Transparent Multi-core Cryptographic Support on Niagara CM T Processor s

James Hughes, Gary Morton, Jan Pechanec,
Christoph Schuba, Lawrence Spracklen, and Bhargava Yendur

Sun Microsystems, Inc.
10 Network Circle
Menlo Park, CA 95025 — USA
{Fi r st narme. Last nanme }@un. COM

Abstract electronic commerce. The ability for a web server to main-
tain and communicate concurrently over thousands of SSL
How cryptographic functionality has been implemented sessions is a recurring requirement. Even enterprises with
and made available in application scenarios has evolved out these levels of workload are interested in making sure
over time. Pure software implementations were the obvioustheir infrastructure can scale when faced with success and
first choice, followed by dedicated hardware devices, be it rapid growth or the need to temporarily accommodate flash
co-processors or hardware accelerators accessible on thecrowds. There are other applications scenarios with simi-
main bus. lar characteristics in the context of encrypted transastio
This paper examines aspects of making the next step iror encrypted storage. These examples apply in industries
this evolution work, namely the use of dedicated crypto- beyond government, such as the health care or telecommu-
graphic hardware that's part of multi-core system CPUs. nications industries.
While the inclusion of cryptographic accelerator function How cryptographic functionality has been implemented
ality in the processor chip is not new, this paper investi- and made available in such application scenarios has
gates the question of how to transparently combine suchevolved over time. Pure software implementations were the
multi-core cryptographic processor support with higher obvious first choice, followed by dedicated hardware de-
level software stacks in a commodity operating system thatvices, be it co-processors (e.g., FPGA-based) or hardware
also needs to perform well if such hardware support is not accelerators accessible on the main bus (e.g., the Sun Cryp-
present. tographic Accelerator 6000 PCle Card.) The latter approach
We explore this question in the context of the Ultra- became especially popular for high volume web transac-
SPARC T1 and T2 processor family, Chip Multi-Threaded tions that needed to be encrypted via SSL.
(CMT) processors that have hardware cryptographic accel- This paper examines aspects of making the next step
erators integrated on-chip with 8-core support for symmet- in this evolution work, namely the use of dedicated
ric and asymmetric cryptographic and secure hash opera- cryptographic hardware that's part of multi-core system
tions. The paper presents how a software infrastructure, CPUs. While the inclusion of cryptographic accelerator
the Solaris Cryptographic Framework, transparently takes functionality in the processor chip is not new, this paper
advantage of these chip features and presents a brief cominvestigates the question how to transparently combine
parative study of their performance. such multi-core cryptographic processor support with
higher level software stacks.

1 Introduction

_ _ _ 1.1 The (Open)Solaris Cryptographic
High performance and high security cryptography has Framework

moved from obscure government requirements to main-

stream machines with the killer application being scalable 1o soaris Cryptographic Framework (CF) (see [8])

*Published at the Second International Workshop on MukicBoft- provides cryptographic services to users a'."d a_lpplications
ware Engineering (IWMSEOQ9), Vancouver, Canada, May 2009. through commands, a user-level programming interface, a

Application @

kermel
libpkes11.s0 || Module cryplo
verification library dasman
| Pluggable cryptoadm
’7 interface —‘
|
Third-party Hardware
and Software pkes11_kernel.so phes11_softtoken.so
pluggable tokens
Userland /devicrypto /devicryploadm
————————————— pseudo-device jp=m =t =======l". pseudo-device B ==
Kernel driver driver
1
Scheduler/ : :
load balancer Service provider
interface
Kernel
IPsec 3 programmer Sun Hardware
interface and Software

crypto providers

Kerberos Other kernel
GSS5 Mechanism cryplo consumers

Third-party Third-party
Hardware Software
crypto providers crypto providers

[Private components
[User portion of cryptographic framework

D Kernel portion of cryptographic framework

Figure 1. The(Open)Solaris Cryptographic Framework

kernel programming interface, and user-level and kernel- plementations, reducing code duplication and thereby re-
level frameworks. The Cryptographic Framework provides ducing the number of bugs. In addition, the cryptographic
these services to applications and kernel modules in a manimplementations can be optimized for the available hard-
ner that is seamless to the end user, and brings direct eryptoware, including hardware accelerators. The resulting per-
graphic services, such as file encryption and decryption, toformance benefits are directly available to the userland and
the end user. Figure 1 depicts the architecture of the frame-kernel services. Access to the framework in user space is
work with its userland and kernel components. primarily through the PKCS#11 library.

The user-level framework is responsible for providing .
cryptographic services to consumer applications and thel-2 The UltraSPARC cryptographic ac-
end user commands. The kernel-level framework pro- celerators
vides cryptographic services to kernel modules and device
drivers. Both frameworks give developers and users access Starting with the introduction of Sun’s UltraSPARC T1
to optimized cryptographic algorithms. The programming processor in 2004, Sun’s Chip Multi-Threaded (CMT) pro-
interfaces are a front end to each framework. A library or a cessors (see [9]) have had hardware cryptographic accel-
kernel module that provides cryptographic services can beerators integrated on-chip. The rationale for moving the
plugged into one of the frameworks by the system adminis- accelerators on-chip was not only the cost savings (no re-
trator. This architecture makes the plug-in’s cryptogiaph quirement for an add-on accelerator card), but also, in an
services available to applications or kernel modules. Us-attempt to reduce the high CPU utilization, 1/0 bandwidth,
ing the Cryptographic Framework has many benefits. Ap- and I/O latency overheads typically associated with offich
plications and kernel services do not need to re-implementaccelerator cards. These overheads tend to make the use
complete cryptographic functions but can use existing im- of off-chip cards problematic for the effective acceleyati

of bulk ciphers, especially for small or moderately sized more limited and instruction-based cryptographic aceeler
packets. Employindnigh-performanceoff-chip accelera- ation may be a less compelling feature. Furthermore, there
tors, using e.g., Hypertransport or Front-Side-Bus connec is also the opportunity to tightly integrate discrete aecel
tivity, may help reduce some of these issues. However, re-ators with secure keystores (e.g., the PKCS#11 softtoken
peatedly moving the data off and on chip is less efficient keystore), ensuring that, unlike instruction-based aeel
than using on-chip accelerators that are tightly coupleéd wi tion, sensitive key information does not need to reside in
the processor cores. easily accessible non-privileged user address spaces.

On the UltraSPARC T1, each of the processor’s eight
cores has an asspciated cryptographic acc_elerator that i9 Transparent Hardware-accelerated Soft-
targeted at offloading (and accelerating) public-key arypt ware Stacks
graphic operations. In essence, these accelerators,derme
modular arithmetic units (MAU), perform the modular ex-))]
ponentiation operations that lie at the heart of algorithms ~ The Niagara T1 and T2 cryptographic drivers plug
such as RSA and Diffie-Hellman. into the Solaris Cryptographic Framework as hardware
With the introduction of the UltraSPARC T2 in 2007, the provi_ders. This approach makes them _transparently ac-
processor’s on-chip cryptographic support was further ex- cessible to any user of the Cryptographic Framework, in

tended. Support for Elliptic Curve Cryptography (ECC) — both I_<ernel and user space. From a user application per-
both prime and binary polynomial fields — was added to the spective, the T2 cryptographic capabilities are accessibl

MAU. Additionally, a per-core unit to accelerate symmet- OPENSSL through the PKCS#11 engine shipped with the
fic ciphers (RC4, DES, 3DES, AES) and hash operationssc’lar's Operating System, to Java, and to native PKCS#11

(MD5, SHA-1, SHA-256) was also introduced. The two users given that the Cryptographic Framework supports all
of those APIs.

sub-units can operate in parallel, such that each core’s ac- . .
The user-level framework has two special plug-in shared

celerator can concurrently perform, for example, a public- o
key operation and a bulk cipher operation. These operationdiPraries: pkcslkernel.so and pkesldofitoken.so. The

also happen in parallel to instruction processing on the re-Pkcsllkernel.so shared library interacts with the ke_rnel-
mainder of the core. In other words, each core’s acceleratorl€Ve! framework to take advantage of hardware providers.

can concurrently perform an RSA operation and an AES op- It uses the ioctl interface of the pseudo device driver,

eration, in addition to the 8 hardware threads per core that/d€V/Crypto, to invoke operations in the kernel-level feam
can continue to execute unimpeded. work. The pkcslisofttoken.so shared library provides a

Interaction with the cipher/hash units is via memory- ng?;es implementation of all standard cryptographic al-
based control word queues, with each core’s accelerator® Th C. ¢ hic F K off taslot .
having its own private queue. To offload an operation to the € Lryptographic Framework ofiers a metasiol service

accelerator, software inserts a control word at the endeof th which gives a user transparent access to providers regfister

gueue and informs the accelerator of the update. The conon that system. A user of metaslot on a T2 system would use

trol word provides the accelerator with all the information the T2 tcrypt(;)grarmlc hard_/(\;aref fo:hthe algr?rl;c]htrﬁs xv h|(;:h It
required to perform the requested operation, i.e., panter zuppor st:;n (zjalno | er 5:0\” erdor thosew IIC I? ar Warke
to src, dst, keys, IV's and length information. As a result, 0€s not handie. In other words, the user-level framewor

the accelerator is stateless, giving it maximum key agility uses the pkcslkernel.so library first, thus assuring that ap-

an important feature in application spaces with thousahds o {or:lcatlor:s benlfeflt frr(]) m dany hardw%re providers prets_etnt on
simultaneous connections (e.g., Secure Web, Secure \oIP). ke Sﬁ erfr:t. K no alr ware ptrr(])VI Trs r_:lrel_bpresend,dl dut')ses
Additionally, given this light-weight interface to the lthr pKCS1LSOTOkeN.So plus any other piug-in library added by

: : . . the administrator.
ware, the overheads associated with offloading an operatlont
to the accelerator can be small, allowing even operations The PKCS#11 AP offered by the user-level framework

that take little time to be offloaded cost-effectively. supports only a synchronous mode of operation. The API
. offered by the kernel-level framework supports both syn-
It is possible to interact with the accelerator in a syn- .
. .~ chronous and asynchronous modes of operations. In the
chronous or an asynchronous manner, such that, if desired . L
o . . asynchronous mode, the cryptographic operation is ietfiat
it is possible to perform other useful processing on the core . .
while the cryptographic operation is being performed on and control is returned to the caller. The cryptographicope
the accelerator; this feature provides an additional letel ation continues concurrently with other activity of theleal
) '~ This mode is useful for callers in interrupt context.
parallelism that is not achieved when ISA customization is ; .)
used to achieve cryptographic acceleration The cryptographic hardware is accessed via a queue
i) L interface. There are separate queues for each core as
Discrete on-chip accelerators can be particularly effec-
tive on CMT processors, where execution resources are *Niagarais an alternate name for UltraSPARC processors.

well as for symmetric and asymmetric cryptographic algo- 2.1 Resisting side-channel attacks
rithms. As new requests come into the cryptographic driver,
they are enqueued on the appropriate core’s cryptographic Another advantage of using the UltraSPARC T2 hard-
gueue. The hardware processes requests in FIFO ordewvare accelerators is that many of the more practical side-
and the requesting threads are notified when their jobs havechannel attacks are impossible. For instance, many cache-
completed. based attacks are not feasible (no use of cache-based
On larger, CMT systems, lock contention is an obvious lookup tables) and a number of timing attacks are simi-
issue. To reduce contention, the cryptographic driver codelarly thwarted (symmetric cipher performance is constant)
implements locking on a per core basis, which reduces con-(see [2]). While timing attacks against RSA (see [3]) are
tention down to the 8 strands on that core. Having strandsnot eliminated, they are made more difficult, because the
on the same core vie for locks and resources is beneficialdecreased computation time and the timing vagaries intro-
in that they share the same caches, avoiding some cachduced by asynchronous operation make timing noise more
coherency issues that can occur otherwise. When cryptoproblematic for such attacks to succeed. While protection
graphic requests arrive at the cryptographic drivers, éhe r against these attacks can be added in software if necessary,
guest is scheduled on a core by (i) using the core that threadhere is typically a non-negligible performance penalty.
is currently running on (binding it to a CPU to avoid mi-
gration) or (ii) dispatching the request on a thread already2.2 Accelerators and virtualization
bound on a particular core. Both options guarantee that
the submitting thread is running on the desired core prior On the UltraSPARC CMT processors, there are multiple
to grabbing the per core resource related locks. threads (4 on the T1, 8 on the T2) per core, and the core’s
For asymmetric cryptographic requests, the ncp driver hardware accelerator is shared between them. With vir-
schedules requests in a round robin fashion across all.coregualization (Logical Domains (LDOMs) for SPARC), each
The overhead of the cryptographic operation/computationof these separate threads can be running a separate OS in-
itself is significantly larger than the overhead to schedule stance. Accordingly, access to the accelerator is hyperpri
on a new core so this strategy improves performance by atleged. Currently, the software does not support sharing
tempting to use the engines in parallel. For symmetric cryp- a core’s accelerator between multiple domains. However,
tographic workloads, requests are scheduled on the cdre thaas the accelerator is under the sole control of the Hypervi-
the submitting thread is running on. In general, the over- sor, secure sharing of the accelerator, with strictly exéfdr
head to migrate the submitter from one core to another wasper-domain QoS standards, could be introduced in future
found to be larger than the time to process the requestsversions of LDOMs — each OS has its own virtual copy of
The Solaris Operating System thread scheduling providesthe in-memory queue in privileged address space. The Hy-
as a side effect reasonable load balancing for cryptogeaphi pervisor maintains the single real version of the queue in
workloads when assigning cryptographic requests to the ac-hyperprivileged space and copies requests from the virtual
celerator of the executing core. Attempts to try and improve queues into the real queue, facilitating sharing and QoS en-
overall performance by additionally load balancing jugt th forcement.
cryptographic workloads across separate cores have been
unsu_ccessful. _This result is in part bec_:ause a thread can3 UltraSPARC T2 acceler ator perfor mance
only interact with the accelerator associated with the core

on which the thread is executing. Accolrd_lngly, while the The UltraSPARC T2 cryptographic accelerators operate
memory-based queue can be updated, it is necessary for a

hyperprivileged interprocessor interrupt (i.e., crosé) ¢a at the same frequency as the UltraSPARC cores (1.4GHz)
inxligrmpthe rgmote ac?:elerator of the ugdat'e', and each deliver up to 5.5Gb/s of AES-128 throughput (for

: . . . a total of 44Gb/s per processor). The accelerators request
A Cryptographic Framework client can submit multiple . .
. . o data directly from the processors on-chip Level-2 cache,

asynchronous cryptographic requests without waiting for . : .

. . - and support multiple outstanding data requests, allowing
the completion of an earlier request. The Cryptographic . :

! L data to be streamed directly from DRAM memory without
Framework internally maintains a pool of threads that han-

.) . . erformance impact. The peak performance delivered on
dle these requests in parallel. This architecture resuits- P P peaxp . .)
an 8-core processor for a variety of additional algorithes i

proved throughput because each thread is typically SChed'iIIustrated in Tables 1 and 2.

uled on a separate core by the Solaris scheduler which re- To put these numbers in perspective, a 2.7GHz quad-

;l::;hlir; S?Eh request being handled by a separate CIYPLO e x64 processor is capable of delivering an aggregate of

4.2Gb/s of AES-128 throughput, when using all four cores.
TThe abbreviationncp stands for Niagara (ie., T1) cryptographic | hiS e}naIyS|s '”U.Strat(?s the benefits of hardwar? crypto-
provider;n2cpfor Niagara 2 (i.e., T2) cryptographic provider. graphic acceleration, i.e., a 10-fold performance improve

Algorithm Performancg (Gb/s)
AES-128 44
AES-192 36
AES-256 31
3DES 27
RC4 83
MD5 41
SHA-1 32
SHA-256 41

Table 1. Aggregate performance delivered by
8 UltraSPARC T2 cryptographic accelerators
for bulk ciphers and secure hash operations

Algorithm Performancg (sign operations / sec)
RSA-1024 37,000
ECCp-160 52,000
ECCb-163 92,000

Table 2. Aggregate performance delivered by
8 UltraSPARC T2 cryptographic accelerators
for public-key operations

ment when running at roughly half the clock speed. Further,
given the cryptographic processing is offloaded to the ac-
celerators on the T2 processor, there are still significHat i
CPU cycles available to perform useful processing with the
results from the cryptographic operations; this capasity i
stark contrast to the situation with software cryptographi
processing on x64 processors, where 100% of cycles on all
4 cores are being utilized.

4 Harnessing Multiple Cores In Real Appli-
cations

There are a few things to consider when making the de-
cision about whether to use the Cryptographic Framework
(CF), and whether to harness multiple cryptographic cores.
Applications stand to benefit from using multiple crypto-
graphic cores, if, e.g., multiple instances of the appiicat
(i.e., multiple processes) are running or if the applicat®
multi-threaded.

4.1 Repetitive Operations

The first question to address is which cryptographic op-
erations to offload to the CF and which operations to pro-
cess in independent software library implementationd) suc
as OpenSSL (see [5]) or NSS (see [4]). Obviously, there is

little benefit to offload rare operations, while there is a lot
of benefit to offload operations that are frequently repeated
by, e.g., running multiple instances of the same applicatio
The web server is an example of an application that can
greatly benefit from the offloading of public key crypto-
graphic operations, needed for SSL connection handshakes,
to the CF. A web server expects a large number of SSL con-
nections (that require RSA/DSA/DH operations) that may
be short lived and that may not process much data.

A typical example that won't greatly benefit from speed-
ing up the public key cryptographic operations is an appli-
cation that implements the SSH protocol. Any SSH imple-
mentation uses such operations during the initial key ex-
change, possibly for the user authentication as well, and
sporadically during an optional key re-exchange. Addi-
tionally, SSH connections are often long lived. The over-
head of the initialization of an SSH connection is an order
of magnitude greater in comparison with the time needed
to generate a shared secret through the Diffie-Hellman key
exchange protocol plus several RSA/DSA signature opera-
tions. However, SSH data links can be used for backups or
large data transfers. In that case, offloading the symmetric
cryptographic operations and message digests may greatly
speed up the whole process. Figure 2 illustrates the execu-
tion time breakdown for the SPECweb05 banking bench-
mark on an UltraSPARC processor, without cryptographic
hardware support.

I vos

RC4

RSA

:. Handshake (non-RSA)

Non SSL

Execution time (AU)

Banking

Figure 2. The execution time breakdown
for the SPECweb05 benchmark on an Ul-
traSPARC processor, without cryptographic
hardware support.

Additionally, given this light-weight interface to the that are processed. The CF has its own overhead before
hardware, the overheads associated with offloading an opthe data block is actually transferred to a hardware crypto-
eration to the accelerator can be quite small, allowing evengraphic accelerator, and the accelerator itself has an over
short duration operations to be cost-effectively offloaded head that is not related to the data block size. There is a
as illustrated in Figure 3. break-even point for every algorithm that determines what
data block size is the size when the software library imple-
mentation is of the same speed as if offloading the block to

[O DESCBC - AES128 CBC ¥=\DS =30ES CEC |

i ﬁ/'@ the CF.

o0 o, —0o 50 There is a small example with thg OpenSSL speed(1)
S 70 O program. Tables 3 and 4 are used to illustrate how to deter-
g 60 o mine the break-even point for the AES CBC mode with 128
g 50 . bit keys. The comparison is for the use of OpenSSL either
F 404 & via the native AES implementation built with the Sun Stu-
5 303 5 dio compiler or via the cryptographic operations offloaded
£ 20 to the CF through the PKCS#11 engirmm an UltraSPARC

10 T5220 machine.

0 T T T T T T T T |
128 256 512 1024 2048 4096 8192 16384 32768 65536
Object size, bytes

According to these experiments a number of observa-
tions can be made. The break-even point for AES CBC
mode with 128 bit key is between 384 and 512 bytes. Pro-
cessing of 16 byte data blocks using the CF is an order

Figure 3. Performance of the UltraSPARC T2
cryptographic accelerator for various object
sizes and ciphers.

of magnitude slower than using the native OpenSSL AES
code. Finally, the operational overhead of the Crypto-
graphic Framework on small data blocks is what determines

the overall time spent.

. Transferring large amounts of data is the only situation
These overheads tend to make use of off-chip cards prob- g'arg y

| tic for the effecti lerati f bulk ciph when the CF can help with respect to symmetric cryp-
ematic Tor Ine efiective acceleration of bulK CIphers, €sp tographic and digest operations. The size of packets or
cially for small or moderately sized packets (which can be

S i - processed blocks of data is usually far enough behind the
problemat|.c, given the preva!ence of these_ packet sizes yreak-even point for such algorithms. However, which
some application spaces, as illustrated in Figure 4). blocks are processed through the cryptographic operations

100 may not be immediately clear without detailed knowledge
90 of the underlying protocols and algorithms used. The
80 - SSH protocol version 2 encrypts the packet length as well.

2501 Therefore, on the receiving side the first cipher block needs
é 60 - to be decrypted to obtain the length of the additional data
G that are to be read before the MAC checksum can be com-
8 onl puted. If a 512 byte long SSH packet is decrypted with
830 two operations, the OpenSSL speed’s output above demon-

strates that the time spent in those cryptographic op&stio
is roughly twice the time spent for the decryption of the
whole 512 byte data block at once.

0 T T T T

0 10000 20000 30000 40000
Object size (bytes)

4.3 Not All Cryptographic Operations
Can Be Parallelized

In an SSH application using multiple threads to encrypt
and decrypt transferred data in parallel data chunks need
to be processed independently. This requirement cannot
be satisfied in one of the most widely used cipher mode

Figure 4. Size of server responses for
SPECweb05 banking benchmark.

fPKCS#11engine the OpenSSL PKCS#11 engine serves as a liaison
between OpenSSL and the CF so that existing applicationg @penSSL
. . . . can, with minimal changes, make use of the CF hardware peovidHow
When processing symmetric cryptographic and digest eyactly the PKCS#11 engine works is out of the scope of thipasee

operations the important issue is the size of the data blockg7], [6], and [1] for more information.

4.2 Packet Size Matters

$ openssl speed -evp aes-128-cbc

Doing aes-128-cbc for 3s on 16 size blocks: 2288268 aesh28-in 2.99s
Doing aes-128-cbc for 3s on 64 size blocks: 703001 aes-b28-in 3.00s
Doing aes-128-cbc for 3s on 256 size blocks: 186333 aesh28-in 3.00s
Doing aes-128-cbc for 3son 384 size blocks: 125058 aes-128-cbc’sin 3.00s
Doing aes-128-cbc for 3son 512 size blocks: 94113 aes-128-cbc’sin 3.00s
Doing aes-128-cbc for 3s on 640 size blocks: 75442 aes-b28-in 3.00s
Doing aes-128-cbc for 3s on 768 size blocks: 62952 aes-b28-in 3.00s

Table 3. Performance of native T2 AES CBC mode with 128 bit keys.

$ openssl speed -evp aes-128-chc -engine pkcsll -elapsed

Doing aes-128-cbc for 3s on 16 size blocks: 121829 aes-b28-in 2.99s
Doing aes-128-cbc for 3s on 64 size blocks: 120523 aes-b28-in 3.00s
Doing aes-128-chc for 3s on 256 size blocks: 116682 aesztbh28-in 3.00s
Doing aes-128-cbc for 3son 384 size blocks: 113612 aes-128-cbc’sin 3.00s
Doing aes-128-cbc for 3son 512 size blocks: 109206 aes-128-cbc’sin 3.00s
Doing aes-128-cbc for 3s on 640 size blocks: 105578 aesh28-in 3.00s
Doing aes-128-cbc for 3s on 768 size blocks: 102965 aesh28-in 3.00s

Table 4. Performance of T2 AES CBC with 128 bit keys accessed through the PKCS11 interface.

currently used, cipher block chaining (CBC). Using CBC, T2 machines dropped to roughly 40% of the baseline mea-
every block depends on the previously encrypted ciphersurement, a 2.5-fold speed-up. SunSSH with the PKCS#11
block, making parallelization impossible. However, amoth engine support is available as opensource, with the latest
widely used cipher mode is the counter mode (CTR). This OpenSolaris distribution, and is planned to be delivered
mode encrypts successive values of a counter, and the rewith the upcoming Solaris 10 Update 7 release as well.
sulting data stream is xor'ed with the data to be transferred The next step is to add multi-threading support which
Since the counter is predictable one can generate and enshould get further speed gains. SunSSH already uses AES
crypt different parts of the same counter sequence indepenCTR mode as the default mode. Once the multi-threaded
dently, enabling the ability to take advantage of multiple support is available, even connections made by older Sun-
cryptographic cores. SSH clients will benefit from parallelism on the server side,
Using the counter mode can also help with the problem because clients select their cipher mode from the list of ci-
of decrypting the packet length cipher block before decrypt phers offered by the server.
ing the rest of the packet, which uses two CF operations. In
counter mode, the counter sequence can be decryptedin adt.5 AES-CTR performance through the
vance in large data chunks, reducing the overhead of the CF CF with the PKCS+#11 API
operation.
The peak numbers (see Table 1) for the hardware cores
4.4 SSH/SCP/SFTP With the Crypto- represent the maximum performance. However, more im-
graphic Framework Support portant from the developer’s point of view is how much
data can be processed by her code. This capacity can
The SCP and SFTP protocols implemented in SunSSHbe illustrated writing a simple application written witheth
(see [10]) use SSH transfer to transfer data and do not perPKCS#11 API, using AES-CTR with all 128/192/256 bit
form any cryptographic operations themselves. Therefore,keys. AES with CBC gives the same result, the actual mode
the cryptographic operations issued by the SSH client andof operation make no difference in this example. The appli-
SSH server are all that matter. The SunSSH client andcation starts a given number of threads, with every thread
server already make use of the OpenSSL PKCS#11 enginénitializing the encryption with the Encryptlinit call, fol-
(see [1]) through which the CF hardware providers can belowing by multiple CEncryptUpdate operations. Every
used. Our tests show that the speed transfer on UltraSPARGhread performs 50000 operations with 16KB data buffer.

Performance

il

40

32

24

Performance Gb/s

i

16 24

Threads

32 40 48

-+ 128 bit key = 192 bit key 265 bit key

Figure 5. Performance of AES in CTR mode
with varying keys sizes and number of appli-
cation threads.

To avoid unnecessary overhad the application does not gen
erate or read any data. The buffer is filled with random data.
The tests was run 10 times for each key length and the

results displayed in Figure 5 are the average of all the test [2]

runs for the respective key length. The test machine was Ul-
traSPARC T5120 with 8 cores installed with Solaris Nevada
106. It took 50 threads to get to the peak of roughly 37, 32,

and 27 Gbit/sec (4.6, 4, and 3.4 GB/sec) of data encrypted.

There were no attempts to further tune the application or
the system to find out whether the peak is the maximum
data throughput that can be achieved from the application
linked to the libpkcs11 library.

5 Conclusions

Based on its consumer-provider architecture, the Solaris
Cryptographic Framework is an ideal candidate to present

how multi-core functionality can be provided transpargntl
to applications, in both the user space as well as the kerne
of a commodity operating system. Multi-Core hardware-
accelerated cryptographic functions, as available in the U
traSPARC T1 and T2 processor family, plug into this frame-
work as providers from below. Depending on the func-

tions provided they can be accessed synchronously or asyn-

chronously.
We presented just how the multi-core functionality can

Interesting work remains to be done. E.g., while our ap-
proach utilizes the hardware support in a stateless mode,
maintaining state in the cryptographic cores could lend it-
self to higher performance. This gain would come at the
cost of less scheduling flexibility under the requirement to
maintain strict data separation. In future hardware, pro-
viding the ability to remotely launch operations on other
core’s accelerators, would make it much easier for software
to load balance operations across accelerators, and could
even make distributing single operations (e.g., large ECB o
CTR operations) across accelerators an interesting aption

Acknowledgments

The authors would like to thank the anonymous review-
ers for their valuable comments. Thanks also to the authors
of the documentation for the Solaris Cryptographic Frame-
work who generously gave us text for introducing the archi-
tecture of the (Open)Solaris Cryptographic Framework in
section 1.1.

References

[1] engine(3), OpenSSL’'s manual page for ENGINE crypto-

graphic module support

D. J. Bernstein. Cache-timing attacks on aes. Technical

report, 2005.

P. C. Kocher. Timing attacks on implementations of die-

hellman, rsa, dss, and other systems. pages 104-113.

Springer-Verlag, 1996.

[4] Netscape Corp. NSS, the Network Security Services,
http://www.mozilla.org/projects/security/pki/nss.

[5] OpenSSL. The open source toolkit for SSL/TLS,

http://www.openssl.org.

Pechanec, Jan and Schuba, Christoph and Phalan, Mark.

New Security Features in OpenSolaris and Beyond. In

Proceedings of OpenSolaris Developer ConfereRrague,

Czech Republic, 2008.

[7] RSA Laboratories. PKCS11: Cryptographic Token Integfa
Standard, http://www.rsa.com/rsalabs/pkcs.

] P. Sangster, V. Bubb, and K. Belgaied. The Solaris Cryp-

tographic Framework. IBigAdmin System Administration

Portal, 2005.

L. Spracklen and S. Abraham. Chip Multithreading: Op-

portunities and Challenges. IRroceedings of the 1"

Int’l Symposium on High-Performance Computer Architec-

ture (HPCA-11) 2005.

Sun Microsystems, Inc. SunSSH,

http://www.opensolaris.org/os/community/securitgjpcts/

SSH.

(3]

(6]

a0

[10]

be hidden, yet yield tremendous performance gains, as wit-

nessed by our algorithmic performance characterizatidn an
our analysis of ssh, scp, and sftp performance, with or with-
out the use of PKCS#11 interfaces.

