
Hardware and Software
solutions for scaling
highly threaded
processors

• Denis Sheahan
• Distinguished Engineer
• Sun Microsystems Inc.

Page 2

Data

• Chip Multi-threaded concepts
• Lessons learned from 6 years of CMT
• Aim of Victoria Falls
• Hardware scaling
• Scaling the OS
• Virtualization and Consolidation
• Scaling Applications
• Conclusions

Agenda

Memory Bottleneck

Relative
Performance
10000

 1
1990 1995 2005 1980

1000

100

10

 1985 2000

Gap

CPU Frequency
DRAM Speeds

CPU -- 2
x Every 2 Years

DRAM -- 2x Every 6 Years

Source: Sun World Wide Analyst Conference Feb. 25, 2003

Page 4

CMT Implementation

Niagara Processor
Shared Pipeline

 Utilization: Up to 85%

C MC MC MThread 1

Memory Latency Compute
Time

C MC MC M

C MC MC M
C MC MC M

Thread 2

Thread 3

Thread 4

Four threads share a single pipeline
Every cpu cycle an instruction from
a different thread is executed

Lessons from CMT
• Multiple cores are here to stay.
 Already quad core, 8 core on most roadmaps
 Big impact on commercial applications,
 Big problem for desktop and laptop software
• The pursuit of frequency is over.
 Apart from one or two vendors most have dropped

their 4GHz and 5GHz plans
 Very high frequency usually means higher power
 Higher frequency usually adds complexity and

lengthens time to market

Lessons learned from CMT
• Power and cooling have become extremely

important to most customers
 Ecoresponsibility and carbon footprint are the new

standards for datacenters
 Many datacenters are at capacity
 Acceleration in the development of lower power

systems
 Also accelerated Virtualization technology.
 Customer trading performance versus power

Lessons learned from CMT

• Many throughput workloads benefit more from
higher thread count than higher frequency

 CMT has proven this time and again with public
benchmarks

• Some code is single threaded and we need to
work to make them parallel

 Not as big an issue in the HPC space but even here
can have periods such as results aggregation and
report generation that are serial

Page 8

Big Question

How do you make CMT Scale to 32 cores and
256 threads

Page 9

Data

• Create an SMP version of CMT to extend the highly
threaded Niagara design

• Use T2 as the basis for these systems
• Minimal modifications to T2 for shorter time to market
• Create two-way and four-way systems without the

need for a traditional SMP backplane
• Avoid any hardware bottlenecks to scaling
• High throughput low latency interconnect
• Scale memory bandwidth with processors
• Scale I/O bandwidth with processors
• Hardware features to enable software scaling

Aim of Victoria Falls

Page 10

Victoria Falls Processor
• VF is a derivative. Re-use

UltraSPARC T2 cores, crossbar,
L2$, PCI-Express I/F

• Remove 10GE network interface
• Replace two memory channels with

four coherence channels
• Increase memory link speed to

4.8Gbps (was 4.0Gbps)
• Added relaxed DMA ordering to PCI-

Ex interface
• All I/O on VF via the x8 PCI-E link

per chip, scale I/O with processors
• Similar packaging as US T2

Coherence
Unit

Coherence
Unit

Coherence
Unit

Coherence
Unit

Memory
Controller

Memory
Controller

PCI-Express

x8 @ 2.5Ghz
2 GB/s each direction

4 Coherence Channels
6.4 GB/s per channel each direction, 51GB/s total

Niagara2 Cores, Crossbar, L2$
(8 cores, 64 threads, 4MB L2$)

NCX NCU, DMU

25 GB/s read
13 GB/s write

Dual Channel
FBDIMM

Dual Channel
FBDIMM

Page 11

Data

• Interconnect is key to scaling to 32 cores and 256
threads

• Decision not to use a traditional bus given the memory
bandwidth requirements

• Instead we used half the FBDIMM channels for
memory and the other half to create 4 bidirectional
links for interconnect

• Physical link of interconnect same as FBDIMM
• Reuse the FBDIMM pins for the interconnect
• Result is a high speed SERDES link
• Provides high bandwidth and a low latency

interconnect

Hardware Scaling - Interconnect

Niagara2 Cores, Crossbar, L2$
(8 cores, 64 threads, 4MB L2$)

Coherence
Unit

Memory Controller Memory Controller

PCI-Express

Niagara2 Cores, Crossbar, L2$
(8 cores, 64 threads, 4MB L2$)

Coherence
Unit

Memory Controller Memory Controller

PCI-Express

VF 2-Socket System

System IO (Network, Disk, etc.)

NCX NCU, DMU NCX NCU, DMU

Dual Channel
FBDIMM

Dual Channel
FBDIMM

Dual Channel
FBDIMM

Dual Channel
FBDIMM

Coherence
Unit

Coherence
Unit

Coherence
Unit

Coherence
Unit

Coherence
Unit

Coherence
Unit

VF 4-Socket System

Coherence
Hubs (4)

4 ports/hub
6.4GB/s per port

in each dirVF

8 Cores
8 Threads/Core

4MB L2$

VF

8 Cores
64 Threads

4MB L2$

VF

8 Cores
64 Threads

4MB L2$

VF

8 Cores
64 Threads

4MB L2$

VF

8 Cores
64 Threads

4MB L2$

PCI-Express

PCI-Express

PCI-Express

PCI-Express

Du
al

Ch
an

ne
l

FB
DI

MM

Du
al

Ch
an

ne
l

FB
DI

MM

Du
al

Ch
an

ne
l

FB
DI

MM

Du
al

Ch
an

ne
l

FB
DI

MM

Dual Channel

FBDIMM
Dual Channel

FBDIMM

Dual Channel

FBDIMM

Dual Channel

FBDIMM

Page 14

Data

• Two elements are key to scaling on highly threaded
servers

 Memory bandwidth. Hundreds of threads require a
very wide pipe to memory

 Local vs. Remote memory latency. Systems that are
highly NUMA can show inverse scaling if memory is
placed badly

• Each VF processor has its own local memory
connected delivering high memory bandwidth
> 21GB/sec Read and 10GB/sec Write
> Memory bandwidth scales with the number of

processors
• Remote memory latency has a 76ns penalty for

access, about 1.5x latency to local memory This
makes VF systems NUMA although not highly so.

Hardware Scaling - Memory

Page 15

Data

• There are a set of common issues when scaling the
OS on a Multi-core highly threaded system

• Scaling single threaded kernel services
• Scaling contended mutexes
• Optimising memory placement
• Optimal scheduling across cores
• Scaling I/O
 Local vs. remote
 Delivering interrupts
• Virtualization

Software Scaling - scaling the OS

Page 16

Data

• Prime example of a single threaded kernel service is
when Solaris performs accounting and book keeping
activities every clock tick.

• As the number of CPUs increases, the tick accounting
loop gets larger. On a 4 way VF system there are 256
 threads to check

• Tick accounting is a single threaded activity and on a
busy system with many CPUs, the loop can often take
more than a tick to process if the locks it needs to
acquire are busy. This causes clock drift and other
unpleasantness.

• Solution is to involve multiple cpus in the Tick
scheduling. Cpus are collected in groups and one is
chosen to schedule all their ticks

• Algorithm is used to spread the tick accounting evenly
across active cpus.

Single threaded kernel services

Page 17

Data

• mutexes in Solaris are optimised for the non
contended case. Contended mutexes are considered
rare

• With up to 256 active threads in a single OS instance,
calls such as atomic_add_32() on contended mutexes
can become much hotter.

• Solaris solution is an Exponential backoff algorithm.
This has the advantage of little overhead in the non-
contended case and performance gains in the
contended case

Scaling contended mutexes

Page 18

Data

• As we have seen VF systems are the first NUMA CMT
servers

• A NUMA aware OS ultimately helps in scaling an
application as it reduces dramatically the interconnect
traffic between chips in the system

• Solaris has been NUMA aware since Solaris 9
• Processes are assigned to a local lgroup where hot

areas of their address space such as heap and stack
are allocated and where they will be scheduled

• The effect is that there is an increase in accesses to
lower latency local memory

NUMA aware OS

Page 19

The Hypervisor: Virtualization for
CMT Platforms
• “sun4v” architecture

sun4u code

Solaris X
update

(genunix)

CPU “Z”

Solaris X (sun4v)

SPARC CPU

SPARC hypervisor

Solaris X
(genunix)

sun4v
interfaceUS-Z CPU

code

Operating
System

Platform

Page 20

The Sun4v/HV/LDOMs Model

• Replace HW domains
with Logical Domains
> Highly flexible

• Each Domain runs an
independent OS
> Capability for specialized

domains

Hardware

Hypervisor

Logical
Domain 1

Service
Domain

CPU

Mem

Logical
Domain 2

Solaris
10

CPU

Mem

CPU

Logical
Domain 3

Open
Solaris

CPU

Mem

App

App
App

Container 1

App

App

Container

App

Container 2

Shared CPU,
Memory, IO I/O

Page 21

Virtualized I/O
Logical Domain
A

Hypervisor

I/O
Bridge

Nexus Driver
/pci@B

Device Driver
/pci@B/qlc@6

PCI
Root

I/O MMU

Service
Domain

Virtual Nexus I/FHyper
Privileged

Privileged

Hardware

PCI B

Domain Channel

App

Virtual Device
Driver

App
App

App

Virtual Device
Service

Page 22

The future - Hybrid I/O
Logical Domain
A

Hypervisor

I/O
Bridge

Nexus Driver
/pci@B

Common
Device Driver

PCI
Root

I/O MMU

Service
Domain

Virtual Nexus I/FHyper
Privileged

Privileged

Hardware

PCI B

Domain Channel

App

Device
Driver

App
App

App

Common Device
Service

Page 23

Data

• Scaling and throughput are the most important
goals for performance on highly threaded
systems

• High Utilisation of the pipelines is key to performance.
• Need many software threads or processes to utilise

the hardware threads.
• Threads have to be actually working
• Multiple instances of an application may be necessary

to achieve scaling
• A single thread can become the bottleneck for the

application
• Spinning in a tight loop waiting for a hot lock is not

good for scaling on CMT

Scaling Applications on many cores

Page 24

• In order to determine the utilization we use low level
hardware counters to count the number of instructions per
second per pipeline – both integer and floating point

• We have written a tool called corestat which collects data
from the low level performance counters and aggregates it to
present utilization percentages

• Available from http://cooltools.sunsource.net/corestat/
• Corestat reports :

− Individual integer pipeline utilization (Default mode)
− Floating Point Unit utilization -g flag)

Utilization and Corestat

Page 25

• The most common reason an application fails to scale on
CMT is hot locks

• We have found this especially true when migrating from 2-4
way systems where access to hot locks and structures is
effectively serialized

• If a system has 16 cores and 128 threads, then there can be
up to 128 instruction streams executing in parallel. Hot locks
which will tend to reside in the L2 cache and can become
extremely contended.

• When developing locking code we need to use a low-impact,
long-latency opcode to add delay in the busy-wait loop. The
low-impact opcode frees up cycles so that other threads
sharing the core get more useful work done

Locking issues

Page 26

Proven Applications Areas for CMT
• Web-servers: Apache, SunOne, Lighttpd
• Web Proxy: Sun Web Proxy
• J2SE Appservers: BEA WLS, Websphere, SunOne,

Oracle
• Database Servers: Oracle, Sybase, mySQL,

Postgres, DB2
• Mail Servers: Sendmail, Domino, Brightmail,

Openwave
• ERP: Siebel, Peoplesoft Oracle E-Business
• Security

Page 27

Proven Applications Areas for CMT
• JES Stack: Directory, Portal, Access Manager
• NFS Servers
• DNS: BIND
• E-Learning: Blackboard
• Capacity Planing: BMC, HP, Tivoli
• Net Backup:
• Search: Lucene
• Development: Clearcase, compile servers
• Streaming Video

Page 28

0

0.5

1

1.5

2

Normalized Performance

VF Performance Scaling

Single-chip 1.4Ghz Victoria Falls, 8 Cores, 64 Threads, Solaris

1.00

1.80 1.80 1.85 1.92

1.00 1.00 1.00

Dual-chip 1.4Ghz Victoria Falls, 16 Cores, 128 Threads, Solaris

 Internal OLTP HPC Matrix Java Business CPU Intensive

Page 29

Data

• Victoria Falls 2-socket Niagara systems Available
today

• Victoria Falls 2-socket Niagara blades 2HCY08
• Victoria Falls 4-socket Niagara systems 1HCY08

VF Availability

Page 30

Data

• Multiple cores are here to stay and the pursuit of
frequency is over

• Power and cooling are the new driving factors in the
datacenter. This requires much higher utilization
through scaling, consolidation and virtualization

• A high bandwidth, low latency interconnect is essential
to achieve good scalability on multi-core systems

• Scalable memory bandwidth and physical I/O is also
required

• An OS running on a highly threaded processor must
also be scalable and in many cases NUMA aware. It
must also be virtualizable

• Servers with many cores and hardware threads
present a different set of scaling issues to applications

Conclusions

