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CMT Implementation

Niagara Processor
Shared Pipeline

 Utilization: Up to 85%
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Lessons from CMT
• Multiple cores are here to stay.  
 Already quad core, 8 core on most roadmaps
 Big impact on commercial applications, 
 Big problem for desktop and laptop software
• The pursuit of frequency is over.
 Apart from one or two vendors most have dropped 

their 4GHz and 5GHz plans
 Very high frequency usually means higher power
 Higher frequency usually adds complexity and 

lengthens time to market



Lessons learned from CMT
• Power and cooling have become extremely 

important to most customers
 Ecoresponsibility and carbon footprint are the new 

standards for datacenters
 Many datacenters are at capacity
 Acceleration in the development of lower power 

systems
 Also accelerated Virtualization technology.
 Customer trading performance versus power 



Lessons learned from CMT

• Many throughput workloads benefit more from 
higher thread count than higher frequency

 CMT has proven this time and again with public 
benchmarks

• Some code is single threaded and we need to 
work to make them parallel

 Not as big an issue in the HPC space but even here 
can have periods such as results aggregation and 
report generation that are serial
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Big Question

How do you make CMT Scale to 32 cores and
256 threads
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• Create an SMP version of CMT to extend the highly 
threaded Niagara design

• Use T2 as the basis for these systems
• Minimal modifications to T2 for shorter time to market
• Create two-way and four-way systems without the 

need for a traditional SMP backplane
• Avoid any hardware bottlenecks to scaling
• High throughput low latency interconnect
• Scale memory bandwidth with processors
• Scale I/O bandwidth with processors
• Hardware features to enable software scaling

Aim of Victoria Falls
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Victoria Falls Processor
• VF is a derivative. Re-use 

UltraSPARC T2 cores, crossbar, 
L2$, PCI-Express I/F

• Remove 10GE network interface
• Replace two memory channels with 

four coherence channels
• Increase memory link speed to 

4.8Gbps (was 4.0Gbps)
• Added relaxed DMA ordering to PCI-

Ex interface
• All I/O on VF via the x8 PCI-E link 

per chip, scale I/O with processors
• Similar packaging as US T2
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Controller
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(8 cores, 64 threads, 4MB L2$)
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13 GB/s write
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• Interconnect is key to scaling to 32 cores and 256 
threads

• Decision not to use a traditional bus given the memory 
bandwidth requirements

• Instead we used half the FBDIMM channels for 
memory and the other half to create 4 bidirectional 
links for interconnect

• Physical link of interconnect same as FBDIMM
• Reuse the FBDIMM pins for the interconnect
• Result is a high speed SERDES link
• Provides high bandwidth and a low latency 

interconnect

Hardware Scaling - Interconnect
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• Two elements are key to scaling on highly threaded 
servers

 Memory bandwidth.  Hundreds of threads require a 
very wide pipe to memory

 Local vs. Remote memory latency.  Systems that are 
highly NUMA can show inverse scaling if memory is 
placed badly 

• Each VF processor has its own local memory 
connected delivering high memory bandwidth
> 21GB/sec Read and 10GB/sec Write
> Memory bandwidth scales with the number of 

processors
• Remote memory latency has a 76ns penalty for 

access, about 1.5x latency to local memory   This 
makes VF systems NUMA although not highly so.  

Hardware Scaling - Memory
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• There are a set of common issues when scaling the 
OS on a Multi-core highly threaded system

•  Scaling single threaded kernel services
•  Scaling contended mutexes
•  Optimising memory placement
•  Optimal scheduling across cores
•  Scaling I/O
  Local vs. remote
  Delivering interrupts
•  Virtualization

Software Scaling - scaling the OS
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• Prime example of a single threaded kernel service is 
when Solaris performs accounting and book keeping 
activities every clock tick. 

• As the number of CPUs increases, the tick accounting 
loop gets larger.  On a 4 way VF system there are 256 
 threads to check

• Tick accounting is a single threaded activity and on a 
busy system with many CPUs, the loop can often take 
more than a tick to process if the locks it needs to 
acquire are busy.  This causes clock drift and other 
unpleasantness.

• Solution is to involve multiple cpus in the Tick 
scheduling.   Cpus are collected in groups and one is 
chosen to schedule all their ticks

• Algorithm is used to spread the tick accounting evenly 
across active cpus.

Single threaded kernel services
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• mutexes in Solaris are optimised for the non 
contended case.  Contended mutexes are considered 
rare

• With up to 256 active threads in a single OS instance,  
calls such as atomic_add_32()  on contended mutexes 
can become much hotter.

• Solaris solution is an Exponential backoff algorithm.  
This has the advantage of little overhead in the non-
contended case and performance gains in the 
contended case 

Scaling contended mutexes
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• As we have seen VF systems are the first NUMA CMT 
servers

• A NUMA aware OS ultimately helps in scaling an 
application as it reduces dramatically the interconnect 
traffic between chips in the system

• Solaris has been NUMA aware since Solaris 9
• Processes are assigned to a local lgroup where hot 

areas of their address space such as heap and stack 
are allocated and where they will be scheduled

• The effect is that there is an increase in accesses to 
lower latency local memory

NUMA aware OS
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The Hypervisor: Virtualization for 
CMT Platforms
•  “sun4v” architecture

sun4u code

Solaris X
update

(genunix)

CPU “Z”

Solaris X (sun4v)

SPARC CPU

SPARC hypervisor

Solaris X
(genunix)

sun4v
interfaceUS-Z CPU

code

Operating
System

Platform
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The Sun4v/HV/LDOMs Model

• Replace HW domains 
with Logical Domains
> Highly flexible

• Each Domain runs an 
independent OS
> Capability for specialized 

domains
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Virtualized I/O 
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The future - Hybrid I/O 
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• Scaling and throughput are the most important 
goals for performance on highly threaded 
systems

• High Utilisation of the pipelines is key to performance.  
• Need many software threads or processes to utilise 

the hardware threads.
• Threads have to be actually working
• Multiple instances of an application may be necessary 

to achieve scaling
• A single thread can become the bottleneck for the 

application
• Spinning in a tight loop waiting for a hot lock is not 

good for scaling on CMT

Scaling Applications on many cores
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• In order to determine the utilization we use low level 
hardware counters to count the number of instructions per 
second per pipeline – both integer and floating point

• We have written a tool called corestat which collects data 
from the low level performance counters and aggregates it to 
present utilization percentages 

• Available from http://cooltools.sunsource.net/corestat/ 
• Corestat reports :

− Individual integer pipeline utilization (Default mode)
− Floating Point Unit utilization  -g flag)

Utilization and Corestat
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• The most common reason an application fails to scale on 
CMT is hot locks

• We have found this especially true when migrating from 2-4 
way systems where access to hot locks and structures is 
effectively serialized

• If a system has 16 cores and 128 threads, then there can be 
up to 128 instruction streams executing in parallel.  Hot locks 
which will tend to reside in the L2 cache and can become 
extremely contended.

• When developing locking code we need to use a low-impact, 
long-latency opcode to add delay in the busy-wait loop.  The 
low-impact opcode frees up cycles so that other threads 
sharing the core get more useful work done

Locking issues
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Proven Applications Areas for CMT
• Web-servers: Apache, SunOne, Lighttpd
• Web Proxy: Sun Web Proxy
• J2SE Appservers: BEA WLS, Websphere, SunOne, 

Oracle
• Database Servers: Oracle, Sybase, mySQL, 

Postgres, DB2
• Mail Servers: Sendmail, Domino, Brightmail, 

Openwave
• ERP: Siebel, Peoplesoft Oracle E-Business
• Security
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Proven Applications Areas for CMT
• JES Stack: Directory, Portal, Access Manager
• NFS Servers
• DNS: BIND
• E-Learning: Blackboard
• Capacity Planing: BMC, HP, Tivoli
• Net Backup:
• Search: Lucene
• Development:  Clearcase, compile servers
• Streaming Video
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• Victoria Falls 2-socket Niagara systems Available 
today

• Victoria Falls 2-socket Niagara blades 2HCY08
• Victoria Falls 4-socket Niagara systems 1HCY08

VF Availability
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• Multiple cores are here to stay and the pursuit of 
frequency is over

• Power and cooling are the new driving factors in the 
datacenter.  This requires much higher utilization 
through scaling, consolidation and virtualization

• A high bandwidth, low latency interconnect is essential 
to achieve good scalability on multi-core systems

• Scalable memory bandwidth and physical I/O is also 
required

• An OS running on a highly threaded processor must 
also be scalable and in many cases NUMA aware.  It 
must also be virtualizable

• Servers with many cores and hardware threads 
present a different set of scaling issues to applications

Conclusions


