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Abstract be improved significantly due to low ILP and off-chip CPl is large
and growing, due to relative increases in memory latency. How-

Chip Multi-Threaded (CMT) processors provide support for ever, typical server applications concurrently serve a large number
many simultaneous hardware threads of execution in various of users or clients; for instance, a contemporary database server
ways, including Simultaneous Multithreading (SMT) and Chip may have hundreds of active processes, each associated with a dif-
Multiprocessing (CMP). CMT processors are especially suited to ferent client. Furthermore, these processes are currently multi-
server workloads, which generally have high levels of Thread- threaded to hide disk access latencies. This structure leads to high
Level Parallelism (TLP). In this paper, we describe the evolution levels of TLP. Thus, it is extremely attractive to couple the high
of CMT chips in industry and highlight the pervasiveness of CMT TLP in the application domain with support for multiple threads
designs in upcoming general-purpose processors. The CMT de-of execution on a processor chip.
sign space accommodates a range of designs between the extremes Chip Multi-Threaded (CMT) processors support many simulta-
represented by the SMT and CMP designs and a variety of attrac-neous hardware strands (or threads) of execution via a combination
tive design options are currently unexplored. Though there has of support for multiple cores (Chip Multiprocessors (CMP)) [1]
been extensive research on utilizing multiple hardware threads to and Simultaneous Multi-Threading (SMT) [2]. SMT combats in-
speed up single-threaded applications via speculative paralleliza- creasing latencies by enabling multiple strands to share many of
tion, there are many challenges in designing CMT processors, eventhe resources within the core, including the execution resources.
when sufficient TLP is present. This paper describes some of thes#Vith each strand spending a significant portion of time stalled
challenges including, hot sets, hot banks, speculative prefetchingwaiting for off-chip misses to complete, each strand’s utilization of
strategies, request prioritization and off-chip bandwidth reduction. the core’s execution resources is extremely low. SMT improves the

utilization of key resources and reduces the sensitivity of an appli-
cation to off-chip misses. Similarly, CMP enables multiple cores
. to share chip resources such as, the memory controller, off-chip
1 Introduction bandwidth, and the L2 cache, improving the utilization of these

Computer architects have achieved dramatic gains in single-resources. In our taxonomy, SMT and CMP are two extremes of a
thread performance, using a range of microarchitectural tech-continuum characterized by varying degrees of sharing of on-chip
niques, such as, superscalar issue, out-of-order issue, on-chigesources among the strands.
caching, and deep pipelines supported by sophisticated branch pre- Though the arguments for CMT processors are often made in
dictors. Each generation of process technology doubles the num-the context of overlapping memory latencies, memory bandwidth
ber of available transistors and, until recently, these additional re- considerations also play a significant role. Upcoming memory
sources have been harnessed toward improving single-thread pertechnologies such as Fully-Buffered DIMMS (FBD) have higher
formance. bandwidths (say 60 GB/s/chip), as well as higher latencies (say

However, a plot of delivered performance versus chip size (in 130 ns), pushing up their bandwidth-delay product [3] to 60GB
transistors) demonstrates that the efficiency with which we are X 130 ns = 7800 bytes. The processor chip’s pins represent an
able to utilize the available transistor budget has declined over expensive resource and, in order to keep these pins fully utilized
time. Power and memory latency considerations place additional(assuming a cache line size of 64 bytes), the processor chip needs
obstacles to improving single-thread performance. While recentto sustain 7800/64 or over 100 parallel requests. A single strand
attempts at improving single-thread performance, through evenon an aggressive out-of-order processor core generates less than
deeper pipelines, have led to impressive clock frequencies, thesdwo parallel requests on typical server workloads [4]: therefore, a
clock frequencies have not translated into demonstrably better perdarge number of strands are required to sustain a high utilization of
formance over less aggressive designs. the memory ports.

Server workloads are broadly characterized by high levels of  Finally, power considerations also favor CMT processors.
thread-level parallelism (TLP), low instruction-level parallelism Given the almost cubic dependence between core frequency and
(ILP) and large working sets. The potential for further improve- power consumption [5], power consumption drops dramatically
ments in overall single-thread CPI is limited; on-chip CPI cannot with reductions in frequency. As a result, for workloads with ad-



equate TLP, doubling the number of cores and halving the fre- (b)

(a)
quency delivers roughly equivalent performance, while reducing
power consumption by a factor of four.
In this paper, we describe the evolution of CMT processors
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both within and outside Sun, the CMT design space and some B CTo=S ARSI T
of the challenges in designing effective CMT systems. Though

CMT processors have been proposed and evaluated in academic = Eadinz
research, a disproportionate fraction of the work has been devoted

to speculative parallelization approaches that enable a CMT chip

to deliver a speedup on single-threaded applications [6]. Our ob-
jective is to highlight the pervasiveness of CMT designs in indus-
try, and attract academic research in some other important areas.
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2 Evolution of CMTs

Given the exponential growth in transistors per chip over time,
a rule of thumb is that a board design becomes a chip design in
ten years or less. Thus, most industry observers expected that
chip-level multiprocessing would eventually become a dominant
design trend. The case for a single-chip multiprocessor was pre-
sented as early as 1996 by Olukotun’s team [1]. The Stanford Hy-
dra CMP processor design called for the integration of four MIPS-
based processors on a single chip [7]. A DEC/Compagq research ] ) ) )
team proposed the incorporation of eight simple Alpha cores and ~ Figure 1. Overview of CMT design trends a) First
a two-level cache hierarchy on a single chip and estimated a simu-  generation CMTs, b) Second generation CMTs and
lated performance of 3x that of a single-core next generation Alpha  ¢) Future third-generation CMTs
processor for on-line transaction processing workloads [8].

As early as the mid-1990s, Sun recognized the problems thatmisses is key to overall performance. Thus, in order to accommo-
would soon face processor designers as a result of the rapidly in-date 8 cores, each core supports single issue and has a fairly short
creasing clock frequencies required to improve single-thread per-Pipeline.
formance. In response, Sun defined the MAJC architecture to tar- Sun’s move toward the CMT design has been mirrored
get thread-level parallelism [9]. Providing well-defined support for throughout industry. In 2001, IBM introduced the dual-core
both CMP and SMT processors, MAJC was industry’s first step to- POWER-4 [14] processor and recently released their second gen-
wards general-purpose CMT processors. Shortly after publishing€ration CMT processor, the POWER-5, in which each core sup-
the MAJC architecture, Sun announced its first MAJC-compliant Ports 2-way SMT [15]. AMD, Fujitsu and Intel have also an-
processor (MAJC-5200), a dual-core CMT processor, with cores nounced their intentions to release dual-core CMP processors in
sharing an L1 data cache [10]. the near future [16, 17, 18]. While this fundamental shift in pro-

Since then, Sun has also begun to move its SPARC processof£€ssor design was initially confined to the high-end server pro-
family towards the CMT design point. In 2003, Sun announced Cessors, where the target workloads are the most thread-rich, this
two CMT SPARC processors: Gemini, a dual-core UltraSPARC-II change has recently begun to spread to desktop processors [19].
derivative [11] (as illustrated in Figure 1(a)) and UltraSPARC-IV CMT is emerging as the dominant trend in general-purpose
(code named Jaguar), a dual-core UltraSPARC-III derivative [12]. Processor design, with manufacturers discussing their multi-core
These first-generation CMT processors were derived from earlierPlans beyond their initial dual-core offerings [19]. Similar to the
uniprocessor designs and the two cores do not share any resource§ghift from CISC to RISC, that enabled an entire processor to fit on
except for the off-chip data paths. In 2003, Sun also announced itsa single chip and internalized all communication between pipeline
second generation CMT processor, UltraSPARC-IV+, a follow- Stagesto within a chip, the move to CMT represents a fundamental
on to the current UltraSPARC-IV processor, in which the on-chip shift in processor design that internalizes much of the communi-
L2 and off-chip L3 caches are shared between the two cores, asation between processors to within a chip.
illustrated in Figure 1(b) [12]. :

Sun also recently announced a 32-way CMT SPARC processor3 CMT deSIQn space
(code-named Niagara) [13], which is already running in the lab  An attractive proposition for evolving a CMT design is to just
and is due for general availability in 2006. Niagara has eight cores double the number of cores per chip every generation, because a
and each core is a four-way SMT with its own private L1 caches. new process technology essentially doubles the transistor budget.
All eight cores share a 3MB, 12-way L2-cache, as illustrated in Little design effort is expended on the cores and performance is
Figure 1(c). Niagara represents a third-generation CMT proces-almost doubled every process generation on workloads with suf-
sor, where the entire design, including the cores, is optimized for aficient TLP. Many first generation CMT processor designs com-
CMT design point. Since Niagara is targeted at commercial serverprise of two “carbon-copies” of previous uniprocessor designs,
workloads with high TLP, low ILP and large working sets, the abil- with each core having its own private L2 cache. In most server
ity to support many strands and therefore many concurrent off-chip applications, the instruction working set is large and there are sig-
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. uated with regard to their feasibility and performance potential.
For instance, the strands in MAJC share a single L1 data cache,
" but have separate L1 instruction caches. In Niagara, all strands
share a floating-point unit. Furthermore, all strands could share an
- area-intensive, say perceptron-based, second-level branch predic-
tor for predicting long-latency unresolvable branches (unresolv-
" able branches depend on a load miss and can be resolved only
after the load miss returns).

Given the significant area cost associated with high-
performance cores, for a fixed area and power budget, the CMP de-
! ‘ sign choice is between a small number of high performance (high

Database TPCW SPECHAppSener sPECueb frequency, aggressive 000, large issue width) cores or multiple
simple (low frequency, inorder, limited issue width) cores.

For workloads with sufficient TLP, the simpler core solution
may deliver superior chip-wide performance at a fraction of the
power.

However, for applications with limited TLP, unless speculative
parallelism can be exploited, CMT performance will be poor. One
nificant advantages to sharing the L2 cache among the cores on @ossible solution is to support heterogeneous cores, potentially
chip. But a shared L2 cache design requires considerable verificaproviding multiple simple cores for thread-rich workloads and a
tion effort to ensure that coherency is maintained correctly. In the single more complex core to provide robust performance for sin-
second generation of CMT designs, all the cores share the same L3jle threaded applications [21].
cache, but the core designs continue to be derived from previous  Another interesting opportunity for CMT processors is support
uni-core designs. for on-chip hardware accelerators. Hardware accelerators provide

Though re-using existing core designs is an attractive option, increased performance on certain specialized tasks and offload
this approach may not scale well beyond a couple of processwork from the general-purpose processor. Additionally, on-chip
generations. Processor designs are already pushing the limits ohardware accelerators may be an order of magnitude more power
power dissipation. In order to restrain total power consumption, efficient than the general-purpose processor and may be signifi-
the power dissipation of each core must be halved in each gen-cantly more efficient than off-chip accelerators (e.g. eliminating
eration. In the past, supply voltage scaling delivered most of the the off-chip traffic required to communicate to an off-chip acceler-
required power reduction, but indications are that voltage scaling ator). While typically unattractive for traditional processors, due
will not be sufficient by itself. Though well-known techniques, to the high cost and low utilization, because of the high degree
such as clock gating and frequency scaling, may be quite effectiveof resource sharing associated with CMTs, the cost of an accel-
in the short term, more research is needed to develop low-powererator can be amortized over many strands. While a wide variety
high-performance cores for future CMT designs. of hardware accelerators can be envisaged, emerging trends make

In order to maintain the same amount of off-chip bandwidth Support for on-chip network offload engines and cryptographic ac-
per core, the total off-chip bandwidth for the processor chip must celerators extremely compelling.
also double every process generation. This bandwidth increase In the future, there may be opportunities for accelerating other
can be met by increasing the number of pins and/or increasingfunctiona“ty. For instance, IBM has indicated interest in accel-
the bandwidth per pin. However, the maximum number of pins erating certain OS functionality and, with the increasing usage of
per package is increasing gradually at a rate of 10% per gener-XML formatted data, it may become attractive to provide hard-
ation [20]. Furthermore, packaging costs per pin are barely de-ware support for XML parsing and processing.
creasing with each new generation and increase significantly with
pin cougt [20]. Thus, thegpredominant focus has begen on ingreas-4 CMT Cha"enges
ing the per-pin bandwidth via innovations in the processor chipto | a traditional processor design, attention is focused on sin-
DRAM memory interconnect through technologies such as DDR, gle thread performance. As a result, microarchitectural innovation
DDR2 and FBD. has led to increasingly aggressive speculative techniques that of-

As a result, future CMT processors are likely to be designed ten expend significant resources to achieve limited performance
from the ground-up to satisfy these power and bandwidth con- improvements. In a single core design, there is limited downside
straints, while delivering ever increasing performance. In this con- to such a strategy because, during periods of extensive specula-
text, it is useful to understand the CMT design space. A strand tion, the resources are otherwise underutilized. Previous research
requires several chip-level resources, including, register file, exe-into SMT processors has developed strategies for efficient shar-
cution pipeline, floating-point units, branch predictors, L1 I-cache, ing of key resources such as the issue window, execution pipeline
L1 D-cache, and L2 cache. and fetch bandwidth [22]. In a CMT processor, most chip-level

In most CMT designs, it is preferable to share the L2 cache, resources are shared and further research is needed to identify
because it localizes coherency traffic between the strands and oppolicies and mechanisms that will maximize overall performance,
timizes inter-strand communication in the chip. However, there while not starving any of the strands. In essence, CMT mech-
are also other design options that should be explored and eval-anisms must ensure that strands are “good neighbors”. The re-

Performance improvement, X
]

Figure 2. Performance improvements achievable
by perfect instruction prefetching (for commercial
workloads)



mainder of this section discusses some of the challenges that arise I Hardware Scouting Bl No Speculation
predominantly due to resource sharing and associated inter-strand
interference.

4.1 Prefetching strategies

Speculative prefetching techniques are still important in CMT
processors. For instance, the effect of L2 cache stalls due to the
instruction stream becomes minimal once the L2 cache size ex-
ceeds 2MB on conventional processors and, as a result, instruction
prefetching has limited headroom. However, instruction prefetch-
ing can result in significant performance benefits for CMT proces- » \ \ \ \ \ \ \ \ \ \
sors, as is illustrated in Figure 2 (throughout this paper the mod- T e Iat;;cy (nonmalized to unloaded late;é’y) o
eled system is a 4-core CMT processor; each core has a private
32KB L1 instruction and data cache and share a unified 2MB L2
cache), because a greater portion of the L2 cache is now occupied Figure 3. Increased latency of offchip misses re-
by data lines. This is an interesting example of how the CMT de- ~ sulting from hardware scouting (database work-

% of offchip misses (cummulative)

sign point can reemphasize old problems. load on a heavily loaded system)
Furthermore, the instruction prefetching strategy must be tai- B . . .
lored to the CMT design point. In a single-core design, virtu- Traditionally, this problem has been addressed by increasing

ally the entire system is idle on an instruction miss and aggressivethe associativity of the cache. However, beyond a certain level,
prefetching, such as next-four line prefetching, may be very effec- increasing the associativity also increases access time, preventing
tive. In a CMT processor, a less aggressive prefetching schemethe associativity being scaled in line with the number of sharers on
such as next-line prefetching may be appropriate, depending onCMT systems.
the utilization of the memory ports by the other strands. Standard set selection schemes use low-order bits of the physi-
While incorrect speculation can have harmful side-effects on cal address to access a set. Set index hashing [24] uses many more
traditional processors, the potential for problems is heightened onbits of the physical address to generate an XOR hash, which is then
CMT processors. A mis-speculation, such as a wrong prefetch,used to access a set. Such hashing may reduce the prevalence of
can delay the use of a resource, such as the memory port, by anhot sets. However, the set of address bits that can be used for hash-
other strand and may further cause cache pollution by evicting aing is often restricted by other considerations. For instance, the L1
useful cache line. Hence, accurate speculation becomes a moréache has to be accessed using only the address bits that are un-
important design consideration. translated even when the smallest page size is used, thus limiting
T the effectiveness of index hashing in L1 caches. Some inclusion
4.2 Request prioritization properties may need to be maintained between L1 cache and L2
Hardware scouting or run-ahead execution [23] generates acache banks in order to maintain L1 cache coherence, which may
highly accurate stream of prefetches and pollution is not a ma- again limit the extent of index hashing used in L2 caches. Thus,
jor consideration. In a single-strand design, the processor does nothere is room for further innovation to solve the hot sets problem,
issue any demand fetches during scouting and the timeliness of dewhile satisfying the current constraints on L1 and L2 set selection.
mand fetches is largely unaffected. However, in a CMT processor, In a CMT processor with write-through L1 caches (common-
when one strand is scouting, the other strands may be issuing deplace, as they make the coherency protocols simpler), all stores
mand fetches. In Figure 3, we illustrate that the prefetches gener-access the L2 cache. In order to provide sufficient bandwidth for
ated by hardware scouting significantly delay the demand fetchesthese stores, as well as L1 load misses and instruction misses, the
and potentially impact overall performance. L2 cache is heavily banked. Bank selection is typically based on
The L2 cache and the memory controller may give higher pri- low-order bits of the cache line address in order to distribute an
ority to demand fetches than to prefetches. Our initial evaluation unit-stride stream across the banks. However, some banks may be
shows that the displaced prefetches generated by hardware scouticcessed much more frequently than other banks, leading to hot
ing should be delayed, but not dropped. Such request prioritizationbanks and performance problems. Hashing for bank selection is
delivers better overall performance. More sophisticated requestan option, but some of the previous constraints apply.
prio_ritization approaches may vyield even better performe_mce, es-4 4 Offchip bandwidth
pecially when cache and memory ports approach saturation levels

and speculative requests have varying degrees of accuracy. Off-chip bandwidth is another potential performance bottle-

neck, limiting the number and aggressiveness of the cores in a

4.3 Hot sets & hot banks CMT processor. Figure 4 illustrates how the bandwidth require-

The hot set problem occurs in caches when many heavily ac-ments of a core rapidly increase as speculative techniques such
cessed physical addresses map to the same set, resulting in thrashs control speculation, hardware scouting and value prediction are
ing and a significant increase in conflict misses. CMT processorsutilized.
often run the same binary on all strands, which leads to better in-  To an extent, this bottleneck can be mitigated by increasing the
struction cache performance and more constructive sharing in theamount of on-chip cache, decreasing the offchip miss rate. How-
L2 cache. However, such workloads may also significantly exac- ever, increasing the transistor budget devoted to on-chip caches
erbate any hot set problems. reduces the area which can be devoted to cores.
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Figure 4. Increase in offchip bandwidth when ag-
gressive speculation is utilized

An alternative strategy is to attempt to do more with the avail-
able bandwidth; for instance, by compressing off-chip traffic [25]
or exploiting silentness to minimize the bandwidth required to per-
form writeback operations [26]. [10]

Compression of the onchip caches themselves can also improve
performance, but the (significant) additional latency that is intro- [11]
duced as a result of the decompression overhead must be carefully[lz]
balanced against the benefits of the reduced miss rate, favoring
adaptive compression strategies [27].

4.5 Compiler optimizations

Compilers can also make a significant difference to application
performance on CMT processors. In recent years, aggressively[15]
optimizing compilers that perform loop unrolling and aggressive
data prefetching have become prevalent. This approach may not[le]
be optimal for CMT systems, which exhibit decreased hardware
resources per strand. For instance, optimizing for reduced code[17)
footprint may make more sense.

&l

(13]

(14]

. [18]
5 Conclusion

CMT processors support many hardware strands through effi-
cient sharing of on-chip resources such as pipelines, caches an 20]
predictors. CMT processors are a good match for server work-
loads, which have high levels of TLP and relatively low levels
of ILP. The first generation of CMTs were rapidly derived from
existing uni-processor designs, whereas the second generation of ]
CMTs support effective sharing of L2 caches. The third genera-
tion of CMTs, which have cores specifically designed for CMT
systems, are exemplified by Sun’s recently announced Niagara[23]
processor. Speculative parallelization approaches are important
for applications that do not have sufficient TLP. In applications
with sufficient TLP, the sharing of resources between strands and 4]
the consequent interaction between strands through these shareg
resources give rise to many design issues. In this paper, we de-
scribe some of the open design issues such as hot sets, speculativis]
prefetches, and request prioritization which can benefit from fur-
ther academic research.
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