. These System Events provide a consistent error reporting facility which can be
monitored manually by the administrator or, more typically, automatically by system management

software.

Maintenance of Data Integrity on Failure

Oracle Tuxedo implements the X/Open Disttibuted Transaction Processing (D'TP) standard. The
Transaction Management Servers (TMSs) are responsible for assuring, by way of a two-phase commit
protocol, that global transactions are atomic. Global transactions may encompass multiple,
heterogencous DBMS running on multiple, heterogeneous nodes. TMSs, which are replicated and
redundant, are also responsible for managing transaction aborts and recovery of transactions during

failure restoration.

All communications with the DBMS are via the X/Open standard XA interface. XA provides
functions for beginning and ending work on behalf of a global transaction, for pre-committing,
committing or aborting global transactions, and for recovery. It is the responsibility of the DBMS
vendor to provide the XA library.

YOUR @ my G)
account @ i account @ |
I@ DTP Scquence @

1 Assign GTRID
2 Track Updatcs

deposit 3 Begin 2PC withdraw TMS
4 Precommit All
5 Log Transaction
& Commut All @

@
TUXERO _ TUXEDO
Node BRIDGE BRIDGE Node

Figure 2. Data Integrity in Distributed Transaction Processing

Transaction Coordination Services

11

Achieving High Availability with Oracle Tuxedo

As the communications platform, Oracle Tuxedo tracks DBMSs and other resources that are updated
during the course of a transaction. At transaction commit, coordination is provided via a two-phase
commit protocol with the resources utilized. The X/Open DTP “I'X” API for transaction
management is supported: #x_begin, tx_commit and #x_rollback. Optionally, services can be configured to
automatically begin and commit transactions, thereby eliminating the need for explicit programming.

When a transaction is initiated a global transaction identifier (GTRID) is generated. As setvice requests
are processed, Oracle Tuxedo instructs the associated DBMS to begin and end work on behalf of the
GTRID. It is the responsibility of the DBMS to map the GTRID onto a local transaction. When the
transaction is committed, the list of DBMSs involved is handed to a TMS. The TMSs then use the XA
interface to execute the two-phase commit. Upon completion of the pre-commit phase the GTRID
state is logged to disk so that any interruption of the commit phase can be recovered.

Transaction Recovery Services

Recovery from failures is also provided by the TMSs. For example, if a node failure occurs, all
outstanding transactions will be properly committed or aborted when the node is put back in service.
The combination of the transaction log and an XA primitive to query the state of a DBMS provide the

necessary undetlying support.

Transparency

Transaction coordination and recovery is completely transparent to the application. The Transaction Manager
utilizes the X/Open DTP XA interface provided by the DBMS vendor to track, coordinate and

recover transactions.

Maintaining Operations during Failure

Oracle Tuxedo provides a powerful set of tools for maintaining operations in the event of a failure.
Additionally, an Oracle Tuxedo application can utilize replication features with a minimum of

application code to provide a work around in case of a component failure.

Replicated Services with a Single Database

Oracle Tuxedo provides for arbitrary replication of services. A simple but effective defense against a
node failure is to replicate critical services on two or more nodes. This configuration requires
concurrent access to the database. This is typically achieved using a parallel DBMS product such as
Oracle OPS. This technique is especially useful when Data Dependent Routing (DDR) is employed.
During normal operation, Oracle Tuxedo will distribute service requests over the nodes. When a node
fails, it is taken out of service using an administrative command. Once the partitioned node has been

“cleaned” from the runtime MIB, the remaining nodes will assume the load.

An equivalent alternative is to offer distinct sets of services on each node during normal operation, and
utilize the Oracle Tuxedo migration feature upon failure. That is, when a node fails, the set of services,
which must be encapsulated in one or more administrative groups, are migrated to an operational
node. One problem that must be dealt with, however, is the case when an application server node fails
and DTP is employed. When the group is migrated, Oracle Tuxedo will use the open string recorded in

12

Achieving High Availability with Oracle Tuxedo

the central configuration to open the data base. Depending on the DBMS product, attempting to open
a failed database may fall back to opening the alternate database. If so, all is well. If not, the
configuration must be changed by administrative command. Such change, of course, can be automated.

Clients running on the failed node must be reconnected. If the clients are running as native processes
on the failed node, the user must logon to an operational node. For remote clients hosted by a handler
on the failed node, “reconnect on failure” logic must be implemented. Note, however, that remote

clients connected to other nodes are unaffected.

NETWORK l
- ON FAILURE r
ATM RECOMNNECT '

Figure 3. Replicated Servers with a Single Database

Replicated Services with Replicated Data Servers/Oracle RAC

Modern DBMSs offer the capability to replicate data bases. Techniques vary, but the end result is that
updates to one copy of a data base will be replicated in the other. Application programmers can take
advantage of the replication features of both Oracle Tuxedo and the DBMS to protect against any

single failure. The technique is to simply replicate services on two or more nodes as discussed above.

The application should detect the loss of one data server and arrange (indeed, if even necessary) to
open the alternate data server (e.g. through an environment variable) and simply abort. When Oracle
Tuxedo restarts the application server, it will reconnect to the operational data server and continue

processing service requests. This technique also works when DDR is employed.

The Oracle Real Application Clusters (RAC) support clustering of machines that utilize replicated
Oracle database services accessing the same Oracle database. Oracle RAC provides the ability to
concurrently access the same Oracle database from instances physically located on multiple Oracle

servet machines, and offers the ability to failover unsuccessful database instances to alternate locations.

13

Achieving High Availability with Oracle Tuxedo

RAC is a key piece of Oracle’s grid computing products and offers unmatched database scalability and
availability using clusters of database servers. In addition, Oracle Database features Automatic Storage
Management (ASM), which enables a shared pool of storage for clustered and non-clustered database
environments. ASM provides dynamic provisioning of storage, as well as simplified and automated

storage administration.

Deposit Depasit
Withdraw Withdraw
[nquiry Inquiry
L WSH wsH
- = hY

| NETWORK |

,

Figure 4. Replicated Servers with Replicated Database

A particular example of such deployment architecture is Oracle’s Maximum Availability Architecture
(MAA), which provides superior availability by minimizing or eliminating planned and unplanned
downtime at all technology stack layers including hardware or software components. Data protection
and high availability are achieved regardless of the scope of a failure event - whether from hardware
failures that cause data corruptions or from catastrophic acts of nature that impact a broad geographic

area.

14

Achieving High Availability with Oracle Tuxedo

Client Client Client

== WAN Traffic =5
== Manager = Oracle
____________ D — o — — Tuxedo
Oracle Real-Time Query Nodes

Tuxedo
Nodes

Dedicated Network

= Instance 2
Oracle Data Guard .

Primary Secondary
Site Site

Heartbeat = = = hh = = =

Figure 5. Oracle’s Maximum Availability Architecture

MAA also eliminates guesswork and uncertainty when implementing a high availability architecture
utilizing the full complement of Oracle HA technologies. MAA Best Practices are described in a series
of technical white papers and documentation to assist in designing, implementing, and managing

optimum high availability architecture.
Replicated Application

Oracle Tuxedo provides mechanisms by which application and data servers can be replicated, thereby
defending against any single node failure. The technique is to maintain identical primary and standby
application services on distinct nodes accessing distinct DBMSs. If the primary fails, the standby

continues operations (or vice versa).

Synchronization of the DBMS must be assured. Unlike the Replicated Data Server scenario, database
replication mechanisms are not used. Instead, the application creates two streams of identical requests
which will cause the same processing to execute on both nodes (and ultimately, the same changes to be
applied to both DBMSs). This can effected using the Distributed Transaction Processing and Reliable
Queuing features.

Using DTP, the application asynchronously invokes both a primary and backup service under the
umbrella of a single transaction. The asynchronous invocation assures that processing will occur in
parallel, thereby providing high throughput. The administrator can employ a simple naming convention
to generate backup service names. Finally, a thin veneer can be written to hide the parallel invocations

from the application programmer.

15

Achieving High Availability with Oracle Tuxedo

Deposit Deposit
Withdraw Withdraw
Inquiry | Asynchronous Inguiry
Exacimion of
Redimndanl Sendce
| 1WWSH L IVVSH
J Requests /
NETWORK

R —
ATM ATM

Figure 6. Replicated Application

The actions taken on failure are application dependent. A simple strategy is to post the status of the
primary and backup systems so that in the event of a failure operations will continue on the remaining
operational system. The real challenge is re-synchronizing the DBMS state after repairs are completed.
Generally, this will require a quiescent period. One re-synchronization technique is to use the Reliable
Queue feature of Oracle Tuxedo’s System Q. During a failure, instead of two parallel on-line service
requests, the application enqueues one of the service requests (the one destined for the failed node) on
a reliable queue (this can also be done in parallel with the on-line request). Once the failed node can be

repaired and brought on-line, any enqueued service requests will be applied.

Restoring Operations

Restoration of operations occurs automatically in certain cases. More generally, an administrative

command that reverses the maintenance action is required.

Automatic Restoration

As discussed under Automatic Recovery, recovery from a failure of an application server, an

administrative process, a client process, a network disconnects or a transaction time-out is automatic.

Restarting Nodes

Restoration of a node taken out of setvice is done by applying a boot (or activate) command to a
specific node. When a node comes on-line, any incomplete transactions are automatically committed or

rolled-back.

16

Achieving High Availability with Oracle Tuxedo

Restoring Migrated Groups

Restoration of migrated services is done by migrating the services back to the original node after that

node itself has been restored.

Client Processes

Client processes may need to log on to restored nodes.

Conclusion

Oracle Tuxedo is Oracle’s flagship product for transaction processing and distributed COBOL, C, and
C++ applications. It provides reliability, availability, scalability, dynamic system reconfiguration to
application and hides the heterogeneity of computers, databases and networks. In addition, Oracle
Tuxedo provides excellent fail-over capabilities and can provide a very powerful highly available
solution with automated fail-over of transaction processing application components to the surviving

nodes and with minimal impact to the user.

Oracle has pioneered many techniques of server failover that provide IT departments with automatic
failover capabilities for several server types. For example, Oracle Database RAC, Oracle WebLogic
Server, Oracle Tuxedo and Oracle Coherence clusters can withstand failures of several servers within a
cluster and still remain in operation. IT departments can simply remove failed servers from service and
repair or replace them and add them back to the server grid. Load balancing, work load management
and overload protection, and automatic migration and failover of services or whole servers ensure

applications stay up and running.

Choosing and implementing the architecture that best fits the availability requirements of a business
can be a daunting task. This architecture must encompass appropriate redundancy, provide adequate
protection from all types of outages, ensure consistent high performance and robust security, while
being easy to deploy, manage, and scale. Needless to mention, this architecture should be driven by

well-understood business requirements.

To build, implement and maintain such an architecture, a business needs high availability best practices
that involve both technical and operational aspects of its I'T systems and business processes. Such a set
of best practices removes the complexity of designing high availability architecture, maximizes
availability while using minimum system resoutces, reduces the implementation and maintenance costs
of the high availability systems in place, and makes it easy to duplicate the high availability architecture
in other areas of the business.

A well-articulated set of high availability best practices that encompass high availability analysis
frameworks, business drivers and system capabilities, improves operational resilience and enhances

business agility.

17

ORACLE’

Achieving High Availability with Oracle Tuxedo
July 2012

Oracle Corporation

World Headquarters

500 Oracle Parkway
Redwood Shores, CA 94065
USA.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200

oracle.com

@ Oracle is committed to developing practices and products that help protect the enviroanment

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are

trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0612

Hardware and Software, Engineered to Work Together

