
Transparent Multi-core Cryptographic Support on Niagara CMT Processors∗

James Hughes, Gary Morton, Jan Pechanec,
Christoph Schuba, Lawrence Spracklen, and Bhargava Yenduri

Sun Microsystems, Inc.
10 Network Circle

Menlo Park, CA 95025 – USA
{Firstname.Lastname}@Sun.COM

Abstract

How cryptographic functionality has been implemented
and made available in application scenarios has evolved
over time. Pure software implementations were the obvious
first choice, followed by dedicated hardware devices, be it
co-processors or hardware accelerators accessible on the
main bus.

This paper examines aspects of making the next step in
this evolution work, namely the use of dedicated crypto-
graphic hardware that’s part of multi-core system CPUs.
While the inclusion of cryptographic accelerator function-
ality in the processor chip is not new, this paper investi-
gates the question of how to transparently combine such
multi-core cryptographic processor support with higher
level software stacks in a commodity operating system that
also needs to perform well if such hardware support is not
present.

We explore this question in the context of the Ultra-
SPARC T1 and T2 processor family, Chip Multi-Threaded
(CMT) processors that have hardware cryptographic accel-
erators integrated on-chip with 8-core support for symmet-
ric and asymmetric cryptographic and secure hash opera-
tions. The paper presents how a software infrastructure,
the Solaris Cryptographic Framework, transparently takes
advantage of these chip features and presents a brief com-
parative study of their performance.

1 Introduction

High performance and high security cryptography has
moved from obscure government requirements to main-
stream machines with the killer application being scalable

∗Published at the Second International Workshop on Multicore Soft-
ware Engineering (IWMSE09), Vancouver, Canada, May 2009.

electronic commerce. The ability for a web server to main-
tain and communicate concurrently over thousands of SSL
sessions is a recurring requirement. Even enterprises with-
out these levels of workload are interested in making sure
their infrastructure can scale when faced with success and
rapid growth or the need to temporarily accommodate flash
crowds. There are other applications scenarios with simi-
lar characteristics in the context of encrypted transactions
or encrypted storage. These examples apply in industries
beyond government, such as the health care or telecommu-
nications industries.

How cryptographic functionality has been implemented
and made available in such application scenarios has
evolved over time. Pure software implementations were the
obvious first choice, followed by dedicated hardware de-
vices, be it co-processors (e.g., FPGA-based) or hardware
accelerators accessible on the main bus (e.g., the Sun Cryp-
tographic Accelerator 6000 PCIe Card.) The latter approach
became especially popular for high volume web transac-
tions that needed to be encrypted via SSL.

This paper examines aspects of making the next step
in this evolution work, namely the use of dedicated
cryptographic hardware that’s part of multi-core system
CPUs. While the inclusion of cryptographic accelerator
functionality in the processor chip is not new, this paper
investigates the question how to transparently combine
such multi-core cryptographic processor support with
higher level software stacks.

1.1 The (Open)Solaris Cryptographic
Framework

The Solaris Cryptographic Framework (CF) (see [8])
provides cryptographic services to users and applications
through commands, a user-level programming interface, a



Figure 1. The(Open)Solaris Cryptographic Framework

kernel programming interface, and user-level and kernel-
level frameworks. The Cryptographic Framework provides
these services to applications and kernel modules in a man-
ner that is seamless to the end user, and brings direct crypto-
graphic services, such as file encryption and decryption, to
the end user. Figure 1 depicts the architecture of the frame-
work with its userland and kernel components.

The user-level framework is responsible for providing
cryptographic services to consumer applications and the
end user commands. The kernel-level framework pro-
vides cryptographic services to kernel modules and device
drivers. Both frameworks give developers and users access
to optimized cryptographic algorithms. The programming
interfaces are a front end to each framework. A library or a
kernel module that provides cryptographic services can be
plugged into one of the frameworks by the system adminis-
trator. This architecture makes the plug-in’s cryptographic
services available to applications or kernel modules. Us-
ing the Cryptographic Framework has many benefits. Ap-
plications and kernel services do not need to re-implement
complete cryptographic functions but can use existing im-

plementations, reducing code duplication and thereby re-
ducing the number of bugs. In addition, the cryptographic
implementations can be optimized for the available hard-
ware, including hardware accelerators. The resulting per-
formance benefits are directly available to the userland and
kernel services. Access to the framework in user space is
primarily through the PKCS#11 library.

1.2 The UltraSPARC cryptographic ac-
celerators

Starting with the introduction of Sun’s UltraSPARC T1
processor in 2004, Sun’s Chip Multi-Threaded (CMT) pro-
cessors (see [9]) have had hardware cryptographic accel-
erators integrated on-chip. The rationale for moving the
accelerators on-chip was not only the cost savings (no re-
quirement for an add-on accelerator card), but also, in an
attempt to reduce the high CPU utilization, I/O bandwidth,
and I/O latency overheads typically associated with off-chip
accelerator cards. These overheads tend to make the use
of off-chip cards problematic for the effective acceleration



of bulk ciphers, especially for small or moderately sized
packets. Employinghigh-performanceoff-chip accelera-
tors, using e.g., Hypertransport or Front-Side-Bus connec-
tivity, may help reduce some of these issues. However, re-
peatedly moving the data off and on chip is less efficient
than using on-chip accelerators that are tightly coupled with
the processor cores.

On the UltraSPARC T1, each of the processor’s eight
cores has an associated cryptographic accelerator that is
targeted at offloading (and accelerating) public-key crypto-
graphic operations. In essence, these accelerators, termed
modular arithmetic units (MAU), perform the modular ex-
ponentiation operations that lie at the heart of algorithms
such as RSA and Diffie-Hellman.

With the introduction of the UltraSPARC T2 in 2007, the
processor’s on-chip cryptographic support was further ex-
tended. Support for Elliptic Curve Cryptography (ECC) –
both prime and binary polynomial fields – was added to the
MAU. Additionally, a per-core unit to accelerate symmet-
ric ciphers (RC4, DES, 3DES, AES) and hash operations
(MD5, SHA-1, SHA-256) was also introduced. The two
sub-units can operate in parallel, such that each core’s ac-
celerator can concurrently perform, for example, a public-
key operation and a bulk cipher operation. These operations
also happen in parallel to instruction processing on the re-
mainder of the core. In other words, each core’s accelerator
can concurrently perform an RSA operation and an AES op-
eration, in addition to the 8 hardware threads per core that
can continue to execute unimpeded.

Interaction with the cipher/hash units is via memory-
based control word queues, with each core’s accelerator
having its own private queue. To offload an operation to the
accelerator, software inserts a control word at the end of the
queue and informs the accelerator of the update. The con-
trol word provides the accelerator with all the information
required to perform the requested operation, i.e., pointers
to src, dst, keys, IV’s and length information. As a result,
the accelerator is stateless, giving it maximum key agility,
an important feature in application spaces with thousands of
simultaneous connections (e.g., Secure Web, Secure VoIP).
Additionally, given this light-weight interface to the hard-
ware, the overheads associated with offloading an operation
to the accelerator can be small, allowing even operations
that take little time to be offloaded cost-effectively.

It is possible to interact with the accelerator in a syn-
chronous or an asynchronous manner, such that, if desired,
it is possible to perform other useful processing on the core
while the cryptographic operation is being performed on
the accelerator; this feature provides an additional levelof
parallelism that is not achieved when ISA customization is
used to achieve cryptographic acceleration.

Discrete on-chip accelerators can be particularly effec-
tive on CMT processors, where execution resources are

more limited and instruction-based cryptographic acceler-
ation may be a less compelling feature. Furthermore, there
is also the opportunity to tightly integrate discrete acceler-
ators with secure keystores (e.g., the PKCS#11 softtoken
keystore), ensuring that, unlike instruction-based accelera-
tion, sensitive key information does not need to reside in
easily accessible non-privileged user address spaces.

2 Transparent Hardware-accelerated Soft-
ware Stacks

The Niagara∗ T1 and T2 cryptographic drivers plug
into the Solaris Cryptographic Framework as hardware
providers. This approach makes them transparently ac-
cessible to any user of the Cryptographic Framework, in
both kernel and user space. From a user application per-
spective, the T2 cryptographic capabilities are accessible to
OpenSSL through the PKCS#11 engine shipped with the
Solaris Operating System, to Java, and to native PKCS#11
users given that the Cryptographic Framework supports all
of those APIs.

The user-level framework has two special plug-in shared
libraries: pkcs11kernel.so and pkcs11softtoken.so. The
pkcs11kernel.so shared library interacts with the kernel-
level framework to take advantage of hardware providers.
It uses the ioctl interface of the pseudo device driver,
/dev/crypto, to invoke operations in the kernel-level frame-
work. The pkcs11softtoken.so shared library provides a
software implementation of all standard cryptographic al-
gorithms.

The Cryptographic Framework offers a metaslot service
which gives a user transparent access to providers registered
on that system. A user of metaslot on a T2 system would use
the T2 cryptographic hardware for the algorithms which it
supports and another provider for those which the hardware
does not handle. In other words, the user-level framework
uses the pkcs11kernel.so library first, thus assuring that ap-
plications benefit from any hardware providers present on
the system. If no hardware providers are present, it uses
pkcs11softtoken.so plus any other plug-in library added by
the administrator.

The PKCS#11 API offered by the user-level framework
supports only a synchronous mode of operation. The API
offered by the kernel-level framework supports both syn-
chronous and asynchronous modes of operations. In the
asynchronous mode, the cryptographic operation is initiated
and control is returned to the caller. The cryptographic oper-
ation continues concurrently with other activity of the caller.
This mode is useful for callers in interrupt context.

The cryptographic hardware is accessed via a queue
interface. There are separate queues for each core as

∗Niagara is an alternate name for UltraSPARC processors.



well as for symmetric and asymmetric cryptographic algo-
rithms. As new requests come into the cryptographic driver,
they are enqueued on the appropriate core’s cryptographic
queue. The hardware processes requests in FIFO order,
and the requesting threads are notified when their jobs have
completed.

On larger, CMT systems, lock contention is an obvious
issue. To reduce contention, the cryptographic driver code
implements locking on a per core basis, which reduces con-
tention down to the 8 strands on that core. Having strands
on the same core vie for locks and resources is beneficial
in that they share the same caches, avoiding some cache
coherency issues that can occur otherwise. When crypto-
graphic requests arrive at the cryptographic drivers, the re-
quest is scheduled on a core by (i) using the core that thread
is currently running on (binding it to a CPU to avoid mi-
gration) or (ii) dispatching the request on a thread already
bound on a particular core. Both options guarantee that
the submitting thread is running on the desired core prior
to grabbing the per core resource related locks.

For asymmetric cryptographic requests, the ncp driver†

schedules requests in a round robin fashion across all cores.
The overhead of the cryptographic operation/computation
itself is significantly larger than the overhead to schedule
on a new core so this strategy improves performance by at-
tempting to use the engines in parallel. For symmetric cryp-
tographic workloads, requests are scheduled on the core that
the submitting thread is running on. In general, the over-
head to migrate the submitter from one core to another was
found to be larger than the time to process the requests.
The Solaris Operating System thread scheduling provides
as a side effect reasonable load balancing for cryptographic
workloads when assigning cryptographic requests to the ac-
celerator of the executing core. Attempts to try and improve
overall performance by additionally load balancing just the
cryptographic workloads across separate cores have been
unsuccessful. This result is in part because a thread can
only interact with the accelerator associated with the core
on which the thread is executing. Accordingly, while the
memory-based queue can be updated, it is necessary for a
hyperprivileged interprocessor interrupt (i.e., cross call) to
inform the remote accelerator of the update.

A Cryptographic Framework client can submit multiple
asynchronous cryptographic requests without waiting for
the completion of an earlier request. The Cryptographic
Framework internally maintains a pool of threads that han-
dle these requests in parallel. This architecture results in im-
proved throughput because each thread is typically sched-
uled on a separate core by the Solaris scheduler which re-
sults in each request being handled by a separate crypto-
graphic unit.

†The abbreviationncp stands for Niagara (i.e., T1) cryptographic
provider;n2cpfor Niagara 2 (i.e., T2) cryptographic provider.

2.1 Resisting side-channel attacks

Another advantage of using the UltraSPARC T2 hard-
ware accelerators is that many of the more practical side-
channel attacks are impossible. For instance, many cache-
based attacks are not feasible (no use of cache-based
lookup tables) and a number of timing attacks are simi-
larly thwarted (symmetric cipher performance is constant)
(see [2]). While timing attacks against RSA (see [3]) are
not eliminated, they are made more difficult, because the
decreased computation time and the timing vagaries intro-
duced by asynchronous operation make timing noise more
problematic for such attacks to succeed. While protection
against these attacks can be added in software if necessary,
there is typically a non-negligible performance penalty.

2.2 Accelerators and virtualization

On the UltraSPARC CMT processors, there are multiple
threads (4 on the T1, 8 on the T2) per core, and the core’s
hardware accelerator is shared between them. With vir-
tualization (Logical Domains (LDOMs) for SPARC), each
of these separate threads can be running a separate OS in-
stance. Accordingly, access to the accelerator is hyperpriv-
ileged. Currently, the software does not support sharing
a core’s accelerator between multiple domains. However,
as the accelerator is under the sole control of the Hypervi-
sor, secure sharing of the accelerator, with strictly enforced
per-domain QoS standards, could be introduced in future
versions of LDOMs – each OS has its own virtual copy of
the in-memory queue in privileged address space. The Hy-
pervisor maintains the single real version of the queue in
hyperprivileged space and copies requests from the virtual
queues into the real queue, facilitating sharing and QoS en-
forcement.

3 UltraSPARC T2 accelerator performance

The UltraSPARC T2 cryptographic accelerators operate
at the same frequency as the UltraSPARC cores (1.4GHz)
and each deliver up to 5.5Gb/s of AES-128 throughput (for
a total of 44Gb/s per processor). The accelerators request
data directly from the processors on-chip Level-2 cache,
and support multiple outstanding data requests, allowing
data to be streamed directly from DRAM memory without
performance impact. The peak performance delivered on
an 8-core processor for a variety of additional algorithms is
illustrated in Tables 1 and 2.

To put these numbers in perspective, a 2.7GHz quad-
core x64 processor is capable of delivering an aggregate of
4.2Gb/s of AES-128 throughput, when using all four cores.
This analysis illustrates the benefits of hardware crypto-
graphic acceleration, i.e., a 10-fold performance improve-



Algorithm Performance (Gb/s)
AES-128 44
AES-192 36
AES-256 31
3DES 27
RC4 83
MD5 41
SHA-1 32
SHA-256 41

Table 1. Aggregate performance delivered by
8 UltraSPARC T2 cryptographic accelerators
for bulk ciphers and secure hash operations

Algorithm Performance (sign operations / sec)
RSA-1024 37,000
ECCp-160 52,000
ECCb-163 92,000

Table 2. Aggregate performance delivered by
8 UltraSPARC T2 cryptographic accelerators
for public-key operations

ment when running at roughly half the clock speed. Further,
given the cryptographic processing is offloaded to the ac-
celerators on the T2 processor, there are still significant idle
CPU cycles available to perform useful processing with the
results from the cryptographic operations; this capacity is in
stark contrast to the situation with software cryptographic
processing on x64 processors, where 100% of cycles on all
4 cores are being utilized.

4 Harnessing Multiple Cores In Real Appli-
cations

There are a few things to consider when making the de-
cision about whether to use the Cryptographic Framework
(CF), and whether to harness multiple cryptographic cores.
Applications stand to benefit from using multiple crypto-
graphic cores, if, e.g., multiple instances of the application
(i.e., multiple processes) are running or if the application is
multi-threaded.

4.1 Repetitive Operations

The first question to address is which cryptographic op-
erations to offload to the CF and which operations to pro-
cess in independent software library implementations, such
as OpenSSL (see [5]) or NSS (see [4]). Obviously, there is

little benefit to offload rare operations, while there is a lot
of benefit to offload operations that are frequently repeated
by, e.g., running multiple instances of the same application.
The web server is an example of an application that can
greatly benefit from the offloading of public key crypto-
graphic operations, needed for SSL connection handshakes,
to the CF. A web server expects a large number of SSL con-
nections (that require RSA/DSA/DH operations) that may
be short lived and that may not process much data.

A typical example that won’t greatly benefit from speed-
ing up the public key cryptographic operations is an appli-
cation that implements the SSH protocol. Any SSH imple-
mentation uses such operations during the initial key ex-
change, possibly for the user authentication as well, and
sporadically during an optional key re-exchange. Addi-
tionally, SSH connections are often long lived. The over-
head of the initialization of an SSH connection is an order
of magnitude greater in comparison with the time needed
to generate a shared secret through the Diffie-Hellman key
exchange protocol plus several RSA/DSA signature opera-
tions. However, SSH data links can be used for backups or
large data transfers. In that case, offloading the symmetric
cryptographic operations and message digests may greatly
speed up the whole process. Figure 2 illustrates the execu-
tion time breakdown for the SPECweb05 banking bench-
mark on an UltraSPARC processor, without cryptographic
hardware support.

Figure 2. The execution time breakdown
for the SPECweb05 benchmark on an Ul-
traSPARC processor, without cryptographic
hardware support.



Additionally, given this light-weight interface to the
hardware, the overheads associated with offloading an op-
eration to the accelerator can be quite small, allowing even
short duration operations to be cost-effectively offloaded–
as illustrated in Figure 3.

Figure 3. Performance of the UltraSPARC T2
cryptographic accelerator for various object
sizes and ciphers.

These overheads tend to make use of off-chip cards prob-
lematic for the effective acceleration of bulk ciphers, espe-
cially for small or moderately sized packets (which can be
problematic, given the prevalence of these packet sizes in
some application spaces, as illustrated in Figure 4).

Figure 4. Size of server responses for
SPECweb05 banking benchmark.

4.2 Packet Size Matters

When processing symmetric cryptographic and digest
operations the important issue is the size of the data blocks

that are processed. The CF has its own overhead before
the data block is actually transferred to a hardware crypto-
graphic accelerator, and the accelerator itself has an over-
head that is not related to the data block size. There is a
break-even point for every algorithm that determines what
data block size is the size when the software library imple-
mentation is of the same speed as if offloading the block to
the CF.

There is a small example with the OpenSSL speed(1)
program. Tables 3 and 4 are used to illustrate how to deter-
mine the break-even point for the AES CBC mode with 128
bit keys. The comparison is for the use of OpenSSL either
via the native AES implementation built with the Sun Stu-
dio compiler or via the cryptographic operations offloaded
to the CF through the PKCS#11 engine‡ on an UltraSPARC
T5220 machine.

According to these experiments a number of observa-
tions can be made. The break-even point for AES CBC
mode with 128 bit key is between 384 and 512 bytes. Pro-
cessing of 16 byte data blocks using the CF is an order
of magnitude slower than using the native OpenSSL AES
code. Finally, the operational overhead of the Crypto-
graphic Framework on small data blocks is what determines
the overall time spent.

Transferring large amounts of data is the only situation
when the CF can help with respect to symmetric cryp-
tographic and digest operations. The size of packets or
processed blocks of data is usually far enough behind the
break-even point for such algorithms. However, which
blocks are processed through the cryptographic operations
may not be immediately clear without detailed knowledge
of the underlying protocols and algorithms used. The
SSH protocol version 2 encrypts the packet length as well.
Therefore, on the receiving side the first cipher block needs
to be decrypted to obtain the length of the additional data
that are to be read before the MAC checksum can be com-
puted. If a 512 byte long SSH packet is decrypted with
two operations, the OpenSSL speed’s output above demon-
strates that the time spent in those cryptographic operations
is roughly twice the time spent for the decryption of the
whole 512 byte data block at once.

4.3 Not All Cryptographic Operations
Can Be Parallelized

In an SSH application using multiple threads to encrypt
and decrypt transferred data in parallel data chunks need
to be processed independently. This requirement cannot
be satisfied in one of the most widely used cipher mode

‡PKCS#11engine: the OpenSSL PKCS#11 engine serves as a liaison
between OpenSSL and the CF so that existing applications using OpenSSL
can, with minimal changes, make use of the CF hardware providers. How
exactly the PKCS#11 engine works is out of the scope of this paper, see
[7], [6], and [1] for more information.



$ openssl speed -evp aes-128-cbc
Doing aes-128-cbc for 3s on 16 size blocks: 2288268 aes-128-cbc’s in 2.99s
Doing aes-128-cbc for 3s on 64 size blocks: 703001 aes-128-cbc’s in 3.00s
Doing aes-128-cbc for 3s on 256 size blocks: 186333 aes-128-cbc’s in 3.00s
Doing aes-128-cbc for 3s on 384 size blocks: 125058 aes-128-cbc’s in 3.00s
Doing aes-128-cbc for 3s on 512 size blocks: 94113 aes-128-cbc’s in 3.00s
Doing aes-128-cbc for 3s on 640 size blocks: 75442 aes-128-cbc’s in 3.00s
Doing aes-128-cbc for 3s on 768 size blocks: 62952 aes-128-cbc’s in 3.00s
...

Table 3. Performance of native T2 AES CBC mode with 128 bit keys.

$ openssl speed -evp aes-128-cbc -engine pkcs11 -elapsed
Doing aes-128-cbc for 3s on 16 size blocks: 121829 aes-128-cbc’s in 2.99s
Doing aes-128-cbc for 3s on 64 size blocks: 120523 aes-128-cbc’s in 3.00s
Doing aes-128-cbc for 3s on 256 size blocks: 116682 aes-128-cbc’s in 3.00s
Doing aes-128-cbc for 3s on 384 size blocks: 113612 aes-128-cbc’s in 3.00s
Doing aes-128-cbc for 3s on 512 size blocks: 109206 aes-128-cbc’s in 3.00s
Doing aes-128-cbc for 3s on 640 size blocks: 105578 aes-128-cbc’s in 3.00s
Doing aes-128-cbc for 3s on 768 size blocks: 102965 aes-128-cbc’s in 3.00s
...

Table 4. Performance of T2 AES CBC with 128 bit keys accessed through the PKCS11 interface.

currently used, cipher block chaining (CBC). Using CBC,
every block depends on the previously encrypted cipher
block, making parallelization impossible. However, another
widely used cipher mode is the counter mode (CTR). This
mode encrypts successive values of a counter, and the re-
sulting data stream is xor’ed with the data to be transferred.
Since the counter is predictable one can generate and en-
crypt different parts of the same counter sequence indepen-
dently, enabling the ability to take advantage of multiple
cryptographic cores.

Using the counter mode can also help with the problem
of decrypting the packet length cipher block before decrypt-
ing the rest of the packet, which uses two CF operations. In
counter mode, the counter sequence can be decrypted in ad-
vance in large data chunks, reducing the overhead of the CF
operation.

4.4 SSH/SCP/SFTP With the Crypto-
graphic Framework Support

The SCP and SFTP protocols implemented in SunSSH
(see [10]) use SSH transfer to transfer data and do not per-
form any cryptographic operations themselves. Therefore,
the cryptographic operations issued by the SSH client and
SSH server are all that matter. The SunSSH client and
server already make use of the OpenSSL PKCS#11 engine
(see [1]) through which the CF hardware providers can be
used. Our tests show that the speed transfer on UltraSPARC

T2 machines dropped to roughly 40% of the baseline mea-
surement, a 2.5-fold speed-up. SunSSH with the PKCS#11
engine support is available as opensource, with the latest
OpenSolaris distribution, and is planned to be delivered
with the upcoming Solaris 10 Update 7 release as well.

The next step is to add multi-threading support which
should get further speed gains. SunSSH already uses AES
CTR mode as the default mode. Once the multi-threaded
support is available, even connections made by older Sun-
SSH clients will benefit from parallelism on the server side,
because clients select their cipher mode from the list of ci-
phers offered by the server.

4.5 AES-CTR performance through the
CF with the PKCS#11 API

The peak numbers (see Table 1) for the hardware cores
represent the maximum performance. However, more im-
portant from the developer’s point of view is how much
data can be processed by her code. This capacity can
be illustrated writing a simple application written with the
PKCS#11 API, using AES-CTR with all 128/192/256 bit
keys. AES with CBC gives the same result, the actual mode
of operation make no difference in this example. The appli-
cation starts a given number of threads, with every thread
initializing the encryption with the CEncryptInit call, fol-
lowing by multiple CEncryptUpdate operations. Every
thread performs 50000 operations with 16KB data buffer.



Figure 5. Performance of AES in CTR mode
with varying keys sizes and number of appli-
cation threads.

To avoid unnecessary overhad the application does not gen-
erate or read any data. The buffer is filled with random data.

The tests was run 10 times for each key length and the
results displayed in Figure 5 are the average of all the test
runs for the respective key length. The test machine was Ul-
traSPARC T5120 with 8 cores installed with Solaris Nevada
106. It took 50 threads to get to the peak of roughly 37, 32,
and 27 Gbit/sec (4.6, 4, and 3.4 GB/sec) of data encrypted.
There were no attempts to further tune the application or
the system to find out whether the peak is the maximum
data throughput that can be achieved from the application
linked to the libpkcs11 library.

5 Conclusions

Based on its consumer-provider architecture, the Solaris
Cryptographic Framework is an ideal candidate to present
how multi-core functionality can be provided transparently
to applications, in both the user space as well as the kernel
of a commodity operating system. Multi-Core hardware-
accelerated cryptographic functions, as available in the Ul-
traSPARC T1 and T2 processor family, plug into this frame-
work as providers from below. Depending on the func-
tions provided they can be accessed synchronously or asyn-
chronously.

We presented just how the multi-core functionality can
be hidden, yet yield tremendous performance gains, as wit-
nessed by our algorithmic performance characterization and
our analysis of ssh, scp, and sftp performance, with or with-
out the use of PKCS#11 interfaces.

Interesting work remains to be done. E.g., while our ap-
proach utilizes the hardware support in a stateless mode,
maintaining state in the cryptographic cores could lend it-
self to higher performance. This gain would come at the
cost of less scheduling flexibility under the requirement to
maintain strict data separation. In future hardware, pro-
viding the ability to remotely launch operations on other
core’s accelerators, would make it much easier for software
to load balance operations across accelerators, and could
even make distributing single operations (e.g., large ECB or
CTR operations) across accelerators an interesting option.

Acknowledgments

The authors would like to thank the anonymous review-
ers for their valuable comments. Thanks also to the authors
of the documentation for the Solaris Cryptographic Frame-
work who generously gave us text for introducing the archi-
tecture of the (Open)Solaris Cryptographic Framework in
section 1.1.

References

[1] engine(3), OpenSSL’s manual page for ENGINE crypto-
graphic module support.

[2] D. J. Bernstein. Cache-timing attacks on aes. Technical
report, 2005.

[3] P. C. Kocher. Timing attacks on implementations of die-
hellman, rsa, dss, and other systems. pages 104–113.
Springer-Verlag, 1996.

[4] Netscape Corp. NSS, the Network Security Services,
http://www.mozilla.org/projects/security/pki/nss.

[5] OpenSSL. The open source toolkit for SSL/TLS,
http://www.openssl.org.

[6] Pechanec, Jan and Schuba, Christoph and Phalan, Mark.
New Security Features in OpenSolaris and Beyond. In
Proceedings of OpenSolaris Developer Conference, Prague,
Czech Republic, 2008.

[7] RSA Laboratories. PKCS11: Cryptographic Token Interface
Standard, http://www.rsa.com/rsalabs/pkcs.

[8] P. Sangster, V. Bubb, and K. Belgaied. The Solaris Cryp-
tographic Framework. InBigAdmin System Administration
Portal, 2005.

[9] L. Spracklen and S. Abraham. Chip Multithreading: Op-
portunities and Challenges. InProceedings of the11th

Int’l Symposium on High-Performance Computer Architec-
ture (HPCA-11), 2005.

[10] Sun Microsystems, Inc. SunSSH,
http://www.opensolaris.org/os/community/security/projects/
SSH.


