

An Oracle Technical White Paper

March 2013

How to Accelerate Test and Development
Through Rapid Cloning of Production Databases
and Operating Environments

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

Introduction .. 1

Challenges with Creating and Maintaining Database Clones ... 2
Technical Steps Involved in Cloning an Oracle Database ... 2

Active Database Duplication .. 3
Backup-Based Duplication .. 3

Introducing the Oracle Featured Solution .. 6
Solution Components .. 8
Oracle Solaris .. 8
Oracle Solaris Zones ... 9
Oracle Solaris Network Virtualization .. 9

Deployment Example ... 10
Create a File System for Database Backup .. 12
Back Up the Production Database on the Sun ZFS Storage Appliance 17
Create a Clone of the Database Backup File System ... 18
Create an Oracle Solaris Master Zone .. 30
Perform the Clone Operation ... 32

Summary .. 33
For More Information .. 33
Appendix A—Solution Scripts .. 35

The setup.sh Script .. 35

The cloneEnv.sh Script.. 36

The haltZone.sh Script.. 37

The exportCfg.sh Script ... 37

The cloneZone.sh Script ... 38

The cloneAllDB.sh Script ... 39

The cloneDB.sh Script .. 40

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

The runClone.sh Script.. 41

The addNFS.sh Script .. 41

The setenv.sh Script .. 41

The clonedb.pl Script .. 42

The createControl.sh Script ... 46

The verifyDB.sh Script.. 47

The delAll.sh Script .. 47

The delZone.sh Script .. 47
Sample Output ... 48

Appendix B—Solution Hardware Component Descriptions ... 53
SPARC T4 Server Overview ... 53
SPARC T5-4 Server Overview .. 53
Comparison of SPARC T4 and T5 Server Models .. 54
Sun ZFS Storage Appliance .. 55

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 1

Introduction

There are a many reasons that IT organizations must clone a production database. Some of the most common

include the following:

 Supporting application development and testing. Customers typically re-create a clone of their

production databases from backups to support application development and testing, and to assess the

performance impact as well as regression testing of operating systems patches and database updates on

existing applications.

 Updating application infrastructures without downtime. Modern commercial Web and e-commerce

applications require 100 percent availability. This presents a challenge for IT managers to keep the

application infrastructure updated without incurring downtime. The database is typically cloned to create a

foolproof way of testing updates or upgrades to the environment without impacting production systems.

 Troubleshooting a system bug. Sometimes IT personnel need to replicate an existing software

environment with all installed patches from all components to re-create a bug or a system panic.

The process of cloning production databases can be time consuming for IT staff and, if governance is lacking,

IT organizations can end up managing many varieties of database clones that are scattered throughout the IT

infrastructure.

This paper describes a fast and efficient approach to clone the operating system and database environments,

along with a hardware and software solution that can make the process more efficient with minimal risk.

The featured method for cloning an Oracle Solaris and Oracle Database environment utilizes Oracle Recovery

Manager (Oracle RMAN) backup technology, the CloneDB feature of Oracle Database’s Direct NFS Client

(dNFS), the built-in virtualization feature of Oracle Solaris Zones, and the cloning capability of Oracle’s Sun

ZFS Storage Appliance to greatly simplify the process of replicating the Oracle Database environment. This

paper describes the specific steps for deploying the server and storage infrastructure that take advantage of

these technologies, to simplify the database cloning process and improve reliability and predictability for a

production Oracle Database environment.

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 2

Challenges with Creating and Maintaining Database Clones

When a clone or a new database is required, IT personnel must procure additional hardware, servers, and

storage, and then connect and integrate all the various components together. Administrators must install and

patch operating systems to support the necessary application infrastructure, request additional storage to host

the database files, and connect to or create a network environment. The entire process can take days, even

weeks, negatively impacting user productivity and delaying strategic business goals. Over time, as new

applications and supporting databases are implemented, the IT landscape becomes dotted with multiple

deployment silos. Beyond the costs of acquiring hardware, software, storage, and networking, there are ongoing

maintenance and support costs that can proliferate as servers and storage components multiply and the

complexity of the landscape increases. As a result of sprawl and over-provisioning, traditional database

deployments tend to exhibit underutilized systems, resulting in cost inefficiencies.

Another option is to virtualize the IT environment, and create a master virtual machine (VM) with a database

installed. The master VM is then cloned as needed, thereby creating other VMs with installed databases on

demand. This option might require shutting down the master VM before the cloning operation, and additional

storage is needed to host the database files for the new, cloned VM. This option is also error-prone, as it

requires modifications to the database-related files to reflect new directory locations, new hostnames, new IP

addresses, and the restarting of services, often requiring the assistance of a DBA. Troubleshooting issues on

the cloned VMs, and the time needed to make the database function properly, often negates the perceived

benefits from cloning a working VM environment.

Technical Steps Involved in Cloning an Oracle Database

To address the issues described previously, DBAs duplicate the existing database by performing a clone

operation on the source database. This section explains the steps typically involved in that process.

As explained in the Oracle Database 11g Release 1 documentation’s “Duplicating a Database” topic, there are

two possible ways to duplicate a database: active duplication and backup-based duplication.

Active database duplication copies the live source database over the network to the duplicate database instance,

whereas backup-based duplication uses pre-existing Oracle RMAN–generated backups and copies. Both of

these techniques require the completion of a number of prerequisite steps described in the documentation

referenced above.

http://docs.oracle.com/cd/B28359_01/backup.111/b28270/rcmdupdb.htm

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 3

Active Database Duplication

In active database duplication, Oracle RMAN connects as TARGET to the source database instance and

as AUXILIARY to the auxiliary instance associated with the duplicate database. Oracle RMAN copies the live

source database over the network to the auxiliary instance, thereby creating the duplicate database. No backups

of the source database are required.

Backup-Based Duplication

When using backup-based duplication, making database backups available to the auxiliary instance depends on

whether both source and auxiliary database instances have access to a shared disk or an NFS-mounted disk. If

the disk that holds the database backup is not accessible to the auxiliary instance, then the backup pieces need

to be moved to the machine where the duplication of the database is to be performed. The main advantage of

this method is that while duplicating the database, administrators don’t need to connect to the source database,

and hence there is no impact on the production system at all.

Duplication Steps

The process of duplicating a backed-up database includes the following steps:

 Create a backup of the source database.

 Procure a new server and install the OS and all the relevant patches required for database installation.

 Install the Oracle Database software on the duplicate or auxiliary host.

 Create the necessary directories for the auxiliary instance.

 Create an Oracle password file for the auxiliary instance.

 Create an initialization parameter file for the auxiliary instance.

 Modify parameters. All path parameters should be accessible on the duplicate host.

 Create the auxiliary instance.

 Establish Oracle Net Connectivity to the auxiliary instance.

 Start the auxiliary instance.

 Ensure access to the necessary backups and archive logs.

 Start Oracle RMAN and connect to the database instances.

 Mount or open the source database.

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 4

 Configure Oracle RMAN channels for use in the duplication.

 Run the Oracle RMAN DUPLICATE command.

As explained in the Oracle Database Backup and Recovery User’s Guide, Oracle Database 11g Release 2

introduces the following mutually exclusive sub-techniques for backup-based duplication:

 Duplication without a target database connection. Oracle RMAN obtains the metadata about backups

from a recovery catalog.

 Duplication without a target database connection and without a recovery catalog. A disk backup

location containing all the backups or copies for duplication must be available to the destination host.

 Duplication with a target database connection. Oracle RMAN obtains the metadata about backups

from the target database control file or from the recovery catalog.

For both Oracle Database 11g Release 1 and Release 2, the database duplication operation requires Oracle

RMAN. Depending on the size of the database, this process can be time consuming. Oracle Database 11g

Release 2 incorporates Direct NFS Client (dNFS) with the duplication process instead of Oracle RMAN, and

this simplifies and speeds up the duplication operation.

Direct NFS

Direct NFS Client (dNFS) is an Oracle Database 11g implementation of the NFS client that runs as part of the

Oracle Database 11g engine. Through this integration, the Oracle Database engine optimizes the I/O access

path to the NFS server to provide improved scalability and reliability. By tuning the protocol to match typical

database I/O, dNFS provides faster performance than can be provided by the operating system's NFS driver.

In addition, by minimizing context swap between user space and kernel space, dNFS further reduces CPU

utilization. Data is cached only once in user space, and no second copy exist in kernel space, preserving

valuable memory space. Performance is further improved by load balancing across multiple network

interfaces from within dNFS, rather than within the OS layer.

Oracle introduced the dNFS CloneDB feature as part of Oracle Database 11g Release 2. The CloneDB feature

makes it possible to instantly clone an existing backup of a database mounted over dNFS. The clone process

uses copy-on-write technology; so only the changed datafile blocks need to be stored separately; the

unmodified data is referenced directly from the backup files. DBAs don't have to reserve storage equivalent to

the size of production database to set up a cloned environment. The cloned storage space usage grows at the

speed at which the data is modified. This drastically increases the speed of cloning a database, providing an

unlimited number of separate clones that can function against a single set of backup datafiles, with minimal

performance impact on the production database. Since the CloneDB feature uses the backup piece as the

backing storage, there is no impact on the I/O subsystem that is servicing the production database.

http://docs.oracle.com/cd/E11882_01/backup.112/e10642/rcmdupdb.htm

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 5

When it is time to destroy the auxiliary database environment, all the files in the clone environment can be

deleted without any impact on the production or backup environment. The CloneDB feature saves

considerable amounts of space and time when cloning a database, and it greatly simplifies and improves the

process of creating and deleting clones of production databases. This process is explained in My Oracle

Support Metalink Note 1210656.1: “Clone your dNFS Production Database for Testing.”

Using dNFS in the database cloning process involves the following steps:

 Procure a new server and install the OS and all the relevant patches required for database installation.

 Install the Oracle Database software on the duplicate or auxiliary host.

 On the NFS server, create a directory as the copy-on-write location for the cloned instance.

 Export the directory as an NFS share.

 Take an image copy of the production database using Oracle RMAN. The backup should be placed in

a location available to the server that will run the clone.

 Create a parameter file (PFILE) from the contents of the production SPFILE.

 Amend the contents of the PFILE to reflect the cloned database.

 Make sure the dNFS client is enabled for the Oracle home on the server that will run the clone.

 Create the auxiliary instance.

 Start the auxiliary instance.

 Mount the backup share.

 Set the following environment variables to the appropriate values for the new setup:

 ORACLE_SID

 MASTER_COPY_DIR; this is the directory that contains the backed-up datafiles

 CLONE_FILE_CREATE_DEST; this is the destination directory for the cloned database

datafiles

 CLONEDB_NAME; this is the name of the cloned database

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 6

 Run the clone.pl script downloaded from My Oracle Support, naming the correct init.ora file to

start the instance, and specifying the cloning scripts that will be created. The clone.pl Perl script

creates a database script and a rename script. The database script (crtdb.sql) contains a generated

CREATE CONTROLFILE command and a list of datafiles. The rename script (dbren.sql) creates

the datafiles for the auxiliary instance and associates them to the NFS-mounted location of the

original backed-up files. The clone.pl script is run as follows:

$ perl clone.pl init.ora crtdb.sql dbren.sql

 Start SQL*Plus as SYSDBA and run the scripts created by the clone.pl script.

$ sqlplus / as sysdba @crtdb.sql @dbren.sql

Introducing the Oracle Featured Solution

The dNFS CloneDB feature described in the previous section replaces the last steps of the previous

duplication process involving Oracle RMAN. However, there is still a need for IT personnel to procure

hardware platforms, integrate networking and storage components, and install and patch the operating system

and Oracle Database to be able to provision the database clone or clones. The solution featured in this paper

for cloning an Oracle Solaris and Oracle Database environment aims to greatly simplify and automate the

entire process.

The featured solution bypasses the need to provision and administer hardware, install operating systems, and

configure networking and storage. All the auxiliary database instances, as well as the separate operating

environments, are automatically provisioned and instantiated after executing a single command script, following

an Oracle RMAN–based backup. The cloneEnv.sh command, shown in Appendix A, will automatically

create and instantiate independent Oracle Solaris Zones, perform the database cloning, and start all the zones

and database instances in only a few minutes. The cloneEnv.sh script requires only the names of the Oracle

Solaris Zones to be provisioned and their respective IP addresses to execute successfully. After the

cloneEnv.sh script finishes execution, all the new zones are all up and running, including the cloned

databases running inside them. Similarly, when the cloned environments are no longer needed, all the zones

and database instances can be deleted in seconds, following the execution of the delAll.sh script, without

any impact on the production or backup environment or on other applications.

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 7

Contrast this with a typical scenario without the featured Oracle solution. Administrators must install and patch

operating systems to support the necessary application infrastructure. A DBA is still needed to install and

configure the Oracle database on the auxiliary server, create and configure the necessary Oracle Database files,

and configure networking and storage. This process is time consuming, costly, and error-prone. Beyond the

costs of acquiring hardware, software, storage, and networking, there are ongoing maintenance and support

costs that can proliferate as servers and storage components multiply and the complexity of the landscape

increases.

The featured solution for cloning an Oracle Solaris and Oracle Database environment provides the following

technical advantages:

 Simplified database cloning. The cloning features of the Sun ZFS Storage Appliance are used to provide

the copy-on-write semantics needed by the cloning operation, which makes redundant the use of the rename

script described in the previous “Direct NFS” section. This improves reliability and predictability in

deployment, streamlines cloning management, and simplifies the cloning operation, leading to a faster

execution.

 Server density. Built-in virtualization and 256 threads in just five rack units (5RU) with Oracle’s four-socket

SPARC T4-4 server make the solution ideal for deploying a large number of databases. Oracle’s SPARC T5-

4 server doubles the number of threads to 512 using four sockets, while occupying the same space. Oracle’s

SPARC T5-8 server features eight processors running 1024 threads, and occupying 8RU of space.

 Ability to replicate the entire stack with a golden image. The use of Oracle Solaris Zones to host the

database enables the creation a golden image that can be replicated as needed. The entire duplication process

can be executed with a single script that includes creating, configuring, and provisioning independent Oracle

Solaris Zones, as well as duplicating the Oracle database. The script takes only a few minutes to run, and can

provision new servers up to 50 times faster than traditional methods, after an initial one-time configuration

setup. This time is mainly taken by provisioning the Oracle Solaris 11 operating system; the database

duplication is instantaneous since it is based on the copy-on-write technology. Similarly, reclaiming all the

resources when the cloned environments are no longer needed is just as easy, clean, and fast with the

execution of the delAll.sh script, without impacting other applications.

 Ability to perform regression testing on a cloned database copy. Administrators can quickly and

efficiently preview the impact of patches and upgrades on a cloned copy of their production systems before

going live. Once satisfied with their tests, they also have the option of making the cloned database the new

production system. These capabilities help eliminate risks and provide crucial reliability and predictability for

the production IT environment.

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 8

This solution can also be used with other Oracle applications that require databases as part of the installation,

such as Oracle E-Business Suite and Oracle’s PeopleSoft, Siebel, and JD Edwards applications. IT

administrators can now clone an environment in minutes and use the newly created Oracle Solaris Zones to

install Oracle business applications, further simplifying and speeding up the installation process, reducing risk,

and enabling faster deployment of these business applications.

Solution Components

The solution described in this document supports the operating system and database versions described in

Table 1. Further detail about the hardware components of this solution can be found in Appendix B.

TABLE 1: SUPPORTED VERSIONS

Operating System Oracle Solaris 11

Oracle Database Oracle Database 11g Release 2

Server SPARC T4 or SPARC T5

Storage Sun ZFS Storage 7320

Oracle Solaris

Oracle Solaris is an industry-leading operating system designed to handle enterprise, business-critical

operations. Oracle Solaris provides key functionality for virtualization, optimal utilization, high availability,

unparalleled security, and extreme performance for both vertically and horizontally scaled environments.

Oracle Solaris runs on a broad range of SPARC (and x86-based) systems and compatibility with existing

applications is guaranteed.

Oracle Solaris features the ZFS file system for superior data integrity, advanced security protection and

management, and scalable performance due to efficient thread scheduling on multicore processors. Oracle

Solaris also provides built-in virtualization with minimal overhead (Oracle Solaris Zones), which isolates

applications and optimizes system resource allocations. Innovations such as DTrace, Predictive Self Healing,

and the Service Management Facility (SMF) have made Oracle Solaris the operating system of choice for

applications that demand business-critical performance and availability.

Oracle Solaris 11 features scalability enhancements, enhanced kernel data structures, and library optimizations

to support large-scale database workloads.

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 9

Oracle Solaris Zones

An Oracle Solaris Zone is a virtual instance of the Oracle Solaris OS that provides an isolated and secure

environment for running applications. This isolation prevents processes that are running in one zone from

monitoring or affecting processes that are running in other zones. Oracle Solaris Zones are very flexible; with

Oracle Solaris resource management, it is easy to move individual CPUs between zones as needed or configure

a more sophisticated way to share CPUs and memory to handle additional workloads as business conditions

dictate. The original operating environment, before any zones are created, is called the global zone to distinguish

it from non-global zones. The global zone holds the Oracle Solaris kernel, the device drivers and devices, the

memory management system, the file system and, in many cases, the network stack. With Oracle Solaris Zones,

you can maintain the one-application-per-server deployment model while simultaneously sharing hardware

resources. A SPARC T4 or T5 server support the creation of many non-global zones.

The global zone sees all physical resources and provides common access to these resources to non-global

zones. Looking from the global zone, a non-global zone is just a bunch of processes grouped together by a tag

called a zone ID. The non-global zones appear to applications as separate Oracle Solaris installations.

Non-global zones have their own file systems, process namespace, security boundaries, and network addresses.

They can also have their own network stack with separate network properties. Virtual networks can be created

between zones to help isolate data movement and prevent access to external networks. Each non-global zone

has an administrative root login; however, a privileged root user in a non-global zone cannot break into a

neighboring non-global zone.

Oracle Solaris Network Virtualization

Oracle Solaris 11 added network virtualization features enhancements including virtual NICs (VNICs), virtual

switching, network resource management, and an efficient and easy way to manage integrated Quality of

Service (QoS) to enforce bandwidth limits on VNICs and traffic flows.

Oracle Solaris 11 introduced the ability to virtualize a physical NIC into multiple VNICs, which can be

assigned to Oracle Solaris Zones sharing the physical NIC. This virtualization is implemented by the MAC

layer and the VNIC pseudo driver of the Oracle Solaris network stack. VNICs appear to the operating system

as physical NICs. Each VNIC is assigned its own MAC address and optional VLAN (VID). The MAC address

and VID are used to identify a VNIC on the network.

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 10

VNICs can be created not only on physical NICs but also on virtual switches through Ethernet stubs

(etherstubs) and on link aggregations. Etherstubs allow the creation of virtual networks that are completely

independent from hardware NICs, enabling the construction of virtual network topologies within a single

Oracle Solaris instance. The virtual switching is consistent with the behavior of a typical physical switch found

on a physical network. Creating VNICs on top of link aggregations allows VNICs to benefit from high

availability and higher throughput transparently to the zones that use these VNICs.

Oracle Solaris 11 network virtualization allows a bandwidth limit to be set on a VNIC to ensure that each

VNIC will have a minimum bandwidth available, regardless of the bandwidth usage of other zones sharing the

same physical NIC. This mechanism allows the administrator to configure the link speed of VNICs that are

assigned to zones. This capability is most useful in ensuring that one interface does not exceed its expected use

of the network and negatively impact other traffic.

Deployment Example

An example deployment of the Oracle solution for cloning an Oracle Solaris and Oracle Database environment

is shown in Figure 1. The remainder of this section describes how to go about provisioning this environment.

Figure 1: Oracle solution for cloning an Oracle Solaris and Oracle Database environment.

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 11

Figure 1 shows the production system running Oracle Database 11g Release 2 on a SPARC T4-4 server with

the database files stored in a Fibre Channel storage array using Oracle Automatic Storage Management. The

database is backed up using Oracle RMAN to the Sun ZFS Storage Appliance. The Dev/Test system is

running on a SPARC T4-4 server that is connected via Ethernet using the NFS protocol to the Sun ZFS

Storage Appliance.

Z1 in the Dev/Test system is an Oracle Solaris Zone that is set up with the same operating system,

applications, and patch level set as the production environment. Z1 runs the same version of Oracle Database

as the production system, using datafiles recovered via Oracle RMAN. Z2 through Z5 are cloned Oracle

Solaris Zones running cloned databases created after the execution of the cloneEnv.sh script. These zones

are created and deleted on demand, as business requires, without impacting other zones or databases.

Figure 1 also shows the datafiles consuming a minimum amount of space because only new updates are written

to storage. All the cloned zones and databases share the same original backup files.

To implement the solution shown in Figure 1, the following initialization steps need to be implemented one

time only:

1. On the Sun ZFS Storage Appliance, create two file systems that will be mounted from the

production system and will hold the backup of the production database and other configuration

files.

2. Using Oracle RMAN, back up the production database to the Sun ZFS Storage Appliance.

3. On the Sun ZFS Storage Appliance, create a snapshot and clones of the file system that has the

backup of production data. Repeat this step for every new backup or rerun of the cloning solution.

4. On the Dev/Test system, create a non-global Oracle Solaris Zone Z1 as a master zone that is

identical to the production system, which will be cloned.

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 12

Create a File System for Database Backup

Create project oracle on the Sun ZFS Storage Appliance, by selecting PROJECTS and clicking the + sign.

Then enter the name oracle and click APPLY, as shown in Figure 2.

Figure 2. Creating project oracle on the Sun ZFS Storage Appliance.

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 13

After the project oracle is created, hover the mouse on the right side of the oracle row, and click the pencil

(see Figure 3) to create a file system.

Figure 3. Clicking the pencil icon opens a dialog box for creating a file system.

Click the + sign next to Filesystems to create a file system called backup in project oracle on the Sun ZFS

Storage Appliance, as shown in Figure 4.

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 14

Figure 4. Creating a backup file system.

Repeat the above steps to create another file system called config on the Sun ZFS Storage Appliance, as

shown in Figure 5.

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 15

Figure 5. Creating a config file system.

Clicking the SHARES submenu displays the newly created file systems, as shown in Figure 6.

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 16

Figure 6. The new file systems are listed.

The newly created file systems /export/backup and /export/config are to be mounted on the production

system as described in the following section. The file system/export/backup will hold the production

database backup, and the /export/config file system will hold configuration files to be shared on the Sun

ZFS Storage Appliance.

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 17

Back Up the Production Database on the Sun ZFS Storage Appliance

Mount the newly created file systems /export/backup and /export/config on the production system

using the following command, where 10.133.83.224 is the IP address of the Sun ZFS Storage Appliance,

and /backup and /config are the mount points created on the production system:

root@production:~# mount -F nfs -o

rw,bg,hard,nointr,rsize=32768,wsize=32768,proto=tcp,noac,forcedirectio,vers=3,suid

10.133.83.224:/export/backup /backup/

root@production:~# mount -F nfs -o

rw,bg,hard,nointr,rsize=32768,wsize=32768,proto=tcp,noac,forcedirectio,vers=3,suid

10.133.83.224:/export/config /config/

To have these file systems mounted automatically after a reboot, update the file /etc/vfstab as follows:

#device device mount FS fsck mount mount

#to mount to fsck point type pass at boot options

/devices - /devices devfs - no -

/proc - /proc proc - no -

ctfs - /system/contract ctfs - no -

objfs - /system/object objfs - no -

sharefs - /etc/dfs/sharetab sharefs - no -

fd - /dev/fd fd - no -

swap - /tmp tmpfs - yes -

/dev/zvol/dsk/rpool/swap - - swap - no -

/dev/zvol/dsk/rpool/swap2 - - swap - no -

10.133.83.224:/export/backup - /backup nfs - yes

rw,bg,hard,nointr,rsize=32768,wsize=32768,proto=tcp,noac,forcedirectio,vers=3,suid

10.133.83.224:/export/config - /config nfs - yes

rw,bg,hard,nointr,rsize=32768,wsize=32768,proto=tcp,noac,forcedirectio,vers=3,suid

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 18

Log in to the Oracle database, and create an init.ora parameter file from SPFILE, and place it in the

/config directory:

-bash-4.1$ sqlplus / as SYSDBA

SQL> create pfile=’/config/inittpcc.ora’ from spfile;

File created.

SQL> exit

In this example the Oracle database is called tpcc. The full path of the created parameter file will be included

with the oraLocation variable in the setup.sh file listed in Appendix A.

Using Oracle RMAN, back up the production system database to the backup share on the Sun ZFS Storage

Appliance as follows:

RMAN> backup as copy database format "/backup/back_%U";

The /backup directory will be included with the masterBackupLocation variable in the setup.sh file

listed in Appendix A.

Create a Clone of the Database Backup File System

To create a clone of the database backup file system oracle/backup, first create a snapshot of the file system

that has the backup of production data on the Sun ZFS Storage Appliance, and then promote the snapshot to a

clone.

Create a Snapshot of the Database Backup File System

Click SHARES in the submenu, and then click the pencil icon on the oracle/backup row to edit this file

system.

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 19

Figure 7. Editing the file system.

Click Snapshots, and then click the + sign next to Snapshots to create a snapshot called backupSnap1. Then

click APPLY.

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 20

Figure 8. Creating a snapshot.

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 21

Figure 9 shows the created snapshot.

Figure 9. The new snapshot is listed.

Create Clones of the Database Backup File System

The goal of this section is to create clones of the file system that has the backup of production data on the Sun

ZFS Storage Appliance.

Create a project called clone by following the same steps used to create the oracle project previously. This

project will include all the clones that will be created.

To promote the snapshot backupSnap1 to a clone, select SHARES from the submenu, and then click the

pencil icon as if to edit the oracle/backup file system.

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 22

Figure 10. Clicking the pencil icon opens a screen from which the snapshot can be promoted to a clone.

Click Snapshots.

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 23

Figure 11. Clicking Snapshots opens a screen that lists all the snapshots that were taken.

In the backupSnap1 snapshot, click the + sign to select the Clone snapshot as a new share option.

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 24

Figure 12. Screen where you can clone the backupSnap1 snapshot.

Select the project clone from the drop-down menu in the Create Clone dialog box.

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 25

Figure 13. Screen for creating a clone.

Enter the name of the clone, and click APPLY. This name will be included with the cloneZones variable in

the setup.sh file listed in Appendix A.

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 26

Figure 14. Entering a name for the clone.

Click Show in the backupSnap1 snapshot to see the clone that was just created.

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 27

Figure 15. A clone was created of the backupSnap1 snapshot.

Figure 16 shows that a clone called clone1 has been created in project clone.

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 28

Figure 16. The clone that was just created is listed.

Repeat the previous steps to create as many clones of backupSnap1, as needed. The names of the clones will

be listed in the cloneZones entry in the setup.sh file listed in Appendix A. Figure 17 shows that four

clones—named clone1, clone2, clone3, and clone4—were created in the project clone.

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 29

Figure 17. The four created clones are listed.

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 30

Create an Oracle Solaris Master Zone

As root, first create a VNIC for the non-global master zone and all the clones, as follows, where net0 is the

link identified as being up after running the dladm show-link command, which lists all the physical

interfaces that are configured and up on the system:

dladm create-vnic -l net0 public1

dladm create-vnic -l net0 clone1

dladm create-vnic -l net0 clone2

dladm create-vnic -l net0 clone3

dladm create-vnic -l net0 clone4

Then create a template for the master zone named master.cfg using the following information, where

zonepath points to zone pool created using the zpool command and public1 is the name of the VNIC

created previously:

create –b

set zonepath=/rpool/zones/master

set brand=solaris

set autoboot=false

set limitpriv=default,proc_priocntl

set ip-type=exclusive

add net

 set configure-allowed-address=true

 set physical=public1

end

add rctl

 set name=zone.max-shm-memory

 add value (priv=privileged,limit=53687091200,action=deny)

end

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 31

Create the master zone by issuing the following command:

zonecfg -z master -f master.cfg

To restrict the number of CPUs in the zone for licensing purposes, use the dedicated-cpu command to

specify the number of virtual CPUs. The following snippet sets dedicated-cpu to 2.

zonecfg -z master

zonecfg:master> add dedicated-cpu

zonecfg:master:dedicated-cpu> set ncpus=2

zonecfg:master:dedicated-cpu> end

zonecfg:master:dedicated-cpu> commit

zonecfg:master:dedicated-cpu> exit

Then issue the following commands to install and boot the zone:

zoneadm -z master install

zoneadm -z master boot

After logging on to the master zone, create the system configuration file for the master zone. The sysconfig

create-profile command will invoke the System Configuration Interactive (SCI) tool, which allows

administrators to configure parameters, such as the system’s host name, time zone, root and user accounts,

networking, and name services. These configuration parameters are saved in the master.xml file. This file is

critical, as it will be used for cloning zones later on. This will make the process of creating zones automatic and

saves time during deployment.

zlogin master

master: # sysconfig create-profile -o ./master.xml

After the profile is successfully created, configure the system to use the created profile, and then reboot the

system:

master: # sysconfig configure -c ./master.xml

master: # reboot

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 32

For more details on these commands, please check the Oracle Solaris Administration: Oracle Solaris Zones, Oracle

Solaris 10 Zones, and Resource Management guide and the complete Oracle Solaris 11 documentation library.

Once the master zone is booted, proceed with the Oracle Database installation as well as the installation of any

other application that is used in the production system. Set this zone exactly the way you need the other zones

to be configured.

The name of the master zone is listed as the masterZone variable in the setup.sh file listed in Appendix A.

Copy the master.xml file into the /config mounted directory from the Sun ZFS Storage Appliance .The full

path of the master.xml system configuration file is listed as the configFile variable in the same file.

At this point, four clones of the backup of the production Oracle database have been created on the Sun ZFS

Storage Appliance, and a master zone has been set up on the SPARC server. Refer to the section below and to

Appendix A for a list of all the scripts that will be needed to implement this solution and for sample output.

The setup above is done only once to prepare and initialize the environment.

Perform the Clone Operation

To clone an Oracle Solaris Zone environment and its database, all you need to do is execute the cloneEnv.sh

script as root on the system that will host the clones.

The first execution of the cloneEnv script lists some files in the /backup directory that need to be removed

in order to complete a successful clone operation. Copy and save the complete backup files to a separate

directory, and then delete the listed files, as indicated.

On the Sun ZFS Storage Appliance, delete the snapshots and all the clones by clicking the garbage can icon

shown in Figure 12, and create them again, as described previously. Execute the delAll.sh script to remove

all the cloned zones, and then execute the cloneEnv.sh script.

This script took seven minutes to complete the cloning of four environments. Once completed, all the Oracle

Solaris Zones and the Oracle databases are up and running.

To perform a successful clone operation repeatedly using the same clone hostnames and IP addresses

identified in the setup.sh file, the following steps are required:

1. On the Sun ZFS Storage Appliance, delete the snapshots and all the clones by clicking the garbage can

icon shown in Figure 12, and create them again, as described previously, every time a new clone

operation is performed.

2. As root, execute the delAll.sh script to reset the environment.

3. As root, execute the cloneEnv.sh script.

http://docs.oracle.com/cd/E23824_01/html/821-1460/index.html
http://docs.oracle.com/cd/E23824_01/html/821-1460/index.html
http://docs.oracle.com/cd/E23824_01/

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 33

To add a new clone, create a new clone on the Sun ZFS Storage Appliance, as shown in Figure 13, and update

the following variables in the setup.sh file to include the new information: cloneZones, cloneHostNames,

cloneIpAddress, and cloneVnics. Make sure a VNIC is created for the new zone, as shown at the

beginning of the section “Create an Oracle Solaris Master Zone”; the name of the new VNIC needs to be

reflected in the cloneVnics variable in the setup.sh file.

To delete a cloned zone and its database, run the delZone.sh script after providing the name of the zone as

input. To delete all the zones and their databases, run the delAll.sh script. Deleting a zone has no impact on

other cloned zones or on the master zone.

Summary

This featured solution for cloning an Oracle Solaris and Oracle Database environment aims to streamline and

simplify the development and testing of applications in the data center by providing a simple, foolproof, and

cost-effective way to test upgrades and patches on systems that are virtually identical to production systems,

without impacting production. The simplicity and effectiveness of this unique solution further exemplifies the

benefits of using “Oracle on Oracle” technology.

For More Information

For more information on Oracle’s technology stack, see the references in Table 2.

TABLE 2. REFERENCES FOR MORE INFORMATION

WEBSITES AND SUPPORT NOTE

Oracle Optimized Solutions http://oracle.com/optimizedsolutions

Oracle’s SPARC T-Series servers http://www.oracle.com/goto/tseries

Oracle Solaris 11 http://www.oracle.com/solaris

Oracle Solaris 11 information on the Oracle

Technology Network Website

http://www.oracle.com/technetwork/server-

storage/solaris11/overview/index.html

Oracle’s Sun ZFS Storage Appliance http://www.oracle.com/us/products/servers-storage/storage/unified-storage/

My Oracle Support note (requires login)
https://support.oracle.com/epmos/faces/DocumentDisplay?id=1210656.1

ORACLE SOLARIS WHITE PAPERS

“Oracle Solaris 11 Network Virtualization and Network http://www.oracle.com/technetwork/server-

http://oracle.com/optimizedsolutions
http://www.oracle.com/goto/tseries
http://www.oracle.com/solaris
http://www.oracle.com/technetwork/server-storage/solaris11/overview/index.html
http://www.oracle.com/technetwork/server-storage/solaris11/overview/index.html
http://www.oracle.com/us/products/servers-storage/storage/unified-storage/
https://support.oracle.com/epmos/faces/DocumentDisplay?id=1210656.1
http://www.oracle.com/technetwork/server-storage/solaris11/documentation/o11-137-s11-net-virt-mgmt-525114.pdf

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

 34

Resource Management” storage/solaris11/documentation/o11-137-s11-net-virt-mgmt-525114.pdf

“Integrated Application-to-Disk Management with

Oracle Enterprise Manager Cloud Control 12c”

http://www.oracle.com/technetwork/oem/enterprise-manager/wp-em-a2d-mgmt-

12-1-1585513.pdf

“Oracle Solaris and Oracle SPARC T4 Servers—

Engineered Together for Enterprise Cloud

Deployments”

http://www.oracle.com/us/products/servers-storage/solaris/solaris-and-sparc-t4-

497273.pdf

http://www.oracle.com/technetwork/oem/enterprise-manager/wp-em-a2d-mgmt-12-1-1585513.pdf
http://www.oracle.com/technetwork/oem/enterprise-manager/wp-em-a2d-mgmt-12-1-1585513.pdf
http://www.oracle.com/us/products/servers-storage/solaris/solaris-and-sparc-t4-497273.pdf
http://www.oracle.com/us/products/servers-storage/solaris/solaris-and-sparc-t4-497273.pdf

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

35

Appendix A—Solution Scripts

The following scripts are used in this solution. As root in the global zone, copy the scripts into a directory (in

this example, /demo/cloneEnv), and modify the access mode as follows:

root@dat01:/demo/cloneEnv# ls -l

-rwxr-xr-x 1 root root 525 Mar 5 11:22 addNFS.sh

-rwxr-xr-x 1 root root 1534 Mar 5 11:22 cloneAllDB.sh

-rwxr-xr-x 1 root root 1704 Mar 5 11:22 cloneDB.sh

-rwxr-xr-x 1 root root 2418 Mar 5 11:42 cloneEnv.sh

-rwxr-xr-x 1 root root 3070 Mar 5 11:22 cloneZone.sh

-rwxr-xr-x 1 root root 7851 Mar 5 11:23 clonedb.pl

-rwxr-xr-x 1 root root 220 Mar 5 11:22 createControl.sh

-rwxr-xr-x 1 root root 339 Mar 5 11:22 delAll.sh

-rwxr-xr-x 1 root root 1565 Mar 5 11:22 delZone.sh

-rwxr-xr-x 1 root root 485 Mar 5 11:22 exportCfg.sh

-rwxr-xr-x 1 root root 410 Mar 5 11:22 haltZone.sh

-rwxr-xr-x 1 root root 206 Mar 5 11:22 runClone.sh

-rwxr-xr-x 1 root root 411 Mar 5 11:22 setenv.sh

-rwxr-xr-x 1 root root 1040 Mar 6 18:12 setup.sh

-rwxr-xr-x 1 root root 328 Mar 5 11:22 verifyDB.sh

The setup.sh Script

#This script lists the names of the zones to be created, and includes their IP addresses.

#The content of this script needs to be modified to reflect your environment every time

#you create a new clone. This file contains information to create 4 new clones named

#“clone1”, “clone2”, “clone3”, and “clone4”.

#Name of the master zone that needs to be cloned

masterZone=master

#The full path of the configuration file of the master zone mounted from ZFS Storage

Appliance

configFile=/config/master.xml

#List the names of the clones that need to be cloned. The names must match the names entered

in Figure 17

cloneZones=("clone1" "clone2" "clone3" "clone4")

#Host names of the clones

cloneHostNames=("dat-zone2" "dat-zone3" "dat-zone4" "dat-zone5")

#IP Addresses of the clones

cloneIpAddress=("10.133.82.45" "10.133.82.46" "10.133.82.47" "10.133.82.48")

#VNICs to be used by each clone, and created in the “Create an Oracle Solaris Master Zone”

section

cloneVnics=("clone1" "clone2" "clone3" "clone4")

#Variable to enable debugging of the scripts

debug=0

#Location of the master database backup mounted from ZFS Storage Appliance

masterBackupLocation="/backup"

#Name of master Zone ORACLE_SID that will be cloned in all zones

databaseName="tpcc"

#Full path and name of init.ora file that will be used by the cloned database and mounted

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

36

from ZFS Storage Appliance

oraLocation=/config/inittpcc.ora

#IP address of Sun ZFS Storage Appliance that hosts the backup and clones

ZfsSA="10.133.83.224"

The cloneEnv.sh Script

#cloneEnv.sh is the top level script that invokes the following scripts:

#haltZone.sh

#exportCfg.sh

#cloneZone.sh

#cloneAllDB.sh

#cloneEnv.sh script clones a master zone. It also starts a database in that cloned zone.

#In order to clone the master zone, this script takes the following input

The name of the master zone

The name of the configuration file of the master zone

List of names of the clones that needs to be cloned

A list of VNICs that each zone will use

Host names of the clones to be cloned

IP Addresses of the clones to be cloned.

#The cloneEnv.sh script assumes that all clones are created on the same network as the master

zone.

#It uses the configuration file used by the master zone and updates the host name, VNICs and

IP Address information.

. ./setup.sh

count=0

#Start nfs/client services in masterZone

zlogin -l root $masterZone "svcadm enable svc:/network/nfs/status:default;svcadm enable

svc:/network/nfs/client:default "

#Halt master zone

./haltZone.sh $masterZone

#Export the configuration of master zone

./exportCfg.sh $masterZone

start=`gdate +"%s"`

for i in "${cloneZones[@]}"

do

 cloneZone=$i

 cloneHostName=${cloneHostNames[$count]}

 cloneIpAddr=${cloneIpAddress[$count]}

 cloneVnic=${cloneVnics[$count]}

 if [$debug == 1]

then

 echo " \n Zone to Clone : $cloneZone"

 echo "Clone host name : $cloneHostName"

 echo " Clone IP : $cloneIpAddr Clone Vnic : $cloneVnic "

fi

 #clone the zone from masterzone

 ./cloneZone.sh $masterZone $cloneZone $cloneHostName $cloneIpAddr $cloneVnic

$configFile $debug

 count=$(($count+1))

done

end=`gdate +"%s"`

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

37

duration=$(($end - $start))

duration=$(($duration/60))

echo "\n\t$count Zones cloned in $duration minutes \n"

echo "\n\tVerify all clones are up and running\n"

zoneadm list -icv | grep clone

echo "\n\tWait for two minutes for SMF services to start in all zones\n"

sleep 120

echo "\n\tVerify network connectivity for all clones\n"

count=0

for i in "${cloneZones[@]}"

do

 cloneIpAddress=${cloneIpAddress[$count]}

 s=`ping $cloneIpAddress`

 echo "\t$i : $s"

 count=$count+1

done

#Clone the database in all the zones

./cloneAllDB.sh

#echo "\n\t Boot Master Zone $masterZone\n"

echo "\n"

zoneadm -z $masterZone boot

if [$? != 0]

then

 echo "Error booting $masterZone"

fi

The haltZone.sh Script

#haltZone.sh takes zoneName as an input parameter and halts that zone

zoneName=$1

#echo "Halt $zoneName so it can be cloned"

state=`zoneadm -z "${zoneName}" list -p | cut -d: -f3`

if [$state == "running"]

then

 echo "Halt $zoneName"

 zoneadm -z ${zoneName} halt

 if [$? != 0]

 then

 echo "Error halting $zoneName ...Exiting "

 exit

 fi

fi

The exportCfg.sh Script

#exportCfg.sh takes a zone name as input and saves its zone configuration in a file named

master in /tmp directory

zoneName=$1

zoneExist=`zoneadm list -icv | grep "$zoneName" | awk '{print $2}'`

if [! $zoneExist]

then

 echo "$zoneName does not exist .. Exiting ..."

 exit

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

38

fi

echo "Read ${zoneName} zone configuration "

zonecfg -z ${zoneName} export -f /tmp/master

if [$? != 0]

then

 echo "Error exporting the config info for ${zoneName} "

 exit 1

fi

The cloneZone.sh Script

#cloneZone.sh clones a single zone from the master zone.

#It takes master zone name and master zone's system configuration file as input.

#It also takes clone name, clone hostname, clone IP address and clone's VNIC as input.

#It updates the master zone's zone configuration file with clone name and clone VNIC.

#It then uses the updated zone configuration file to configure the clone.

#cloneZone.sh also updates the master zone's system configuration file with clone

#name, clone hostname, clone IP address and clone VNICs. It uses the updated system

#configuration file to clone the new zone from the master zone. It then boots up the cloned

zone.

masterZone=$1

cloneZone=$2

cloneHostName=$3

cloneIpAddress=$4

cloneVnic=$5

configFile=$6 #system configuration file for the master zone

masterRoot=oraclePool

cloneRoot=oraclePool

debug=$7

echo "\n\n\tClone ${cloneZone} from ${masterZone} "

if [$debug == 1]

then

 echo "Master zone: $masterZone"

 echo "clone Zone: $cloneZone"

 echo "clone Host Name : $cloneHostName"

 echo "clone IP : $cloneIpAddress"

 echo "Clonevnic : $cloneVnic"

 echo "Config file : $configFile"

fi

echo "Update ${masterZone} zone configuration for ${cloneZone} configuration"

sed "s/${masterZone}/${cloneZone}/g" /tmp/master > /tmp/m1

sed "s/.*set physical.*/set physical=\\${cloneVnic}/g" /tmp/m1 > /tmp/m2

sed "s/${masterRoot}/${cloneRoot}/g" /tmp/m2 > /tmp/clone

echo "Configure ${cloneZone}"

zonecfg -z ${cloneZone} -f /tmp/clone > /tmp/$0.log

if [$? != 0]

then

 echo "Configuring ${cloneZone} failed "

 exit 1

fi

echo "Update $masterZone system configuration file for $cloneZone configuration"

search="<propval type=\"astring\" name=\"nodename\" value=\".*\"\/>"

replace="<propval type=\"astring\" name=\"nodename\" value=\"${cloneHostName}\"\/>"

sed "s/$search/$replace/g" ${configFile} > /tmp/c1

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

39

search="<propval type=\"net_address_v4\" name=\"static_address\" value=\"[0-9]\{1,3\}\.[0-

9]\{1,3\}\.[0-9]\{1,3\}\.[0-9]\{1,3\}"

replace="<propval type=\"net_address_v4\" name=\"static_address\" value=\"${cloneIpAddress}"

sed "s/$search/$replace/g" /tmp/c1 > /tmp/c2

search="<propval type=\"astring\" name=\"name\" value=\".*\/v4\"\/>"

replace="<propval type=\"astring\" name=\"name\" value=\"${cloneVnic}\/v4\"\/>"

sed "s/$search/$replace/g" /tmp/c2 > /tmp/c3

search="<propval type=\"astring\" name=\"name\" value=\".*\/v6\"\/>"

replace="<propval type=\"astring\" name=\"name\" value=\"${cloneVnic}\/v6\"\/>"

sed "s/$search/$replace/g" /tmp/c3 > /tmp/c4.xml

echo "Clone ${cloneZone} from ${masterZone}"

zoneadm -z ${cloneZone} clone -c /tmp/c4.xml ${masterZone} >> /tmp/$0.log

if [$? != 0]

then

 echo "Cloning the zone ${cloneZone} ...Exiting"

 exit

fi

echo "Boot ${cloneZone}"

zoneadm -z ${cloneZone} boot >> /tmp/$0.log

if [$? != 0]

then

 #echo "Booting again"

 zoneadm -z ${cloneZone} boot >> /tmp/$0.log

 if [$? != 0]

 then

 echo "Booting of $cloneZone has failed"

 exit 1

 fi

fi

The cloneAllDB.sh Script

#cloneAllDB.sh invokes cloneDB.sh script to clone the DB in all the zones

provided in cloneZones array in setup.sh. It then verifies that database has been

#successfully started in all the zones by logging in to each database. It invokes

verifyDB.sh script to log in to database in each zone and print its status

. ./setup.sh

echo "\n\tVerify if there are any extra files in $masterBackupLocation\n\n"

#remove the / from masterBackupLocation for ignore clause of find commad

masterBack=${masterBackupLocation#'/'}

fileList=` find $masterBackupLocation \\(! -iname "*data*" ! -iname $masterBack ! -iname

".*" \\)`

if [[-n $fileList]]

then

 echo "\tBackup Directory $masterBackupLocation contains more files than the needed

data backup files. Copy and save this backup to a different location. Remove the following

extra files. Recreate the snapshot and clones on ZFSSA. Execute delAll.sh script, and try

again:\n"

 echo "${fileList// /$'\n'}"

 exit 2

fi

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

40

start=`gdate +"%s"`

count=0

for i in "${cloneZones[@]}"

do

 ./cloneDB.sh $i

 ret=$?

 count=$(($count+1))

done

if [$ret = 2]

then

 exit 2

fi

end=`gdate +"%s"`

duration=$(($end - $start))

duration=$(($duration/60))

echo "\n\t$Oracle Database is cloned in $count Zones in $duration minutes \n"

echo "\n\tVerify that databases are up in all zones"

list=`ps -Zef | grep ora_smon | grep -v grep`

echo "$list"

for i in "${cloneZones[@]}"

do

 echo "\n\tLogin to database in $i\n"

 zlogin -l oracle ${i} /tmp/verifyDB.sh

done

The cloneDB.sh Script

#The cloneDB.sh scripts takes the zone name as an input parameter and clones the database

#in that zone. cloneDB.sh uses the following scripts:

#addNFS.sh to add an NFS mount point to the zone

#setenv.sh script to set the environment to execute clone.pl scripts

#clonedb.pl to clone the database

. ./setup.sh

oraFile=`basename $oraLocation`

oraDir=`dirname $oraLocation`

zoneName=$1

zpath=`zonecfg -z "$zoneName" info zonepath | cut -d: -f2`

if [$debug == 1]

then

 echo "zpath: $zpath"

 echo "oraFile : $oraFile"

 echo "oraLocation : $oraLocation"

fi

##Copy clonedb.pl verifyDB.sh creaetcontrol.sh to the the tmp directory of zone

cp clonedb.pl ${zpath}/root/tmp

cp verifyDB.sh ${zpath}/root/tmp

cp runClone.sh ${zpath}/root/tmp

cp createControl.sh ${zpath}/root/tmp

#Dynamically generate setenv file from .setenv.sh and copy it to /export/home/oracle

directory of clone

./setenv.sh $zoneName

cp setenv ${zpath}/root/export/home/oracle

#Dynamically generate addNFS file from addNFS.sh and copy it to /tmp directory of the zone

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

41

./addNFS.sh ${zoneName}

chmod 777 addnfs

cp addnfs ${zpath}/root/tmp

if [$debug == 1]

then

 echo "\n\t Contents of addnfs file :\n"

 cat $zpath/root/tmp/addnfs

 echo "\n\tContents of setenv\n"

 cat $zpath/root/export/home/oracle/setenv

fi

#Login to the zone and mount that nfs directory

echo "\n\tMount NFS filesystem $zoneName in $zoneName\n"

zlogin ${zoneName} /tmp/addnfs

echo "\n\tClone database in $zoneName \n"

zlogin -l oracle ${zoneName} " /tmp/runClone.sh $zoneName $oraLocation"

ret=$?

exit $ret

The runClone.sh Script

#runclone.sh takes zonename and location of ora file as input and invokes

#the clonedb.pl script for that particular zone using the ora file

zoneName=$1

oraLocation=$2

. ./setenv

cd /tmp

perl /tmp/clonedb.pl $oraLocation /tmp/createControl.sql /tmp/openDB.sql

if [$? == 0]

then

 createControl.sh

 cp /tmp/init*.ora /$zoneName

else

 exit 2

fi

The addNFS.sh Script

#addNFS.sh script adds an NFS mount point to the /etc/vfstab file of the clone and mounts

#that file system. It takes the zone name as its input parameter and mounts the

#ZFSSA/export/<clonename> file system on that zone.

zoneName=$1

. ./setup.sh

echo "echo "$ZfsSA:/export/$zoneName - /$zoneName nfs - yes

rw,bg,hard,nointr,rsize=32768,wsize=32768,proto=tcp,noac,forcedirectio,vers=3,suid " >>

/etc/vfstab" > addnfs

echo "mkdir /$zoneName " >> addnfs

echo "mount /$zoneName >> /tmp/$0.log" >> addnfs

echo "ls -ltr /$zoneName >> /tmp/$0.log" >> addnfs

The setenv.sh Script

#setenv.sh sets up the environmental variable required to execute the clonedb.pl script.

#it takes zoneName as its input parameter and sets CLONE_FILE_CREATE_DEST to /$zonename

. ./setup.sh

zoneName=$1

echo "export MASTER_COPY_DIR=$masterBackupLocation " > setenv

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

42

echo "export CLONEDB_NAME=$databaseName " >> setenv

echo "export CLONE_FILE_CREATE_DEST=/$zoneName" >> setenv

echo "export S7000_TARGET=1" >> setenv

The clonedb.pl Script

This script is a slightly modified version of the clone.pl script

#that is downloaded from My Oracle Support Metalink?Note 1210656.1

#Changes made

Saves the new ora file in /tmp directory so when you run create control file

#command, the ora file is not included in list of data files

#set db_recovery_file_dest to $clonedbdir in new ora file

#exit the script if the clonedbdir has any files in addition to data files

clonedb.pl - This script generates two SQL scripts that can be used to

create your test clones. Run this from your testdb Oracle Home environment

Before running this script make sure the following environment variables are set:

MASTER_COPY_DIR - environment variable to point to the directory where the

backup/snapshot of your Master database are kept

CLONE_FILE_CREATE_DEST - environment variable to point to the directory where

clonedb files will be created including datafiles,

log files, control files

CLONEDB_NAME - Cloned database name

S7000_TARGET - Set if the nfs host providing the filesystem for the backup

and the clones is an S7000 series machine and we wish to

employ its cloning features.

perl clonedb.pl <master_db.ora> <crtdb.sql> <dbren.sql>

Arg1 - Full path of the Master db init.ora file from your production env

Arg2 - sqlscript1

Arg3 - sqlscript2

This script copies the init.ora file from your master db env to your

clonedb env in CLONE_FILE_CREATE_DEST directory.

After running this script go through the test database parameter file to

make sure all parameters look correct

Go through crtdb.sql to make sure the log names are correct.

If all files look good do the following steps

sqlplus system/manager

@crtdb.sql

@dbren.sql

Now your test database should be available for use.

if ($#ARGV != 2) {

 print "usage: perl clonedb.pl <master_init.ora> <crtdb.sql> <dbren.sql> \n";

 exit;

}

if (!$ENV{'MASTER_COPY_DIR'}) {

 print "MASTER_COPY_DIR env not set. Set this and rerun it again \n";

 exit;

}

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

43

if (!$ENV{'CLONE_FILE_CREATE_DEST'}) {

 print "CLONE_FILE_CREATE_DEST env not set. Set this and rerun it again \n";

 exit;

}

if (!$ENV{'CLONEDB_NAME'}) {

 print "CLONEDB_NAME env not set. Set this and rerun it again \n";

 exit;

}

($orafile)=$ARGV[0];

($sqlfile1)=$ARGV[1];

($sqlfile2)=$ARGV[2];

Set environment variable specific to your clone database

#$neworafile ="$ENV{'CLONE_FILE_CREATE_DEST'}/init$ENV{'CLONEDB_NAME'}.ora";

$neworafile ="/tmp/init$ENV{'CLONEDB_NAME'}.ora";

$cldboh = "$ENV{'ORACLE_HOME'}";

$cldbosid = "$ENV{'ORACLE_SID'}";

$cldbname = "$ENV{'CLONEDB_NAME'}";

$cldbctlfl = "$ENV{'CLONE_FILE_CREATE_DEST'}/$ENV{'CLONEDB_NAME'}_ctl.dbf";

$mastercopydir = "$ENV{'MASTER_COPY_DIR'}";

$clonedbdir ="$ENV{'CLONE_FILE_CREATE_DEST'}";

$s7000 = $ENV{S7000_TARGET} ? 1 : 0 ;

Check if the CLONE_FILE_CREATE_DEST exists

if (! open(CLONEDIR, $clonedbdir))

{

 print("CLONE_FILE_CREATE_DEST directory does not exist.\n");

 print("Create this directory and rerun the script \n");

 exit;

}

close(CLONEDIR);

#remove the / from clonedbdir for ignore clause of find command

$clonedb=substr $clonedbdir,1 ;

#List all files in $clonedbdir directory except $clonedbdir, any file

#having data in its name and any hidden file

$fileList = ` find $clonedbdir \\(! -iname "*data*" ! -iname $clonedb ! -iname ".*" \\)` ;

#if $fileList is not empty that means the directory has more files than

#data files, this is a fatal error

if ($fileList)

{

 print("\n\tFATAL ERROR : Clone Directory $clonedbdir contains more files than data

backup files.");

 print(" Recreate the snapshot and clones on ZFSSA. Execute delAll.sh script, and try

again. \n\n ");

 print($fileList);

 exit 2;

}

Rename the parameters in the copied production init.ora and open a new init.ora with new

values

open (INFILE,$orafile);

open (OUTFILE,">$neworafile");

@skipparam=("instance_name","service_names","diagnostic_dest");

@inparam=("db_name","control_files");

@outparm=($cldbname,$cldbctlfl);

$skiplen = @skipparam;

$inlen = @inparam;

for $ln (<INFILE>)

{

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

44

 $newln = $ln;

#Look for any include files and read their contents

 if ($newln =~ "ifile")

 {

 @lnsp = split("=",$newln);

 open(INCFILE, $lnsp[1]);

 print OUTFILE "# Copy from $lnsp[1] \n";

 for $ln (<INCFILE>)

 {

 $newln = $ln;

 for ($i=0; $i<$skiplen; $i++){

 if ($newln =~ /$skipparam[$i]/)

 {

 $newln="\n";

 }

 }

 for ($i=0; $i<$inlen; $i++){

 if ($newln =~ /$inparam[$i]/)

 {

 @lnsp = split("=",$newln);

 $lnsp[1]=$outparm[$i];

 $newln=$inparam[$i]."=".$lnsp[1]."\n";

 }

 }

 print OUTFILE "$newln";

 }

 close INCFILE;

 print OUTFILE "# End Copy";

 }

 else

 {

 for ($i=0; $i<$skiplen; $i++){

 if ($newln =~ /$skipparam[$i]/)

 {

 $newln="\n";

 }

 }

 for ($i=0; $i<$inlen; $i++){

 if ($newln =~ /$inparam[$i]/)

 {

 @lnsp = split("=",$newln);

 $lnsp[1]=$outparm[$i];

 $newln=$inparam[$i]."=".$lnsp[1]."\n";

 }

 }

 print OUTFILE "$newln";

 }

}

Add db_create_file_dest, log_arhive_dest parameter

print OUTFILE "db_create_file_dest=$clonedbdir\n";

print OUTFILE "log_archive_dest=$clonedbdir\n";

print OUTFILE "db_recovery_file_dest=$clonedbdir\n";

#print OUTFILE "clonedb=TRUE\n";

close INFILE;

close OUTFILE;

Create clone db raneame file sql

if (!$s7000)

{

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

45

 $target=$mastercopydir;

} else {

 $target=$clonedbdir;

}

XXX Needs to be modified to just deal with data files.

system ("cd $target; ls -d $target/* >> dnfsa1axxx.log");

system ("cp $target/dnfsa1axxx.log .;rm $target/dnfsa1axxx.log");

open(INPFILE,"dnfsa1axxx.log");

open(INTFILE,">filenamexxx.txt");

open(OUTFILE1,">$sqlfile2");

open(OUTFILE,">dnfsa2axxx.log");

for $ln (<INPFILE>)

{

 print INTFILE "$ln";

}

close INTFILE;

close INPFILE;

open(INTFILE,"filenamexxx.txt");

$refline=" ";

for $line (<INTFILE>)

{

 $line =~ s/\s+$//;

 if ($refline ne " ")

 {

 print OUTFILE "'"."$refline"."'".", \n";

 }

 $refline = $line;

}

if ($refline ne " ")

{

 print OUTFILE "'"."$refline"."' \n";

}

close INTFILE;

if (!$s7000)

{

 print OUTFILE1 "declare \n";

 print OUTFILE1 "begin \n";

 open(INTFILE,"filenamexxx.txt");

 $i = 0;

 for $lne (<INTFILE>)

 {

 $lne =~ s/\s+$//;

 print OUTFILE1 "dbms_dnfs.clonedb_renamefile('$lne' ,

'$clonedbdir/\ora_data_$cldbname$i.dbf'); \n";

 $i++;

 }

 print OUTFILE1 "end; \n";

 print OUTFILE1 "/ \n";

 print OUTFILE1 "show errors; \n";

}

print OUTFILE1 "alter database open resetlogs;\n";

#Add a default temp tablespace in the clone env

print OUTFILE1 "drop tablespace TEMP;\n";

print OUTFILE1 "create temporary tablespace TEMP;";

close OUTFILE;

close OUTFILE1;

close OUTFILE1;

close OUTFILE1;

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

46

Create the create controlfile script

open(INPFILE1,"dnfsa2axxx.log");

open(INPSQLFILE,">interm.sql");

open (OUTSQLFILE,">$sqlfile1");

print INPSQLFILE ("

SET ECHO ON

SET FEEDBACK 1

SET NUMWIDTH 10

SET LINESIZE 80

SET TRIMSPOOL ON

SET TAB OFF

SET PAGESIZE 100

STARTUP NOMOUNT PFILE=$neworafile

CREATE CONTROLFILE REUSE SET DATABASE $cldbname RESETLOGS

 MAXLOGFILES 32

 MAXLOGMEMBERS 2

 MAXINSTANCES 1

 MAXLOGHISTORY 908

LOGFILE

 GROUP 1 '$clonedbdir/$cldbname_log1.log' SIZE 100M BLOCKSIZE 512,

 GROUP 2 '$clonedbdir/$cldbname_log2.log' SIZE 100M BLOCKSIZE 512

DATAFILE

CHARACTER SET WE8DEC; ");

close INPSQLFILE;

open(INPSQLFILE,"interm.sql");

for $ln (<INPSQLFILE>)

{

 print OUTSQLFILE "$ln";

 if ($ln =~ /DATAFILE/)

 {

 for $ln0 (<INPFILE1>)

 {

 print OUTSQLFILE "$ln0";

 }

 }

}

close OUTSQLFILE;

close INPFILE1;

close INPSQLFILE;

unlink("interm.sql");

unlink("dnfsa1axxx.log");

unlink("dnfsa2axxx.log");

unlink("filenamexxx.txt");

The createControl.sh Script

#createControl.sh executes createcontrol.sql and resets the log for the cloned database.

sqlplus -s / as sysdba << !

spool /tmp/createControl.log

set echo off

@createControl.sql

alter database open resetlogs;

exit

!

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

47

The verifyDB.sh Script

#verifyDB.sh logs in to the database and prints out the

#hostname, instance_name and status of the database

sqlplus -s / as sysdba << !

set define off

set escape on

column instance_name format a20

column host_name format a20

column status format a10

select instance_name, host_name,status from v\$instance ;

set define on

!

The delAll.sh Script

#This scripts deletes all the zones that are specified in input array cloneZones, which

can be specified in setup.sh file

. ./setup.sh

for i in "${cloneZones[@]}"

do

 cloneZone=$i

 if [$debug == 1]

 then

 echo " Zone to Delete : $cloneZone"

 fi

 ./delZone.sh $cloneZone

done

exit

The delZone.sh Script

#This script deletes a specific zone.

if [$# != 1]

then

 echo "Zone name not provided : ${zoneName}. Exiting ..."

 exit 1

fi

zoneName=$1

echo "\n\n\t\t Deleting ${zoneName}"

zoneExist=`zoneadm list -icv | grep "$zoneName" | awk '{print $2}'`

if [! $zoneExist]

then

 echo "$zoneName does not exist .. Exiting ..."

 exit

fi

state=`zoneadm -z "${zoneName}" list -p | cut -d: -f3`

if [$state == "running"]

then

 echo "Halting $zoneName"

 zoneadm -z ${zoneName} halt

 if [$? != 0]

 then

 echo "Error halting $zoneName ...Exiting "

 exit

 fi

 #check return code

fi

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

48

state=`zoneadm -z "${zoneName}" list -p | cut -d: -f3`

if [$state == "installed" -o $state == 'incomplete']

then

 echo "Uninstalling $zoneName"

 zoneadm -z ${zoneName} uninstall -F > /tmp/$0.log

 if [$? != 0]

 then

 echo "Error uninstalling $zoneName ...Exiting "

 exit

 fi

 #check return code

fi

state=`zoneadm -z "${zoneName}" list -p | cut -d: -f3`

if [$state == "configured"]

then

 echo "Unconfiguring $zoneName"

 zonecfg -z ${zoneName} delete -F

 if [$? != 0]

 then

 echo "Error unconfiguring ${zoneName} ...Exiting"

 exit

 fi

fi

zoneExist=`zoneadm list -icv | grep "$zoneName" | awk '{print $2}'`

if [$zoneExist]

then

 echo " Error deleting $zoneName Exiting ..."

 exit

fi

echo "\n\t\t$zoneName successfully deleted"

Sample Output

The following sample output is obtained after running the cloneEnv.sh script:

root@dat01:/demo/cloneEnv# ./cloneEnv.sh

Halt master

Read master zone configuration

 Clone clone1 from master

Update master zone configuration for clone1 configuration

Configure clone1

Update master system configuration file for clone1 configuration

Clone clone1 from master

Boot clone1

 Clone clone2 from master

Update master zone configuration for clone2 configuration

Configure clone2

Update master system configuration file for clone2 configuration

Clone clone2 from master

Boot clone2

 Clone clone3 from master

Update master zone configuration for clone3 configuration

Configure clone3

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

49

Update master system configuration file for clone3 configuration

Clone clone3 from master

Boot clone3

 Clone clone4 from master

Update master zone configuration for clone4 configuration

Configure clone4

Update master system configuration file for clone4 configuration

Clone clone4 from master

Boot clone4

 4 Zones cloned in 2 minutes

 Verify all clones are up and running

 338 clone1 running /rpool/zones/clone1 solaris excl

 340 clone2 running /rpool/zones/clone2 solaris excl

 342 clone3 running /rpool/zones/clone3 solaris excl

 344 clone4 running /rpool/zones/clone4 solaris excl

 Wait for two minutes for SMF services to start in all zones

 Verify network connectivity for all clones

 clone1 : 10.133.82.45 is alive

 clone2 : 10.133.82.46 is alive

 clone3 : 10.133.82.47 is alive

 clone4 : 10.133.82.48 is alive

 Mount NFS filesystem clone1 in clone1

 Clone database in clone1

Oracle Corporation SunOS 5.11 11.1 December 2012

ORACLE instance started.

Total System Global Area 9055346688 bytes

Fixed Size 2166760 bytes

Variable Size 1677725720 bytes

Database Buffers 7079985152 bytes

Redo Buffers 295469056 bytes

Control file created.

Database altered.

 Mount NFS filesystem clone2 in clone2

 Clone database in clone2

Oracle Corporation SunOS 5.11 11.1 December 2012

ORACLE instance started.

Total System Global Area 9055346688 bytes

Fixed Size 2166760 bytes

Variable Size 1677725720 bytes

Database Buffers 7079985152 bytes

Redo Buffers 295469056 bytes

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

50

Control file created.

Database altered.

 Mount NFS filesystem clone3 in clone3

 Clone database in clone3

Oracle Corporation SunOS 5.11 11.1 December 2012

ORACLE instance started.

Total System Global Area 9055346688 bytes

Fixed Size 2166760 bytes

Variable Size 1677725720 bytes

Database Buffers 7079985152 bytes

Redo Buffers 295469056 bytes

Control file created.

Database altered.

 Mount NFS filesystem clone4 in clone4

 Clone database in clone4

Oracle Corporation SunOS 5.11 11.1 December 2012

ORACLE instance started.

Total System Global Area 9055346688 bytes

Fixed Size 2166760 bytes

Variable Size 1677725720 bytes

Database Buffers 7079985152 bytes

Redo Buffers 295469056 bytes

Control file created.

Database altered.

 Database is cloned in 4 Zones in 2 minutes

 Verify that databases are up in all zones

 clone3 0000200 5454 1 0 18:50:56 ? 0:00 ora_smon_tpcc

 clone2 0000200 5231 1 0 18:50:20 ? 0:00 ora_smon_tpcc

 clone1 0000200 5019 1 0 18:49:44 ? 0:00 ora_smon_tpcc

 clone4 0000200 5674 1 0 18:51:33 ? 0:00 ora_smon_tpcc

 Login to database in clone1

Oracle Corporation SunOS 5.11 11.1 December 2012

INSTANCE_NAME HOST_NAME STATUS

-------------------- -------------------- ----------

tpcc dat-zone2 OPEN

 Login to database in clone2

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

51

Oracle Corporation SunOS 5.11 11.1 December 2012

INSTANCE_NAME HOST_NAME STATUS

-------------------- -------------------- ----------

tpcc dat-zone3 OPEN

 Login to database in clone3

Oracle Corporation SunOS 5.11 11.1 December 2012

INSTANCE_NAME HOST_NAME STATUS

-------------------- -------------------- ----------

tpcc dat-zone4 OPEN

 Login to database in clone4

Oracle Corporation SunOS 5.11 11.1 December 2012

INSTANCE_NAME HOST_NAME STATUS

-------------------- -------------------- ----------

tpcc dat-zone5 OPEN

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

52

The following output is obtained after running the delAll.sh script:

root@dat01:/demo/cloneEnv# ./delAll.sh

 Deleting clone1

Halting clone1

Uninstalling clone1

Unconfiguring clone1

 clone1 successfully deleted

 Deleting clone2

Halting clone2

Uninstalling clone2

Unconfiguring clone2

 clone2 successfully deleted

 Deleting clone3

Halting clone3

Uninstalling clone3

Unconfiguring clone3

 clone3 successfully deleted

 Deleting clone4

Halting clone4

Uninstalling clone4

Unconfiguring clone4

 clone4 successfully deleted

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

53

Appendix B—Solution Hardware Component Descriptions

SPARC T4 Server Overview

The SPARC T4-4 server, shown in Figure 18, includes four sockets (each with an eight-core, 3.0 GHz,

SPARC T4 processor), two solid-state disks, and up to a 1 TB memory footprint. Fifth-generation multicore,

multithreading technology supports 8 threads per core and up to 256 threads per four-socket server, providing

high compute density in only five rack units (5RU) with low power and cooling. The large number of cores

and virtual CPUs coupled with the large memory footprint, integrated on-chip I/O technology, and built-in

supported virtualization make the SPARC T4-4 server ideal for deploying large number of databases. With

breakthrough levels of price/performance (over 20 performance world records), the SPARC T4-4 server is

capable of providing high throughput within significant power, cooling, and space constraints.

The SPARC T4 processor includes an integrated cryptographic accelerator unit in each of the eight cores.

This means Oracle Solaris applications can run securely without the extra cost of a separate cryptographic

processor and without the CPU overhead associated with secure operation. The SPARC T4 processor’s

integrated cryptographic units support seventeen of the most common ciphers and secure hashing functions,

and they outperform solutions based on add-in accelerator cards by more than 10x.

Figure 18. Oracle’s SPARC T4-4 server.

The SPARC T4 processor offers a multithreaded hypervisor that interacts directly with the underlying

multicore and multithreading processor. This makes is possible to context-switch between multiple threads in

a single core, which normally requires additional software and considerable overhead in competing

architectures. In addition to the processor and hypervisor, Oracle provides fully multithreaded networking

and the fully multithreaded Oracle Solaris ZFS file system.

SPARC T5-4 Server Overview

In a dense 5U form-factor, the SPARC T5-4 is a high-performing, four-socket server optimized for data-

intensive, large Oracle Database workloads. It delivers unsurpassed single-thread and multithread throughput

performance, with a 1.2x improvement in single-thread performance, 2.5x throughput improvement, and 2x

increase in I/O bandwidth compared to the SPARC T4-4 system. For large-scale environments that require

extremely high service levels, the SPARC T5-4 is an optimal platform for mission-critical server and

application consolidation.

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

54

Figure 19. Oracle’s SPARC T5-4 server.

Comparison of SPARC T4 and T5 Server Models

Tables 3 and 4 give a quick comparison of SPARC T4 and T5 server models. SPARC T4 servers are available

in one-, two-, and four-socket implementations: the SPARC T4-1, T4-2, and T4-4 servers, respectively.

SPARC T5 servers are available in blade, two-, four-, and eight-socket implementations: the SPARC T5-1, T5-

2, T5-4, and T5-8 servers, respectively. For additional details and resources, see

http://www.oracle.com/sparc.

TABLE 3. SPARC T4 SERVER FEATURES

 SPARC T4-1 SPARC T4-2 SPARC T4-4
Size (Rack Units) 2U 3U 5U
Processor SPARC T4

2.85 GHz SPARC T4
3.0 GHz

Max. Processor Chips 1 2 4
Max. Cores/Threads 8/64 16/128 32/256
Max. Memory 256 GB 512 GB 1 TB
PCIe Gen2 Slots 6 10 16
1 GbE/10 GbE Ports 4/2 4/4 4/8
Drive Bays (SAS) 8 6 8
Service Processor Oracle ILOM
Operating System Oracle Solaris 11.1 or Oracle Solaris 10 1/13

Virtualization Features
Oracle VM Server for SPARC (formerly known as Logical Domains), Oracle Solaris
Zones

Key RAS Features Oracle ILOM, RAID 0/1, ECC correction;
Redundant, hot-plug fans and power supplies

http://www.oracle.com/sparc

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

55

TABLE 4. SPARC T5 SERVER FEATURES

 SPARC T5-1B SPARC T5-2 SPARC T5-4 SPARC T5-8
Size (Rack Units) Blade server 3U 5U 8U
Processor SPARC T5

 3.6GHz
Max. Processor Chips 1 2 4 8
Max. Cores/Threads 16/128 32/256 64/512 128/1024
Max. Memory 512 GB 1 TB 2 TB 4 TB
Drive Bays 2 6 8 8
PCIe 3.0 Slots 2 modules 8 16
10 GbE Ports

2x 10/100/1000 Ethernet
connection

4x 10 GbE ports 4x 10 GbE ports 4x 10 GbE ports

Service Processor Oracle ILOM
Operating System Oracle Solaris 11.1 or Oracle Solaris 10 1/13

Virtualization Features Oracle VM Server for SPARC, Oracle Solaris Zones

Key RAS Features
Oracle ILOM, RAID 0/1, ECC correction

In blade chassis Redundant, hot-plug fans and power supplies

N/A Hot-plug disks and PCIe cards

Sun ZFS Storage Appliance

The Sun ZFS Storage Appliance from Oracle provides enterprise-class network-attached storage (NAS)

appliances that supports NAS protocols, and it provides storage-area network (SAN) connectivity via the

iSCSI, Fibre Channel, and InfiniBand protocols.

The Sun ZFS Storage Appliance enhances performance while reducing both initial capital expenses and

ongoing operating expenses. Key features include the following:

 An advanced, intuitive browser user interface (BUI) as well as a simple command line interface (CLI)

that aim to reduce the time involved in provisioning and managing storage.

 A comprehensive DTrace Analytics environment, along with an intuitive interface, that provides

real-time visibility into the CPU, memory, data, data protocol, disk, and network performance to help

diagnose, troubleshoot, and resolve issues before they have an impact on business.

 Hybrid Storage Pool technology that optimizes the way data is spread across memory, solid state

disks (SSDs), and disk storage.

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

56

 Tight integration with Oracle’s stack, which further reduces operating expenses in Oracle

environments through the use of standardized, well-developed, Oracle-supported configurations

along with unique Oracle-on-Oracle features, such as Hybrid Columnar Compression, which is a

feature of Oracle Database.

 Superior performance, as demonstrated from the results of benchmark tests featuring SPECsfs (a file

protocol performance test) and block protocol workloads, which demonstrated both excellent

random transactional performance (SPC-1) and extreme throughput performance (SPC-2). These

tests were independently validated and are publicly available from the Standard Performance

Evaluation Corporation and the Storage Performance Council.

Hybrid Storage Pool technology uses an intelligent and adaptive set of algorithms to automatically and

dynamically manage read and write operations. The Sun ZFS Storage Appliance is able to cache data stored

on disk in either DRAM or flash-based memory for low latency, high I/O, and high throughput access.

Similarly, write operations can be made to low latency, nonvolatile flash so that they can be quickly

acknowledged, allowing the system to move on to the next operation more quickly. As the data movement

occurs, end-to-end Sun ZFS Storage Appliance checksumming prevents silent data corruption. This

technology allows the Sun ZFS Storage Appliance to extract maximum performance from the hardware,

enabling extreme performance while minimizing price.

Sun ZFS Storage Appliances are part of the complete, integrated Oracle stack, featuring Hybrid Columnar

Compression for Oracle Database 11g and later releases. This feature is available only on Oracle storage and

can result in substantially greater compression levels than can be obtained in other vendors’ systems. Oracle’s

Hybrid Columnar Compression technology is a new method for organizing data within a database block.

Hybrid Columnar Compression enables the highest levels of data compression and provides enterprises with

tremendous cost savings and performance improvements due to reduced I/O. Hybrid Columnar

Compression is optimized to use both database and storage capabilities to deliver tremendous space savings

and revolutionary performance. Average storage savings can range from 20x to 50x, depending on the nature

of the data. Taking a conservative average savings of 10x from Hybrid Columnar Compression, IT managers

can drastically reduce and often eliminate their need to purchase new storage for a significant amount of time.

The rich set of data services and appliance options shown in Figure 20 further enhance the economic benefits

of the Sun ZFS Storage Appliance. All protocols (such as CIFS, NFS, iSCSI, FC, and others) are included in

the base price of the system. Various data protection options and several data compression options, as well as

inline deduplication, are also included in the base price. Customers can choose between high-capacity and

high-performance SAS disk drives and various memory (DRAM and flash) options to optimize for their

performance and capacity needs while staying within budget. Advanced data services such as remote

replication and snapshot cloning are also available.

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

57

Figure 20. Data services and management features of the Sun ZFS Storage Appliance.

The Sun ZFS Storage 7320 appliance, shown in Figure 21, offers a high-availability active-active cluster option

with scalability of up to 432 TB of disk storage capacity, and it can be configured with up to 4 TB of

read-optimized flash cache, along with up to 1.2 TB write-optimized flash cache for enhanced application

performance.

Figure 21: Sun ZFS Storage 7320 appliance.

How to Accelerate Test and Development Through Rapid Cloning of Production Databases and Operating Environments

58

How to Accelerate Test and Development

Through Rapid Cloning of Production

Databases and Operating Environments

March 2013

Authors: Roger Bitar, Ritu Kamboj

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

oracle.com

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and the

contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other

warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or

fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are

formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any

means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective

owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and

are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are

trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 1012

