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Abstract

Chip Multi-Threaded (CMT) processors provide support for
many simultaneous hardware threads of execution in various
ways, including Simultaneous Multithreading (SMT) and Chip
Multiprocessing (CMP). CMT processors are especially suited to
server workloads, which generally have high levels of Thread-
Level Parallelism (TLP). In this paper, we describe the evolution
of CMT chips in industry and highlight the pervasiveness of CMT
designs in upcoming general-purpose processors. The CMT de-
sign space accommodates a range of designs between the extremes
represented by the SMT and CMP designs and a variety of attrac-
tive design options are currently unexplored. Though there has
been extensive research on utilizing multiple hardware threads to
speed up single-threaded applications via speculative paralleliza-
tion, there are many challenges in designing CMT processors, even
when sufficient TLP is present. This paper describes some of these
challenges including, hot sets, hot banks, speculative prefetching
strategies, request prioritization and off-chip bandwidth reduction.

1 Introduction
Computer architects have achieved dramatic gains in single-

thread performance, using a range of microarchitectural tech-
niques, such as, superscalar issue, out-of-order issue, on-chip
caching, and deep pipelines supported by sophisticated branch pre-
dictors. Each generation of process technology doubles the num-
ber of available transistors and, until recently, these additional re-
sources have been harnessed toward improving single-thread per-
formance.

However, a plot of delivered performance versus chip size (in
transistors) demonstrates that the efficiency with which we are
able to utilize the available transistor budget has declined over
time. Power and memory latency considerations place additional
obstacles to improving single-thread performance. While recent
attempts at improving single-thread performance, through even
deeper pipelines, have led to impressive clock frequencies, these
clock frequencies have not translated into demonstrably better per-
formance over less aggressive designs.

Server workloads are broadly characterized by high levels of
thread-level parallelism (TLP), low instruction-level parallelism
(ILP) and large working sets. The potential for further improve-
ments in overall single-thread CPI is limited; on-chip CPI cannot

be improved significantly due to low ILP and off-chip CPI is large
and growing, due to relative increases in memory latency. How-
ever, typical server applications concurrently serve a large number
of users or clients; for instance, a contemporary database server
may have hundreds of active processes, each associated with a dif-
ferent client. Furthermore, these processes are currently multi-
threaded to hide disk access latencies. This structure leads to high
levels of TLP. Thus, it is extremely attractive to couple the high
TLP in the application domain with support for multiple threads
of execution on a processor chip.

Chip Multi-Threaded (CMT) processors support many simulta-
neous hardware strands (or threads) of execution via a combination
of support for multiple cores (Chip Multiprocessors (CMP)) [1]
and Simultaneous Multi-Threading (SMT) [2]. SMT combats in-
creasing latencies by enabling multiple strands to share many of
the resources within the core, including the execution resources.
With each strand spending a significant portion of time stalled
waiting for off-chip misses to complete, each strand’s utilization of
the core’s execution resources is extremely low. SMT improves the
utilization of key resources and reduces the sensitivity of an appli-
cation to off-chip misses. Similarly, CMP enables multiple cores
to share chip resources such as, the memory controller, off-chip
bandwidth, and the L2 cache, improving the utilization of these
resources. In our taxonomy, SMT and CMP are two extremes of a
continuum characterized by varying degrees of sharing of on-chip
resources among the strands.

Though the arguments for CMT processors are often made in
the context of overlapping memory latencies, memory bandwidth
considerations also play a significant role. Upcoming memory
technologies such as Fully-Buffered DIMMS (FBD) have higher
bandwidths (say 60 GB/s/chip), as well as higher latencies (say
130 ns), pushing up their bandwidth-delay product [3] to 60GB
X 130 ns = 7800 bytes. The processor chip’s pins represent an
expensive resource and, in order to keep these pins fully utilized
(assuming a cache line size of 64 bytes), the processor chip needs
to sustain 7800/64 or over 100 parallel requests. A single strand
on an aggressive out-of-order processor core generates less than
two parallel requests on typical server workloads [4]: therefore, a
large number of strands are required to sustain a high utilization of
the memory ports.

Finally, power considerations also favor CMT processors.
Given the almost cubic dependence between core frequency and
power consumption [5], power consumption drops dramatically
with reductions in frequency. As a result, for workloads with ad-



equate TLP, doubling the number of cores and halving the fre-
quency delivers roughly equivalent performance, while reducing
power consumption by a factor of four.

In this paper, we describe the evolution of CMT processors
both within and outside Sun, the CMT design space and some
of the challenges in designing effective CMT systems. Though
CMT processors have been proposed and evaluated in academic
research, a disproportionate fraction of the work has been devoted
to speculative parallelization approaches that enable a CMT chip
to deliver a speedup on single-threaded applications [6]. Our ob-
jective is to highlight the pervasiveness of CMT designs in indus-
try, and attract academic research in some other important areas.

2 Evolution of CMTs
Given the exponential growth in transistors per chip over time,

a rule of thumb is that a board design becomes a chip design in
ten years or less. Thus, most industry observers expected that
chip-level multiprocessing would eventually become a dominant
design trend. The case for a single-chip multiprocessor was pre-
sented as early as 1996 by Olukotun’s team [1]. The Stanford Hy-
dra CMP processor design called for the integration of four MIPS-
based processors on a single chip [7]. A DEC/Compaq research
team proposed the incorporation of eight simple Alpha cores and
a two-level cache hierarchy on a single chip and estimated a simu-
lated performance of 3x that of a single-core next generation Alpha
processor for on-line transaction processing workloads [8].

As early as the mid-1990s, Sun recognized the problems that
would soon face processor designers as a result of the rapidly in-
creasing clock frequencies required to improve single-thread per-
formance. In response, Sun defined the MAJC architecture to tar-
get thread-level parallelism [9]. Providing well-defined support for
both CMP and SMT processors, MAJC was industry’s first step to-
wards general-purpose CMT processors. Shortly after publishing
the MAJC architecture, Sun announced its first MAJC-compliant
processor (MAJC-5200), a dual-core CMT processor, with cores
sharing an L1 data cache [10].

Since then, Sun has also begun to move its SPARC processor
family towards the CMT design point. In 2003, Sun announced
two CMT SPARC processors: Gemini, a dual-core UltraSPARC-II
derivative [11] (as illustrated in Figure 1(a)) and UltraSPARC-IV
(code named Jaguar), a dual-core UltraSPARC-III derivative [12].
These first-generation CMT processors were derived from earlier
uniprocessor designs and the two cores do not share any resources,
except for the off-chip data paths. In 2003, Sun also announced its
second generation CMT processor, UltraSPARC-IV+, a follow-
on to the current UltraSPARC-IV processor, in which the on-chip
L2 and off-chip L3 caches are shared between the two cores, as
illustrated in Figure 1(b) [12].

Sun also recently announced a 32-way CMT SPARC processor
(code-named Niagara) [13], which is already running in the lab
and is due for general availability in 2006. Niagara has eight cores
and each core is a four-way SMT with its own private L1 caches.
All eight cores share a 3MB, 12-way L2-cache, as illustrated in
Figure 1(c). Niagara represents a third-generation CMT proces-
sor, where the entire design, including the cores, is optimized for a
CMT design point. Since Niagara is targeted at commercial server
workloads with high TLP, low ILP and large working sets, the abil-
ity to support many strands and therefore many concurrent off-chip
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Figure 1. Overview of CMT design trends a) First
generation CMTs, b) Second generation CMTs and
c) Future third-generation CMTs

misses is key to overall performance. Thus, in order to accommo-
date 8 cores, each core supports single issue and has a fairly short
pipeline.

Sun’s move toward the CMT design has been mirrored
throughout industry. In 2001, IBM introduced the dual-core
POWER-4 [14] processor and recently released their second gen-
eration CMT processor, the POWER-5, in which each core sup-
ports 2-way SMT [15]. AMD, Fujitsu and Intel have also an-
nounced their intentions to release dual-core CMP processors in
the near future [16, 17, 18]. While this fundamental shift in pro-
cessor design was initially confined to the high-end server pro-
cessors, where the target workloads are the most thread-rich, this
change has recently begun to spread to desktop processors [19].

CMT is emerging as the dominant trend in general-purpose
processor design, with manufacturers discussing their multi-core
plans beyond their initial dual-core offerings [19]. Similar to the
shift from CISC to RISC, that enabled an entire processor to fit on
a single chip and internalized all communication between pipeline
stages to within a chip, the move to CMT represents a fundamental
shift in processor design that internalizes much of the communi-
cation between processors to within a chip.

3 CMT design space
An attractive proposition for evolving a CMT design is to just

double the number of cores per chip every generation, because a
new process technology essentially doubles the transistor budget.
Little design effort is expended on the cores and performance is
almost doubled every process generation on workloads with suf-
ficient TLP. Many first generation CMT processor designs com-
prise of two “carbon-copies” of previous uniprocessor designs,
with each core having its own private L2 cache. In most server
applications, the instruction working set is large and there are sig-
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Figure 2. Performance improvements achievable
by perfect instruction prefetching (for commercial
workloads)

nificant advantages to sharing the L2 cache among the cores on a
chip. But a shared L2 cache design requires considerable verifica-
tion effort to ensure that coherency is maintained correctly. In the
second generation of CMT designs, all the cores share the same L2
cache, but the core designs continue to be derived from previous
uni-core designs.

Though re-using existing core designs is an attractive option,
this approach may not scale well beyond a couple of process
generations. Processor designs are already pushing the limits of
power dissipation. In order to restrain total power consumption,
the power dissipation of each core must be halved in each gen-
eration. In the past, supply voltage scaling delivered most of the
required power reduction, but indications are that voltage scaling
will not be sufficient by itself. Though well-known techniques,
such as clock gating and frequency scaling, may be quite effective
in the short term, more research is needed to develop low-power
high-performance cores for future CMT designs.

In order to maintain the same amount of off-chip bandwidth
per core, the total off-chip bandwidth for the processor chip must
also double every process generation. This bandwidth increase
can be met by increasing the number of pins and/or increasing
the bandwidth per pin. However, the maximum number of pins
per package is increasing gradually at a rate of 10% per gener-
ation [20]. Furthermore, packaging costs per pin are barely de-
creasing with each new generation and increase significantly with
pin count [20]. Thus, the predominant focus has been on increas-
ing the per-pin bandwidth via innovations in the processor chip to
DRAM memory interconnect through technologies such as DDR,
DDR2 and FBD.

As a result, future CMT processors are likely to be designed
from the ground-up to satisfy these power and bandwidth con-
straints, while delivering ever increasing performance. In this con-
text, it is useful to understand the CMT design space. A strand
requires several chip-level resources, including, register file, exe-
cution pipeline, floating-point units, branch predictors, L1 I-cache,
L1 D-cache, and L2 cache.

In most CMT designs, it is preferable to share the L2 cache,
because it localizes coherency traffic between the strands and op-
timizes inter-strand communication in the chip. However, there
are also other design options that should be explored and eval-

uated with regard to their feasibility and performance potential.
For instance, the strands in MAJC share a single L1 data cache,
but have separate L1 instruction caches. In Niagara, all strands
share a floating-point unit. Furthermore, all strands could share an
area-intensive, say perceptron-based, second-level branch predic-
tor for predicting long-latency unresolvable branches (unresolv-
able branches depend on a load miss and can be resolved only
after the load miss returns).

Given the significant area cost associated with high-
performance cores, for a fixed area and power budget, the CMP de-
sign choice is between a small number of high performance (high
frequency, aggressive OoO, large issue width) cores or multiple
simple (low frequency, inorder, limited issue width) cores.

For workloads with sufficient TLP, the simpler core solution
may deliver superior chip-wide performance at a fraction of the
power.

However, for applications with limited TLP, unless speculative
parallelism can be exploited, CMT performance will be poor. One
possible solution is to support heterogeneous cores, potentially
providing multiple simple cores for thread-rich workloads and a
single more complex core to provide robust performance for sin-
gle threaded applications [21].

Another interesting opportunity for CMT processors is support
for on-chip hardware accelerators. Hardware accelerators provide
increased performance on certain specialized tasks and offload
work from the general-purpose processor. Additionally, on-chip
hardware accelerators may be an order of magnitude more power
efficient than the general-purpose processor and may be signifi-
cantly more efficient than off-chip accelerators (e.g. eliminating
the off-chip traffic required to communicate to an off-chip acceler-
ator). While typically unattractive for traditional processors, due
to the high cost and low utilization, because of the high degree
of resource sharing associated with CMTs, the cost of an accel-
erator can be amortized over many strands. While a wide variety
of hardware accelerators can be envisaged, emerging trends make
support for on-chip network offload engines and cryptographic ac-
celerators extremely compelling.

In the future, there may be opportunities for accelerating other
functionality. For instance, IBM has indicated interest in accel-
erating certain OS functionality and, with the increasing usage of
XML formatted data, it may become attractive to provide hard-
ware support for XML parsing and processing.

4 CMT challenges
In a traditional processor design, attention is focused on sin-

gle thread performance. As a result, microarchitectural innovation
has led to increasingly aggressive speculative techniques that of-
ten expend significant resources to achieve limited performance
improvements. In a single core design, there is limited downside
to such a strategy because, during periods of extensive specula-
tion, the resources are otherwise underutilized. Previous research
into SMT processors has developed strategies for efficient shar-
ing of key resources such as the issue window, execution pipeline
and fetch bandwidth [22]. In a CMT processor, most chip-level
resources are shared and further research is needed to identify
policies and mechanisms that will maximize overall performance,
while not starving any of the strands. In essence, CMT mech-
anisms must ensure that strands are “good neighbors”. The re-



mainder of this section discusses some of the challenges that arise
predominantly due to resource sharing and associated inter-strand
interference.

4.1 Prefetching strategies
Speculative prefetching techniques are still important in CMT

processors. For instance, the effect of L2 cache stalls due to the
instruction stream becomes minimal once the L2 cache size ex-
ceeds 2MB on conventional processors and, as a result, instruction
prefetching has limited headroom. However, instruction prefetch-
ing can result in significant performance benefits for CMT proces-
sors, as is illustrated in Figure 2 (throughout this paper the mod-
eled system is a 4-core CMT processor; each core has a private
32KB L1 instruction and data cache and share a unified 2MB L2
cache), because a greater portion of the L2 cache is now occupied
by data lines. This is an interesting example of how the CMT de-
sign point can reemphasize old problems.

Furthermore, the instruction prefetching strategy must be tai-
lored to the CMT design point. In a single-core design, virtu-
ally the entire system is idle on an instruction miss and aggressive
prefetching, such as next-four line prefetching, may be very effec-
tive. In a CMT processor, a less aggressive prefetching scheme,
such as next-line prefetching may be appropriate, depending on
the utilization of the memory ports by the other strands.

While incorrect speculation can have harmful side-effects on
traditional processors, the potential for problems is heightened on
CMT processors. A mis-speculation, such as a wrong prefetch,
can delay the use of a resource, such as the memory port, by an-
other strand and may further cause cache pollution by evicting a
useful cache line. Hence, accurate speculation becomes a more
important design consideration.

4.2 Request prioritization
Hardware scouting or run-ahead execution [23] generates a

highly accurate stream of prefetches and pollution is not a ma-
jor consideration. In a single-strand design, the processor does not
issue any demand fetches during scouting and the timeliness of de-
mand fetches is largely unaffected. However, in a CMT processor,
when one strand is scouting, the other strands may be issuing de-
mand fetches. In Figure 3, we illustrate that the prefetches gener-
ated by hardware scouting significantly delay the demand fetches
and potentially impact overall performance.

The L2 cache and the memory controller may give higher pri-
ority to demand fetches than to prefetches. Our initial evaluation
shows that the displaced prefetches generated by hardware scout-
ing should be delayed, but not dropped. Such request prioritization
delivers better overall performance. More sophisticated request
prioritization approaches may yield even better performance, es-
pecially when cache and memory ports approach saturation levels
and speculative requests have varying degrees of accuracy.

4.3 Hot sets & hot banks
The hot set problem occurs in caches when many heavily ac-

cessed physical addresses map to the same set, resulting in thrash-
ing and a significant increase in conflict misses. CMT processors
often run the same binary on all strands, which leads to better in-
struction cache performance and more constructive sharing in the
L2 cache. However, such workloads may also significantly exac-
erbate any hot set problems.
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Traditionally, this problem has been addressed by increasing
the associativity of the cache. However, beyond a certain level,
increasing the associativity also increases access time, preventing
the associativity being scaled in line with the number of sharers on
CMT systems.

Standard set selection schemes use low-order bits of the physi-
cal address to access a set. Set index hashing [24] uses many more
bits of the physical address to generate an XOR hash, which is then
used to access a set. Such hashing may reduce the prevalence of
hot sets. However, the set of address bits that can be used for hash-
ing is often restricted by other considerations. For instance, the L1
cache has to be accessed using only the address bits that are un-
translated even when the smallest page size is used, thus limiting
the effectiveness of index hashing in L1 caches. Some inclusion
properties may need to be maintained between L1 cache and L2
cache banks in order to maintain L1 cache coherence, which may
again limit the extent of index hashing used in L2 caches. Thus,
there is room for further innovation to solve the hot sets problem,
while satisfying the current constraints on L1 and L2 set selection.

In a CMT processor with write-through L1 caches (common-
place, as they make the coherency protocols simpler), all stores
access the L2 cache. In order to provide sufficient bandwidth for
these stores, as well as L1 load misses and instruction misses, the
L2 cache is heavily banked. Bank selection is typically based on
low-order bits of the cache line address in order to distribute an
unit-stride stream across the banks. However, some banks may be
accessed much more frequently than other banks, leading to hot
banks and performance problems. Hashing for bank selection is
an option, but some of the previous constraints apply.

4.4 Offchip bandwidth
Off-chip bandwidth is another potential performance bottle-

neck, limiting the number and aggressiveness of the cores in a
CMT processor. Figure 4 illustrates how the bandwidth require-
ments of a core rapidly increase as speculative techniques such
as control speculation, hardware scouting and value prediction are
utilized.

To an extent, this bottleneck can be mitigated by increasing the
amount of on-chip cache, decreasing the offchip miss rate. How-
ever, increasing the transistor budget devoted to on-chip caches
reduces the area which can be devoted to cores.
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An alternative strategy is to attempt to do more with the avail-
able bandwidth; for instance, by compressing off-chip traffic [25]
or exploiting silentness to minimize the bandwidth required to per-
form writeback operations [26].

Compression of the onchip caches themselves can also improve
performance, but the (significant) additional latency that is intro-
duced as a result of the decompression overhead must be carefully
balanced against the benefits of the reduced miss rate, favoring
adaptive compression strategies [27].

4.5 Compiler optimizations
Compilers can also make a significant difference to application

performance on CMT processors. In recent years, aggressively
optimizing compilers that perform loop unrolling and aggressive
data prefetching have become prevalent. This approach may not
be optimal for CMT systems, which exhibit decreased hardware
resources per strand. For instance, optimizing for reduced code
footprint may make more sense.

5 Conclusion
CMT processors support many hardware strands through effi-

cient sharing of on-chip resources such as pipelines, caches and
predictors. CMT processors are a good match for server work-
loads, which have high levels of TLP and relatively low levels
of ILP. The first generation of CMTs were rapidly derived from
existing uni-processor designs, whereas the second generation of
CMTs support effective sharing of L2 caches. The third genera-
tion of CMTs, which have cores specifically designed for CMT
systems, are exemplified by Sun’s recently announced Niagara
processor. Speculative parallelization approaches are important
for applications that do not have sufficient TLP. In applications
with sufficient TLP, the sharing of resources between strands and
the consequent interaction between strands through these shared
resources give rise to many design issues. In this paper, we de-
scribe some of the open design issues such as hot sets, speculative
prefetches, and request prioritization which can benefit from fur-
ther academic research.
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