

OpenSPARC T1 on Xilinx FPGAs – Updates

Thomas Thatcher
Durgam Vahia
thomas.thatcher@sun.com
Durgam.Vahia@Sun.com
OpenSPARC Engineering

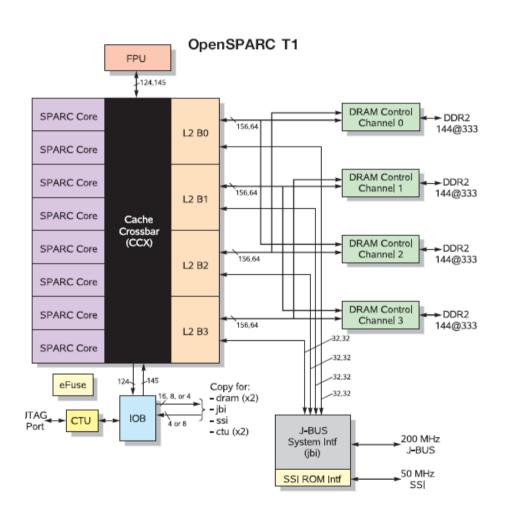
Paul Hartke
Paul.Hartke@Xilinx.Com
Xilinx University Program

RAMP Retreat – January 2008, Berkeley

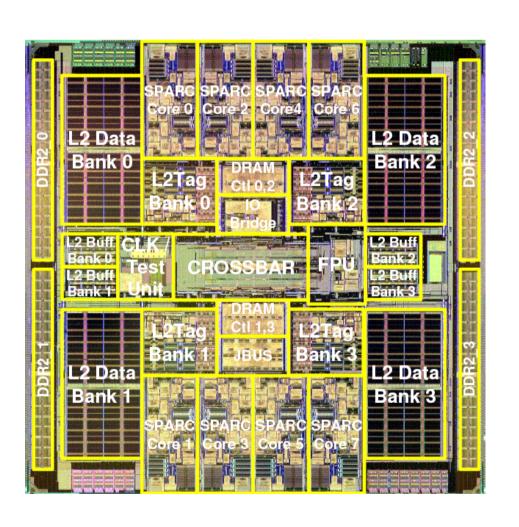
Agenda

- Quick OpenSPARC Overview
- Progress timeline
- Current Status
 - > Solaris Boot
 - > Networking
 - Mapping on Virtex 5 parts
 - > Availability
- Roadmap
- Q & A

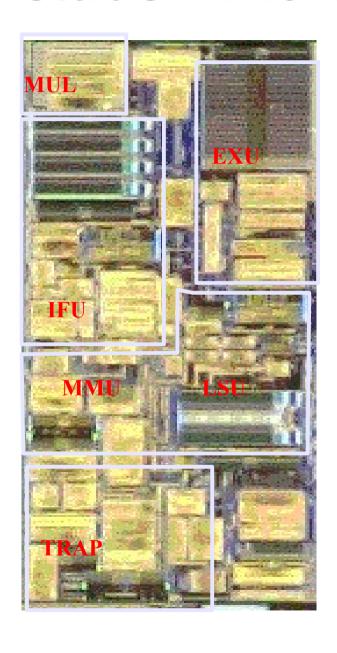
Recap: Big Goals


- Proliferation of OpenSPARC technology
- Proliferation of Xilinx FPGA technology
- Make OpenSPARC FPGA friendly
 - Create reference design with complete system functionality
 - > Boot Solaris/Linux on the reference design
 - > Open it up
 - Seed ideas in the community

OpenSPARC T1



- SPARC V9 implementation
- Eight cores, four threads each
 - 32 simultaneous threads
- All cores connect through a 134.4 GB/s crossbar switch
- High BW 12-way associative 3
 MB on-chip L2 cache
- 4 DDR2 channels (23 GB/s)
- 70W power
- ~300M transistors



OpenSPARC T1: Some Design Choices

- Simpler core architecture to maximize cores on die
- Caches, DRAM channels shared across cores
- Shared L2 decreases cost of coherence misses significantly
- Crossbar good for b/w, latency, and functional verification

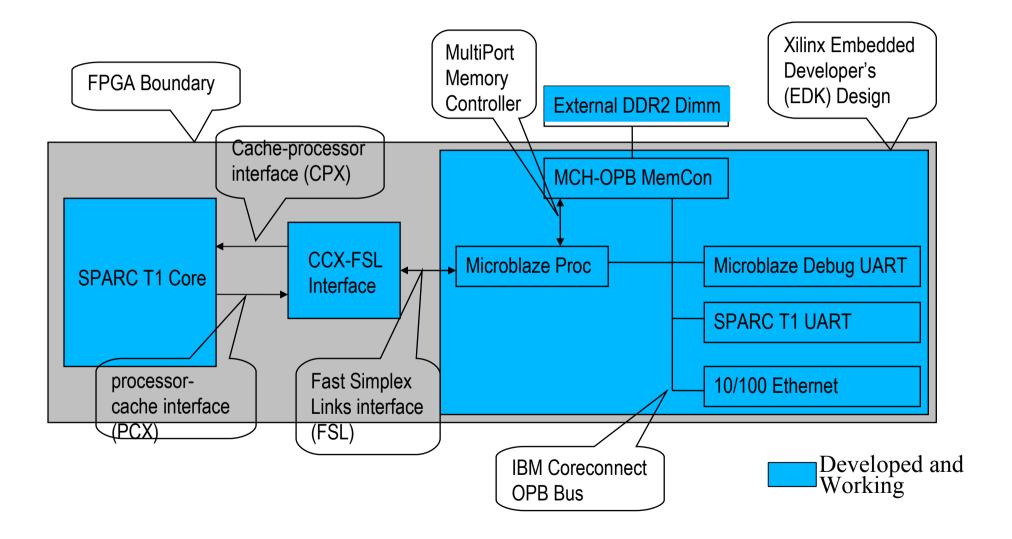
UltraSPARC-T1 Processor Core

- Four threads per core
- Single issue 6 stage pipeline
- 16KB I-Cache, 8KB D-Cache
- Unique resources per thread
 - Registers
 - Portions of I-fetch datapath
 - Store and Miss buffers
- Resources shared by 4 threads
 - Caches, TLBs, Execution Units
 - Pipeline registers and DP
- Core Area = 11mm2 in 90nm
- MT adds ~20% area to core

Progress Timeline

- RAMP Retreat, July, 2006
 - > Sun and Xilinx begin OpenSPARC collaboration
- RAMP Retreat, January 2007:
 - Demonstrated OpenSPARC T1 core mapped on ML411 board (XC4VFX100 FPGA)
 - > Ran replays of diagnostic tests
- FCRC/RAMP, June 2007:
 - Demonstrated a stand-alone program running on top of Hypervisor
- RAMP Retreat, January 2008
 - Demonstrated Solaris running (single user) on the ML411 board

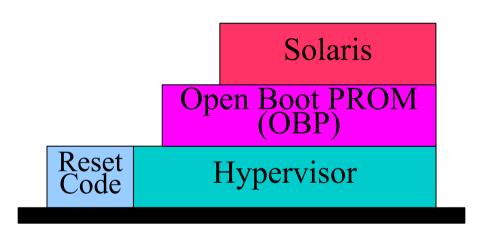
Current Status


- Solaris Running on ML411-V4FX100 board
 - > Have booted both Solaris 10 and OpenSolaris
 - > Run in single-user mode
 - Booted from a RAM disk image
- Networking functional
 - > Using polled mode
 - Telnet and FTP are working
 - Close to having interrupts working
- Design is working on Virtex5 board

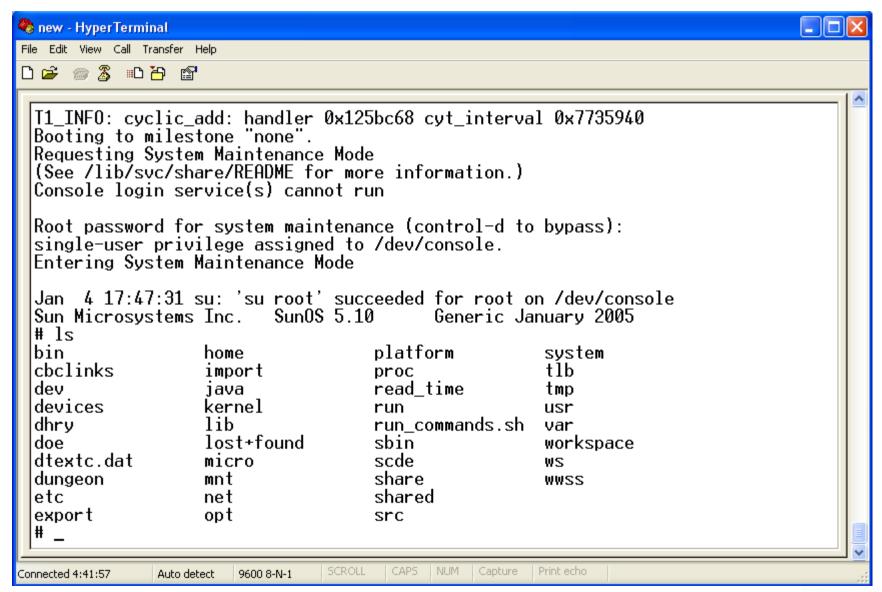
System Block Diagram

System Operation

- OpenSPARC T1 core communicates exclusively via cache-crossbar interface (CCX)
 - PCX (processor-to-cache), CPX (cache-to-processor)
- Microblaze firmware polls T1 core and system peripherals
 - Services memory and I/O requests
 - Performs address mapping
 - Returns results to the core
 - Maintains coherence of Level-1 caches in OpenSPARC core



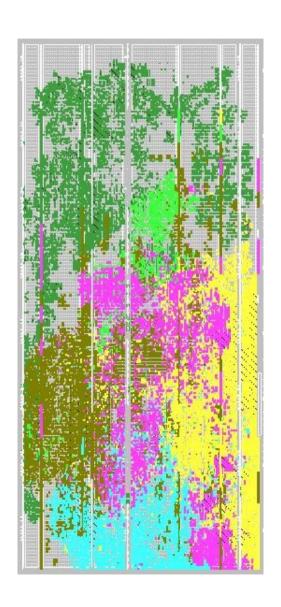
Software Stack


- Out-of-the-box operating system installation
- Boots from a virtual disk in RAM which holds the Solaris binaries
- Able to boot either Solaris 10 or OpenSolaris
- Entire software stack is open source

Solaris Boot

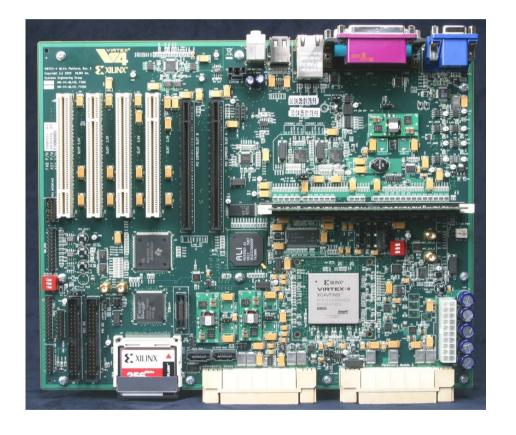
Virtex5 Support

- Using Xilinx ML505 board with same FPGA as BEE3
 - (ugraded 5VLX50T to 5VLX110T)
- Synthesis results (no SPU, 16 TLB entries)


 - 1-thread core: 31475 LUT (45%), 115 BRAM (78%)
 4-thread core: 51558 LUT (74%), 115 BRAM (78%)
 - > Core only, as synthesized by Synplicity
- Complete system:
 - > With MicroBlaze core, 2 UART, ethernet, and DDR2 controller:
 - > 1-thread core: 38271 LUT (55%), 128 BRAM (86%)
 - 58128 LUT (84%), 128 BRAM (86%) > 4-thread core:

Virtex5 Support

- Single-thread core running on ML505-V5LX110T board
 - > Booted Hypervisor
 - Ran stand-alone application program
 - Expect to boot Solaris soon
- Four-thread core placed and routed.
 - > Booted Hypervisor
 - Ran stand-alone application program



Demo Details

- ML411 Board
 - Solaris Boot on singlethread OpenSPARC T1
 - > Watch Solaris Boot
 - > Run ancient text-based adventure game
 - > Run Dhrystone MIPS program

Demo Details

- ML505-V5LX110T Board
 - Runs a stand-alone C program on top of Hypervisor.
 - Play the world-famous Dungeon game

Roadmap

- OpenSPARC T1 Release 1.6 planned for 1Q2008
 - > EDK project updates
 - MicroBlaze firmware updates for functionality and performance
 - ML505-5VLX110T support
 - Instructions to boot OpenSolaris
 - Complete reference design for 1-thread and 4-thread cores

OpenSPARC momentum

Innovation Happens Everywhere > 6500 downloads

18

OpenSPARC

Summary

- OpenSPARC is a complete microprocessor solution
 - > Complete simulation environment with regression suites
 - > Critical for verifying any changes made to the design
 - EDK environment demonstrated on Virtex4 and Virtex5 FPGAs
 - Choice of 1-thread or 4-thread cores
 - > Architectural and simulation models
 - > Hypervisor API
- And it's available today!

Team

Ismet Bayraktaroglu

Thomas thatcher

Durgam Vahia

Paul Hartke (Xilinx)

Not Pictured: Gopal Reddy