
Workshop on
Recent Trends in Procesor
Architecture – OpenSPARC
March 17, 2007
Ramesh Iyer
Sr. Engineering Manager
Shrenik Mehta
Senior Director,
Frontend Technologies & OpenSPARC Program
David Weaver
Sr. Staff Engineer, UltraSPARC Architect
Jhy-Chun (JC) Wang
Sr. Staff Engineer
Systems Group
Sun Microsystems, Inc.
www.opensparc.net

http://www.opensparc.net/

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 2www.opensparc.net

Agenda

1.Chip Multi-Threading (CMT) Era
2.Microarchitecture of OpenSPARC T1
3.OpenSPARC T1 Program
4.SPARC Architecture
5.OpenSPARC in Academia
6.OpenSPARC T1 simulators
7.Hypervisor and OS porting
8.Compiler Optimizations and tools
9.Community Participation

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 3www.opensparc.net

Making the Right Waves
Im

pr
ov

ed
 P

ric
e/P

er
fo

rm
an

ce

1980 20001990 2010

Chip Multi-threading
(CoolThreadsTM)Symmetrical

Multi-processing (SMP)

Reduced Instruction Set
Computing (RISC)

The Processor Growth

1982 1990 1998 2005

Data
Center

Single Chip
Integer Unit

<20K gates

Multiprocessors Multiple cores

>350M xstors

SMP
64 bit

RISC RAS SWAP
CMT

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 5www.opensparc.net

Network Computing Is
Thread Rich
Web services, JavaTM
applications, database
transactions, ERP . . .

Moore’s Law
A fraction of the die can
already build a good
processor core; how am I
going to use a billion
transistors?

Worsening
Memory Latency
It’s approaching 1000s
of CPU cycles! Friend or foe?

Forcing a rethinking of
processor architecture –
modularity, less is more,
time-to-market

Growing Complexity
of Processor Design

The Big Bang Is Happening—
Four Converging Trends

Source: Sun Network San Francisco, NC03Q3, Sep. 17,
2003

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 6www.opensparc.net

Network Computing Is
Thread Rich
Web services, JavaTM
applications, database
transactions, ERP . . .

Moore’s Law
A fraction of the die can
already build a good
processor core; how am I
going to use a billion
transistors?

Worsening
Memory Latency
It’s approaching 1000s
of CPU cycles! Friend or foe?

Forcing a rethinking of
processor architecture –
modularity, less is more,
time-to-market

Growing Complexity
of Processor Design

The Big Bang Has Happened—
Four Converging Trends

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 7www.opensparc.net

Attributes of Commercial Workloads

Attribute

Application
Category

Web
Server

Instruction-level
Parallelism

Thread-level
Parallelism

Instruction/Data
Working Set

Data Sharing

SAP 2T SAP 3T
(DB)

DSS
(TPC-H)

Server
Java

OLTP ERP ERP DSS

Low Low Low LowMedium High

High High High High High High

Large Large Large Medium Large Large

Low Medium High Medium High Medium

TIER1
Web

(Web99)

TIER2
App Serv

(JBB)

TIER3
Data

(TPC-C)

Web Services Client Server Data
Warehouse

Memory Bottleneck
Relative Performance

10000

 1
1990 1995 2005 1980

1000

100

10

 1985 2000

Gap

CPU Frequency
DRAM Speeds

Source: Sun World Wide Analyst Conference Feb. 25, 2003

CPU -- 2
x Every 2 Years

DRAM -- 2x Every 6 Years

Source: Sun World Wide Analyst Conference Feb. 25, 2003

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 9www.opensparc.net

Single Threaded
Performance

Single Threading

Thread

Memory Latency Compute

Tim
e

HURRY
UP AND
WAIT!

C C C

Typical Processor
Utilization:15–25%

M M M

Up to 85% Cycles Waiting for Memory

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 10www.opensparc.net

Single Threaded
Performance Chip Multi-threaded

(CMT) Performance

The Power of CMT - CoolThreads

UltraSPARC T1 Core
Utilization: Up to 85%

C MC MC MThread 1

Memory Latency Compute
Tim

e

C MC MC M

C MC MC M

C MC MC M

Thread 2

Thread 3

Thread 4

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 11www.opensparc.net

Chip Multi-Threading (CMT) to the rescue

CMP
(chip multiprocessing)

HMT
(hardware multithreading)

CMT
(chip

multithreading)

n cores per processor m strands per core n x m threads per processor

Why CMT Works
Goal: “100% Resource Utilization” (given a fixed die size)

20% Maximum
Size of Each Core

SPARC: 4 threads per core
● Increases core die area by ~20%
● Improves performance by ~50–100%

0.05

1

10

2 Single-Core, Multi-Thread

Multi-Core, Multi-Thread

Single-Core, Single-Thread

R
el

at
iv

e
Pe

rfo
rm

an
ce

 o
n

th
re

ad
-

ric
h

m
em

or
y-

bo
un

d
w

or
kl

oa
ds

Copyright Sun Microsystems 2006, Sun Microsystems, Inc. All rights reserved. Used by permission.
Page 13

Example - SpecJBB Execution Efficiency

0 4 8

Single
Threaded

Four
Threaded

Idle Time

72%
Efficiency

Cycles

3.79 cycles

1.56 cycles

Idle Time

21%
Efficiency

1
1 + 3.79

=

4
4 + 1.56

=

Compute Pipeline Conflict Pipeline Latency Memory Latency
A. S. Leon et al., “A Power-Efficient High Throughput 32-Thread SPARC Processor,” ISSCC06, Paper 5.1

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 14www.opensparc.net

• SPARC V9 (Level 1) implementation
• Up to eight 4-threaded cores (32

simultaneous threads)
• All cores connected through high bandwidth

(134.4GB/s) crossbar switch
• High-bandwidth, 12-way associative 3MB

Level-2 cache on chip
• 4 DDR2 channels (23GB/s)
• Power : < 80W
• ~300M transistors
• 378 sq. mm die

1 of 8
Cores BUS

C8C7C6C5C4C3C2C1

L2$L2$L2$L2$

Xbar

DDR-2
SDRAM

DDR-2
SDRAM

DDR-2
SDRAM

DDR-2
SDRAM

FPU

UltraSPARC T1 Processor

Sys I/F
Buffer Switch

Core

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 15www.opensparc.net

Single-Core Processor CMT Processor

(Not to Scale)

C1 C2 C3 C4

C5 C6 C7 C8

Faster Can Be Cooler

107C

102C

96C

91C

85C

80C

74C

69C

63C

58C

CMT: On-chip = High Bandwidth

Switch
P P P P

M M M M

I
O

Switch
P P P P

M M M M

I
O

Switch
P P P P

M M M M

I
O

Switch
P P P P

M M M M

I
O

32-thread
OpenSPARC T1 Processor

Direct crossbar interconnect

-- Lower cost
-- better RAS
-- lower BTUs,
-- lower and uniform latency,
-- greater and uniform bandwidth. . .

PP
PP
PP
PP

Mem Ctlr

Mem Ctlr

Mem Ctlr

Mem CtlrI/OSw
itc

h
32-thread

Traditional SMP System
Example: Typical SMP Machine Configuration One motherboard, no switch ASICs

Switch
P P P P

M M M M

I
O

Switch
P P P P

M M M M

I
O

Switch
P P P P

M M M M

I
O

Switch
P P P P

M M M M

I
O

Sw
itch

XB
ar

L2
L2
L2
L2

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 17www.opensparc.net

CMT Benefits

Performance

Cost
● Fewer servers
● Less floor space
● Reduced power consumption
● Less air conditioning
● Lower administration and

 maintenance

Reliability

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 18www.opensparc.net

CMT Pays Off with CoolThreadsTM Technology

*See disclosures

Sun Fire T1000 and T2000

● Up to 5x the performance
● As low as 1/5 the energy
● As small as 1/4 the size

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 19www.opensparc.net

CoolThreads Servers are a Hit

“...the UltraSparc T1 is
truly a revolutionary

processor.”

“...performance in several
profiles unmatched for the

power and space it consumes.”

“These servers could save
companies millions.”

“...the machines put Sun at the
cutting edge of one of the chip

industry's biggest trends...
multi-core systems.”

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Pe
rfo

rm
an

ce
 (v

s.
 V

AX
-1

1/
78

0)

25%/year

52%/year

??%/year

Uniprocessor Performance (SPECint)

• VAX : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002
• RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson, Computer
Architecture: A Quantitative Approach, 4th
edition, 2006

⇒ Sea change in chip
design: multiple “cores” or
processors per chip

3X

Source: David Patterson presentation at
MultiCore Expo 2006

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 21www.opensparc.net

UltraSPARC-T1: Choices & Benefits
• Simple core (6-stage, only 11mm2 in 90nm), 1 FPU

→ maximum # of cores/threads on die
→ pipeline built from scratch, useful for multiple generations
→ modular, flexible design ... scalable (up and down)

• Caches, DRAM channels shared across cores
→ better area utilization

• Shared L2 cache
→ cost of coherence misses decrease by order of magnitude
→ enables highly efficient multi-threaded software

• On-die memory controllers
→ reduce miss latency

• Crossbar switch
→ good for b/w, latency, functional verification

For reference: in 90nm technology, included 8 cores, 32 threads, and only dissipate 70W

UltraSPARC-T1 Processor Core
● Four threads per core
● Single issue 6 stage pipeline
● 16KB I-Cache, 8KB D-Cache
> Unique resources per thread

> Registers
> Portions of I-fetch datapath
> Store and Miss buffers

> Resources shared by 4 threads
> Caches, TLBs, Execution Units
> Pipeline registers and DP

● Core Area = 11mm2 in 90nm
● MT adds ~20% area to core

 IFU

 EXU

 MUL

 TRAP

 MMU LSU

UltraSPARC T1 Processor Core Pipeline

Fetch
Thread
Select Decode Execute Memory Writeback

ICache
Itlb

Inst
buf x 4

DCache
D-TLB
Stbuf x 4Decode

Reg file
 x4

Thread selects

Thrd
Sel
Mux

Thrd
Sel
Mux

PC logic
 x 4

Thread
select
logic

Instruction type
misses
traps & interrupts
resource conflicts

Crossbar
Interface

Alu
Mul
Shft
Div

Crypto Accelerator

...blue units are replicated per thread on core

1 2 3 5 64

Thread Selection Policy
● Every cycle, switch among available (ready to run)

threads
– priority given to least-recently-executed thread

● Thread becomes not-ready-to-run due to:
● Long latency operation like load, branch, mul, or div
● Pipeline stall such as cache miss, trap, or resource conflict

● Loads are speculated as cache hits, and the thread is
switched in with lower priority

 Accellera/SI2 Unified Power Format Technical Meeting 10/5/06
25

T1 Power
• Power Efficient Architecture

– Single issue, in-order six stage pipeline
– Minimal speculation, predication or branch prediction

• Thermal monitoring for power throttling
– 3 external power throttle pins

• Controlled by thermal diodes
• Stall cycles injected, affecting all threads

– Memory throttling
• Open page limit

• Design Implementation
– Fully static design
– Fine granularity clock gating

• Limited clock issue on stall, FGU
• Limited L2 Cache & Memory clock gating

– Wire classes optimized for power * delay

T1 Power Components

IO's
Global Clock
Interconnect
Misc Units
Floating Point
L2Buf Unit
L2Tag Unit
L2Data
Leakage
Crossbar
SPARC Cores

Cores

Leakage

Wire

Microarchitecture details of the
UltraSPARC -T1 CPU

27

Thread Selection – All Threads Ready

• St0-ld Dt0-ld Et0-ld Mt0-ld Wt0-ld

• Ft0-add St1-sub Dt1-sub Et1-sub Mt1-sub Wt1-sub

• Ft1-ld St2-ld Dt2-ld Et2-ld Mt2-ld Wt2-ld

• Ft2-br St3-add Dt3-add Et3-add Mt3-add

• Ft3-add St0-add Dt0-add Et0-add

N
ex

t F
et

ch

Pipelined Flow

28

Thread Selection – Two Threads Ready

• St0-ld Dt0-ld Et0-ld Mt0-ld Wt0-ld

• Ft0-add St1-sub Dt1-sub Et1-sub Mt1-sub Wt1-sub

• Ft1-ld St1-ld Dt1-ld Et1-ld Mt1-ld Wt1-ld

• Ft1-br St0-add Dt0-add Et0-add Mt0-add

N
ex

t F
et

ch

Pipelined Flow

Thread '0' is speculatively switched in before cache hit information
is available, in time for the 'load' to bypass data to the 'add'

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 29www.opensparc.net

Instruction Fetch/Switch/Decode Unit(IFU)

• I-cache complex
> 16KB data, 4ways, 32B line size
> Single ported Instruction Tag.
> Dual ported(1R/1W) Valid bit array to hold Cache line

state of valid/invalid
> Invalidates access Vbit array not Instruction Tag
> Pseudo-random replacement

• Fully Associative Instruction TLB
> 64 entries, Page sizes: 8k,64k, 4M, 256M
> Pseudo LRU replacement.
> Multiple hits in TLB prevented by doing autodemap on fill

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 30www.opensparc.net

IFU Functions (cont'd)
• 2 instructions fetched each cycle, though only one is issued/clk.

Reduces I$ activity and allows opportunistic line fill.
• 1 outstanding miss/thread, and 4 per core. Duplicate misses do

not request to L2
• PC's, NPC's for all live instructions in machine maintained in IFU

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 31www.opensparc.net

Windowed Integer Register File
• 5KB 3R/2W/1T structure

> 640 64b regs with ECC!
• Only the 32 registers from current

window is visible to thread
• Window changing in background

under thread switch. Other threads
continue to access IRF

• Compact design with 6T cells for
architectural set & multi ported cell
for working set.

• Single cycle R/W access

(1
6

re
g

x
8

w
in

do
w

s +
 8

 g
lo

ba
l r

eg
s x

 4
 se

ts
)x

4
th

re
ad

s

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 32www.opensparc.net

Execution Units
• Single ALU and Shifter. ALU reused for Branch Address and

Virtual Address Calculation
• Integer Multiplier

> 5 clock latency, throughput of ½ per cycle for area saving
> Contains accumulate function for Mod Arithmetic.
> 1 integer mul allowed outstanding per core.
> Multiplier shared between Core Pipe and Modular

Arithmetic unit on a round robin basis.
• Simple non restoring divider, with one divide outstanding per

core.
• Thread issuing a MUL/DIV will rollback and switch out if

another thread is occupying the mul/div units.

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 33www.opensparc.net

Load Store Unit(LSU)
• D-Cache complex

> 8KB data, 4ways, 16B line size
> Single ported Data Tag.
> Dual ported(1R/1W) Valid bit array to hold Cache line

state of valid/invalid
> Invalidates access Vbit array but not Data Tag
> Pseudo-random replacement
> Loads are allocating, stores are non allocating.

• DTLB: common macro to ITLB(64 entry FA)
• 8 entry store buffer per thread, unified into single 32

entry array, with RAW bypassing.

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 34www.opensparc.net

LSU(cont'd)
• Single load per thread outstanding. Duplicate request

for the same line not sent to L2
• Crossbar interface

>LSU prioritizes requests to the crossbar for FPops,
Streaming ops, I and D misses, stores and interrupts
etc.

>Request priority:
imiss>ldmiss>stores,{fpu,strm,interrupt}.

>Packet assembly for pcx.
• Handles returns from crossbar and maintains order for

cache updates and invalidates.

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 35www.opensparc.net

Other Functions
• Support for 6 trap levels. Traps cause pipeline flush and thread

switch until trap PC is available
• Support for upto 64 pending interrupts per thread
• Floating Point

> FP registers and decode located within core
> On detecting an Fpop

> The thread switches out
> Fpop is further decoded and FRF is read
> Fpop with operands are packetized and shipped over the

crossbar to the FPU
> Computation done in FPU and result returned via

crossbar
> Writeback completed to FRF and thread restart

Virtualization

UltraSPARC T1

Hypervisor

OS instance 1 OS instance 2

●Hypervisor layer
virtualizes CPU

●Multiple OS instances
●Better RAS as failures
in one domain do not
affect other domain

● Improved OS
portability to newer
hardware

Virtualization on UltraSPARC T1

• Implementation on UltraSPARC-T1
> Hypervisor uses Physical Addresses
> Supervisor sees 'Real Addresses' – a PA abstraction
> VA translated to 'RA' and then PA. Niagara MMU and TLB

provides h/w support.
> Upto 8 partitions can be supported. 3Bit partion ID is part of TLB

translation checks
> Additional trap level added for hypervisor use

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 38www.opensparc.net

Crossbar

• Each requestor queues upto 2
packets per destination.

• 3 stage pipeline: Request,
Arbitrate and Transmit

• Centralised arbitration with
oldest requestor getting priority

• Core to cache bus optimized
for address + doubleword store

• Cache to core bus optimized
for 16B line fill. 32B I$ line fill
delivered in 2 back to back clks

L2 Cache

• 3MB, 4-way banked, 12way SA, Writeback
• 64B line size, 64B interleaved between banks
• Pipeline latency: 8 clks for Load, 9 clks for I-miss, with

critical chunk returned first
• 16 outstanding misses per bank -> 64 total
• Coherence maintained by shadowing L1 tags in an L2

directory structure.
• L2 is point of global visibility. DMA from IO is serialised

wrt traffic from cores in L2

L2 Cache – Directory

• Directory shadows L1 tags
> L1 set index and L2 bank interleaving is such that ¼ of

L1 entries come from an L2 bank
> On an L1 miss, the L1 replacement way and set index

identify the physical location of the tag which will be
updated by miss address

> On a store, directory will be cammed.
– Directory entries collated by set so only 64 entries need to

be cammed. Scheme is quite power efficient
– Invalidates are a pointer to the physical location in the L1,

eliminating the need for a tag lookup in L1

Coherence/Ordering
• Loads update directory & fill the L1 on return
• Stores are non allocating in L1

> Two flavors of stores: TSO, RMO.
One TSO store outstanding to L2 per thread to preserve
store ordering. No such limitation on RMO stores

> No tag check done at store buffer insert
> Stores check directory and determine L1 hit.
> Directory sends store ack/inv to core
> Store update happens to D$ on store ack

• Crossbar orders responses across cache
banks

On Chip Mem Controller

• 4 independent DDRII DRAM channels
• Can supports memory size of upto 128GB
• 25GB/s peak bandwidth
• Schedules across 8 rds + 8 writes
• Can be programmed to 2 channel mode in reduced

configuration
• 128+16b interface, chipkill support, nibble error

correction, byte error detection
• Designed to work from 125-200Mhz

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 43www.opensparc.net

New wave requires rethinking everything

Why not
open source
hardware?

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 44www.opensparc.net

It’s about
Participation

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 45www.opensparc.net

World's First Open Source Microprocessor

• Governed by GPL (2)
• Complete chip architecture
• Register Transfer Logic (RTL)
• Hypervisor API
• Verification suite and

architectural models
• Simulation model for Solaris

bringup on s/w
• 14 million lines of code

OpenSPARC.net

Get the Source ... Start Innovating!

Innovate anywhere –
within it or outside it

Things you can do:
- use as is
- add/delete threads
- add/delete cores
- add new instructions
- change or add FPUs
- add custom coprocessors
- add video/graphics
- add network interface
- change memory interface
- change I/O interface
- change cache/mem interface
- etc...

IO BUS

C4C3C2C1

L2$ BankL2$ BankL2$ BankL2$ Bank

Crossbar FPU

System Interface
Buffer Switch Core

20 GB/s read/write bandwidth

16KB I$

8KB D$

16KB I$

8KB D$

16KB I$

8KB D$

16KB I$

8KB D$

C8C7C6C5

16KB I$

8KB D$

16KB I$

8KB D$

16KB I$

8KB D$

16KB I$

8KB D$

L2$ Bank L2$ Bank L2$ Bank L2$ Bank

Memory
Controller

Memory
Controller

Memory
Controller

Memory
Controller

16B @ 333 MT/s

16B @ 200Mhz
3.2GB/s peak, 2.5GB/s effective

Crossbar

DDR2 DIMM DDR2 DIMM DDR2 DIMM DDR2 DIMM

4 threads per core

3MB L2$

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 47www.opensparc.net

OpenSPARC Communities

Chip Designers

Hardware IP Suppliers

EDA Vendors

CMT Tools

Academia/Universities

Operating Systems

Benchmarking
Reference flow
FPGA
Emulation
Verification
Physical Design
Multi-threaded tools

Architecture, ISA, VLSI course work
Threading, Scaling, Parallelization
Benchmarks

PCI cores, SERDES etc.

Compilers, Threading
Optimization
Performance Analysis

OpenSolaris,
Linux, BSD variants,
Embedded OSs

SoC designs, Hard macros
Telecom applications

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 48www.opensparc.net

Innovation
will happen everywhere

OpenSPARC momentum

Innovation Happens Everywhere

OpenSPARC community achievements
• Single core (S1) design released by Simply RISC based

in Italy (less than 6 months of effort)
• David Miller ported Linux in less than 6 weeks to T2000

system
• Cadence uses OpenSPARC for benchmarking of two

generation of hardware accelelrators
• John Hennessy and David Patterson's fourth edition of

“Computer architecture” book includes section on T1
• UCSC professor Jose Renau releases 65nm synthesis

results
• Collaborative effort on RAMP (build 1000 core system)
• > 4500 downloads.

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 50www.opensparc.net

Cool tools for SPARC systems

• GCC for SPARC Systems
• Simple Performance Optimisation Tool
• Automatic Tuning and Troubleshooting Tool

http://cooltools.sunsource.net/

http://cooltools.sunsource.net/

OpenSPARC.net: Get the Source

• Browse online
• Sort by:

> Modules
> Signals
> Files
> Tasks
> Functions

• or Download
the .tar files

64 Bits. 32 Threads. Free.

Imagine what’s
next...

"Sun's decision to release Verilog source code for the UltraSPARC hardware design
under a free software license is a historic step. Sun is showing its profound
understanding of the forces shaping our technological future in making this decision.
 -- Eben Moglen, founding director of the Software Freedom Law Center

"The free world welcomes Sun's decision to use the Free Software Foundation's GNU
GPL for the freeing of OpenSPARC. We'd love to see other hardware companies
follow in Sun's footsteps."

 -- Richard Stallman, Free Software Foundation

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 53www.opensparc.net

Legal Substantiation – Benchmarks
• Sun Fire T2000 (8 cores, 1 chip) 14,001 SPECweb2005. IBM p5 550 (4 cores, 2 chips) 7881 SPECweb2005. IBM

eServer Xseries x346 (2 cores, 2 chips) 4348 SPECweb2005. SPEC, SPECweb reg tm of Standard Performance
Evaluation Corporation. Sun Fire T2000 results submitted to SPEC. Other results from www.spec.org as of December 6,
2005.

• SPECjAppServer2004 with BEA - Sun Fire T2000 (8 cores, 1 chip) 615.64 JOPS@Standard. SPECjAppServer2004 Sun
Fire rx4600 (4 cores, 4 chip) 471.28 JOPS@Standard. SPEC, SPECjAppServer reg tm of Standard Performance
Evaluation Corporation. Sun Fire T2000 results submitted to SPEC. Other results from www.spec.org as of 12/06/2005.

• SPECjAppServer2004 with Sun Java System Application Server. SPECjAppServer2004 Sun Fire T2000 (8 cores, 1 chip)
436.71 JOPS@Standard. SPECjAppServer2004 HPrx4640 (4 cores, 4 chip) 471.28 JOPS@Standard. SPEC,
SPECjAppServer reg tm of Standard Performance Evaluation Corporation. Sun Fire T2000 results submitted to SPEC.
Other results from www.spec.org as of 12/06/2005. Sun HW+SW application tier cost = $37,484.95, appl cost per JOP =
$85.83. HP HW+SW application tier cost = $140,537.88, appl cost per JOP = $298.20 HP Bill of Material from
http://www.spec.org/jAppServer2004/results/res2005q3/jAppServer2004-20050913-00016.html BEA pricing from
http://www.awaretechnologies.com/BEA/index.html.System pricing dated 11/29/05

• Sun Fire T1000 Server (1 chip, 8 cores, 1-way) 51,540 bops, 12,885 bops/JVM. IBM x346 (2 chip, 4 cores, 4-way)
39,585 bops, 39,585 bops/JVM. IBM p520 (1 chip, 2 cores, 2-way) 32,820 bops, 32,820 bops/JVM. Dell SC1425 (2 chip,
2 cores, 2-way) 24,208 bops, 24,208 bops/JVM. SPEC, SPECjbb reg tm of Standard PerformanceEvaluation Corporation.
 Sun Fire T1000 results submitted to SPEC. Other resultss as of 12/6/2005 on www.spec.org

mailto:JOPS@Standard
http://www.spec.org/
http://www.spec.org/jAppServer2004/results/res2005q3/jAppServer2004-20050913-00016.html
http://www.awaretechnologies.com/BEA/index.html

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 54www.opensparc.net

Legal Substantiation – Benchmarks
(Cont'd)

• NotesBench R6iNotes Sun Fire T2000 (1x1200 MHz UltraSPARC T1, 32GB), 4 partitions, Solaris[TM] 10, Lotus[R] Domino
7.0, 19,000 users, $4.36 per user, 16,061 NotesMark tpm, 400 ms avg rt. NotesBench R6iNotes IBM x346 (2 x 3.4 GHz
Xeon processors, 8GB), 1 partition, SuSE Linux 8, Lotus[R] DominoR6.5.3, 6,50 users, $9.07 per user, 5,109 NotesMark
tpm, 569 ms avg rt.More info www.notesbench.org

• Portal tests conducted on Sun Fire Sun Fire T2000 configured with 6 cores, 1.0GHz UltraSPARC T1 processor and 16GB
memory. Dell 6650 configured with 4 x Intel Xeon processors at 2GHz and 4GB memory. 1 processor was active to run
the test. Internal test using SLAMD Distributed Load Generation Engine AE & Mercury Load Runner. Both systems were
installed with Solaris 10 OS and Sun Java Portal Server 7. Test date: 11/14/05.

• Crypto Processing RSA & DSA sign operations @ 1024-bit

http://www.notesbench.org/

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 55www.opensparc.net

Legal Substantiation – Benchmarks
(Cont'd)

• Two-tier SAP ECC 5.0 Standard Sales and Distribution (SD) benchmark Sun Fire T2000 (1 processor, 8 cores, 32 threads)
1.2 GHz UltraSPARC T1, 32 GB mem, 950 SD benchmark users, 1.91 sec avg resp, MaxDB 7.5 database, Solaris 10.
SAP certification number was not available at press time, please see: www.sap.com/benchmark. Benchmark data
submitted for approval: 950 SD Users (Sales &Distribution), Ave. dialog resp. time: 1.91 seconds, Throughput: Fully
processed order line items/hour:95,670, Dialog steps/hour: 287,000, SAPS: 4,780, Average DB req. time (dia/upd): 0.080
sec / 0.157 sec, CPU utilization of central server: 99%, central server OS: Solaris 10, RDBMS: MaxDB 7.5, SAP ECC

Release: 5.0, Configuration: Sun Fire Model T2000, 1 processor/ 8 cores / 32 threads, UltraSPARC T1, 1200 MHz, 64
KB(D) + 128 KB(I) L1 cache, 3 MB L2 cache, 32 GB main memory. Two-tier SAP SD Standard Application Benchmark
Release 4.70 (64-bit)results for the HP ProLiant DL580 (4-way, 4 procs, 4 cores, 4 threads) included 4x 3.33 Ghz Xeon, 32
GB mem, 937 SAP SD Benchmark users,1.96 sec avg response time, Cert#2005012, running Microsoft® Windows Server

2003, Enterprise x64 Edition (64-bit) and Microsoft SQL Server 2000 Enterprise Edition (32-bit), certified on March 29,
2005. Two-tier SAP SD Standard Application Benchmark Release 4.70 (64-bit) results for the HP rx4640 (4-way, 4 procs, 4
cores, 4 threads) included 4x 1.5 Ghz Itanium2, 32 GB mem, 880 SAP SD Benchmark users, 1.89 sec avg response time,
Cert#2004030, running HP-UX 11i,Oracle 9i certified on June 4, 2004. More information on SAP Benchmark results can be
found at www.sap.com/benchmark

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 56www.opensparc.net

Agenda

1.Chip Multi-Threading (CMT) Era
2.Microarchitecture of OpenSPARC T1
3.OpenSPARC T1 Program
4.SPARC Architecture
5.OpenSPARC in Academia
6.OpenSPARC T1 simulators
7.Hypervisor and OS porting
8.Compiler Optimizations and tools
9.Community Participation

Instruction-level
Parallelism

Thread-level
Parallelism

Instruction/Data
Working Set

Data Sharing

Low Low Low LowMedium High

High High

Large Large

Low Medium Medium

SPARC Architecture
Generations

Generations of SPARC

• SPARC V8 (S.I., 1987): 32-bit

• SPARC V9 (S.I., 1994): 64-bit addr+data
> UltraSPARC I, 1995 – VIS-1 instructions
> UltraSPARC III, ~2000 – VIS-2 instructions
> UltraSPARC IV, ~2004 – basic CMT

• UltraSPARC Architecture 2005 (Sun,2005): full CMT,
hyperprivileged mode
> UltraSPARC T1, 2005 ←[OpenSPARC T1]

Specification Differences, V9 → UA
2005
• Formatting improvements

• More complete and more precise than SPARC V9; for
example:
> lists the specific conditions under which each exception may

be raised, for every instruction
> clarifies relative trap priorities
> closes many old implementation dependencies
> specifies many extensions to architecture

• Document Design:
> Architecture Spec + Implementation Supplements

Architecture Extensions, V9 → UA
2005

• Sun’s VIS1 and VIS2 instructions

• GSR register

• Privileged register-window management instructions
ALLCLEAN, OTHERW, NORMALW, and INVALW

• “Deferred” traps split into two categories
> SPARC V9 deferred traps are now

"resumable deferred" traps

Architecture Changes, V9 → UA 2005
• Hyperprivileged mode has been added, including:

> several hyperprivileged registers
> a few hyperprivileged instructions

> notably RDHPR and WRHPR (hyperprivileged register access)
> effects on the Tcc instruction
> effects on the trap model
> SIR instruction is now hyperprivileged
> VER register is now the hyperprivileged (HVER)
> full control of Chip MultiThreading (CMT) features

Architecture Changes,
Earlier UltraSPARCs → UA 2005

• For Block Store instructions, an intermediate "zero" state
is allowed to be observed during execution

Feature Classification in UA 2005

• Architectural features are now classified and tagged
> Software Class (letter)
> Implementation Class (digit)
> allows smooth long-term architectural evolution

(addition and deprecation of features)

Why Hyperprivileged Mode?

• Allows running multiple simultaneous guest OSs
> (and/or multiple versions of the same OS)

• Allows running older OS (that uses hypervisor API) on
newer hardware, without need to port the OS

• Simplifies OS ports (Linux in 2 months!)
• Allows implementation of logical domains
• Allows virtualization

Why Virtualization?

• Insulates higher levels of software from underlying
hardware, by adding another software abstraction layer
> Protects customers' investment in application software from

changes in underlying software (OS)
> Buying new, faster HW no longer requires running a new

version of the OS

• Allows ability to "oversubscribe" resources (run multiple
top-level software)

Virtualization

• Thin software layer between OS and
platform hardware

• Para-virtualized OS

• Hypervisor + sun4v interface
• Virtualizes machine HW and isolates OS from

register-level
• Delivered with platform, not with OS
• Not itself an OS

SPARC hardware

Hypervisor

Solaris

User
App

sun4v virtual
machine 0

stable interface “sun4v”

User
App

OpenBoot

Other OS

User
App

sun4v virtual
machine n

User
App...

Instruction-level
Parallelism

Thread-level
Parallelism

Instruction/Data
Working Set

Data Sharing

Low Low Low LowMedium High

High High High High High

Large Large Medium Large Large

Low Medium High Medium High Medium

OpenSPARC --
What’s Available

OpenSPARC T1
• Complete Solution

> Full implementation -- CPU core, FPU
> Tools – Verification suite, Simulation, Performance,

Compiler optimization tools
> Multiple OpenSource Operating Systems:

Solaris 10, Linux, FreeBSD, etc

• All Open Source on the web
> from OpenSPARC.net and additional web sites

• Actively enabling community for Open Sourcing of
hardware and software

What’s Available – for HW Engineering
• RTL (Verilog) of OpenSPARC T1 design

(8 cores, 32 threads – 14 million lines of code!)
• RTL for reduced OpenSPARC, for FPGA
• Synthesis scripts for RTL
• Verification test suites
• UltraSPARC Architecture 2005 spec
• UltraSPARC T1 implementation spec
• Full OpenSPARC simulation environment
• “CoolTools”, including Sun Studio software, SPARC-

optimized GCC compiler, development tools, ATS, etc

What’s Available – for SW Engineering
● Architecture and Performance Modeling

Package, including:
● SAS – Instruction-accurate SPARC Architecture

Simulator (includes source code)
● SAM – SPARC instruction-accurate full-system

simulator (includes source code)
● Solaris Images for simulation: Solaris 10,

Hypervisor, OBP
● Legion – SPARC full-system simulation model for

Software Developers (includes source code)
● Hypervisor source code
● Documentation

What’s Available – other sources
• OpenSolaris (OpenSolaris.org)
• Linux ports for T1-based systems:

> Ubuntu
> Gentoo
> Wind River Linux
> FreeBSD

• “Simply RISC” processor design based on OpenSPARC
(SRisc.com)

• New Hennesey & Patterson book, Chap 4
• ...etc...

Instruction-level
Parallelism

Thread-level
Parallelism

Instruction/Data
Working Set

Data Sharing

Low Low Low LowMedium High

High High High High High

Large Large Medium Large Large

Low Medium High Medium High Medium

FPGA Implementations

FPGA Implementation
• Initial version released May 2006

(on OpenSparc.net website)
> full 8-core, 32-thread
> First-cut implementation;

not yet optimized for Area/Timing
> Synplicity scripts for Xilinx/Altera FPGAs

• Reduced version released Mar 2007 – Release 1.4
> single-core, single-thread
> Reduced I$/D$/TLB
> Optimizations for Area

OpenSPARC FPGA Implementation

• Single core, single thread implementation of T1
> Small, clean and modular FPGA implementation

> About 39K 4-input LUTs, 123 BRAMs (synplicity on
Virtex{2/2Pro/4})

> Synchronous, no latches or gated clocks
> Better utilization of FPGA resources (BRAMs, Multiplier)

> Functionally equivalent to custom implementation,
except
> 8 entry Fully Associative TLB as opposed to 64 entry
> Removed Crypto unit (modular arithmetic operations)

Single Thread T1 on FPGAs

• Functionally stable
> Passing mini and full regressions

• Completely routed
> No timing violations
> Easily meets 20ns (50MHz) cycle time

• Expandable to more threads
> Reasonable overhead for most blocks (~30% for 4 threads)
> Some bottlenecks exist (Multi-port register files)

System Block Diagram – T1 on FPGA

SPARC T1 Core

processor-to-
crossbar interface
(PCX)

Microblaze Proc

Fast Simplex
Links interface
(FSL)

PCX-FSL
Interposer

External DDR2 Dimm

MCH-OPB MemCon

Microblaze Debug UART

IBM Coreconnect
OPB Bus

SPARC T1 UART

10/100 Ethernet

MultiPort
Memory
Controller

FPGA Boundary

Xilinx Embedded
Developer’s (EDK)
DesignBlock must be

developed

System Theory of Operation – T1 on FPGA

• OpenSPARC T1 core communicates exclusively via the
processor-to-crossbar interface (PCX)
> PCX is a packet based interface

• Microblaze softcore will sit in a polling loop and accept these
packets, perform any protocol conversion, and forward them
to the appropriate peripheral
> Could even implement floating point operations via the Microblaze

FPU unit

• Microblaze will also poll (or accept interrupts from) the
peripherals, convert the info to a PCX packet, and forward it
to the PCX interface
> Microblaze has its own UART for its own diagnostic input/output

Implementation Results
• XC4VFX100-11FF1152 FPGA

> 42,649/84,352 LUT4s (50%)
> 131/376 BRAM-16kbits (34%)
> 50MHz operation

> Have not attempted any faster
> Synplicity Synthesis: 25 minutes
> Place and Route: 42 minutes

(Microblaze & Related Logic)

Preliminary Virtex5 Results

• Virtex5 xc5vlx1 10tff1 136
> Same as FPGA in RAMP Bee3 board

• 30,508 6-input LUTs used out of 69,120 (44%)

• 119 used out of148 BRAM-36kbits (80%)
> Working through mapping issues…

• 50MHz placed and routed design
> Have not attempted any faster

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 80www.opensparc.net

OpenSPARC FPGA HW Roadmap

• Current reference design occupies about
45% of XC4V100FX FPGA. This design
includes:
> Single core, single thread of OpenSPARC T1
> Microblaze to communicate with peripherals

(DRAM, Ethernet)
> Glue logic to connect T1 core with Microblaze

• More design paths exist, e.g.
1) Two single thread cores in single FPGA
2) Up to 4 threads per FPGA

OpenSPARC FPGA SW Roadmap

• Boot Solaris and Linux on a single thread
FPGA version of the design
> Include support for all packet types with

Microblaze
> Hypervisor changes to support this variant of T1

> Reduction in TLB size
> Device driver support for the system
> Emulation routines in OS for floating point ops

> Mainly for ISA compliance

FPGA Reference Design
• ml410 board with Virtex4-100 FPGA (aka ml411)

> Bit file and elf is stored on CompactFlash card
• Each design is a hardware implementation of one regression

suite test
> Microblaze soft-core sends the test packets to the OpenSPARC core

and verifies the return packets

Instruction-level
Parallelism

Thread-level
Parallelism

Instruction/Data
Working Set

Data Sharing

Low Low Low LowMedium High

High High High High High

Large Large Medium Large Large

Low Medium High Medium High Medium

Operating Systems for
OpenSPARC T1

Solaris on UltraSPARC T1

• Solaris 10 (and beyond) run on UltraSPARC T1

• Run on top of Hypervisor (“sun4v”) layer

• Fully supported by Sun and OpenSolaris

Linux Ports to date
• Sun T1000 support putback to kernel.org

> Bulk of support for UltraSPARC/OpenSPARC T1
> putback by David Miller, approx Dec 2005
> in 2.6.17 Linux kernel
> runs on top of Hypervisor

• Full Ubuntu distribution (announced ~Spring 2006)
• Gentoo Distribution (announced August 2006)
• Wind River Linux (announced October 2006)

> “carrier-grade” Linux, notably for Telecom applications

Linux on UltraSPARC T1
• Ubuntu 6.06 LTS support on

UltraSPARC T1-based T1000/T2000
• Expands innovation and choice for developers &

customers
per Colm MacCárthaigh, Senior IT Administrator at HEANet:

 “As a Linux and Apache developer, the prospect of running Ubuntu
GNU/Linux – a rock solid operating system - on a CoolThreads
system is exciting. I'm impressed with the innovation that's
coming out of Sun these days and look for more good things
going forward.”

*BSD on OpenSPARC T1

• FreeBSD port for UltraSPARC T1
announced Nov 2006

• Other *BSD ports are underway

OpenSPARC.net: Find Cool Tools
• Your resource for

developer tools – FREE !
> GCC

SPARC systems
highly optimized

> SPOT
Simple Performance
Optimization Tool

> RST Trace
> ATS

Automatic Tuning System

And –
Share your tools with the
community at this site

Instruction-level
Parallelism

Thread-level
Parallelism

Instruction/Data
Working Set

Data Sharing

Low Low Low LowMedium High

High High High High High

Large Large Medium Large Large

Low Medium High Medium High Medium

OpenSPARC Community
and Governance

OpenSPARC Community Groups

Chip Designers

Hardware IP Suppliers

EDA Vendors

CMT Tools

Academia/Universities

Operating Systems

Benchmarking
Reference flow
FPGA
Emulation
Verification
Physical Design
Multi-threaded tools

Architecture, ISA, VLSI course work
Threading, Scaling, Parallelization
Benchmarks

PCI cores, SERDES etc.

Compilers, Threading
Optimization
Performance Analysis

OpenSolaris,
Linux, BSD variants,
Embedded OSs

SoC designs, Hard macros
Telecom applications

OpenSPARC Grows the Community
• Simply RISC “S1”

> Single-core version of UltraSPARC T1
> Targets small embedded devices
> Runs Solaris and Linux
> Design also released under GPL

• Allows Sun to grow the SPARC community
by virtue of having great technology and
not by handing out money

http://www.srisc.com

“Due to the collaborative nature of the GPL license
Simply RISC plans to add new features to the S1 Core
and test them extensively over the next months with
the help of the community.”

OpenSPARC Governance Board

• Initial Advisory Board announced Sept 2006
> 3 Community members:

> Nathan Brookwood, industry analyst (Insight64)
> Jose Renau, Univ. of California at Santa Cruz
> Robert Ober, Fellow, CTO Office, LSI Logic

> 2 members from Sun:
> Simon Phipps, Chief Open-Source Officer
> David Weaver, Sr. Staff Engineer, UltraSPARC Architecture

• Governance Board
> Advisory Board became initial Governance Board Jan’07
> New Board to be elected from Community in a year

Instruction-level
Parallelism

Thread-level
Parallelism

Instruction/Data
Working Set

Data Sharing

Low Low Low LowMedium High

High High High High High

Large Large Medium Large

Low Medium High Medium High Medium

OpenSPARC in Academia

Example Uses for OpenSPARC (1)

• Create variations from the basic design
> more/fewer cores
> more/fewer threads per core
> add new instructions
> add video/graphics
> add network interface
> change cache/memory interface
> change I/O interface

Example Uses for OpenSPARC (2)

• Experimental processor designs
> highly threaded, high-bandwith network processor
> add more FPUs, for highly threaded HPC processing node
> add crytographic processing elements, for high-bandwidth crypto

engine
> add coprocessors for specialized functions
> research into optimizing useful work done per watt of power

consumed (efficiency)
> computer architecture research - add/remove instructions, new

operating modes
> port tools to other hardware and/or OS platforms (x86/x64, Linux,

others)

Example Uses for OpenSPARC (3)

• Starting point for lab courses
> a known-good design that can be modified for lab projects in

computer architecture or VLSI design courses
• Real-world input to test robustness of CAD tools and

simulators developed at Univ.
> major industry CAD tool vendors already doing this!

• Burn derivative processors into FPGAs
> quick design iterations
> high-speed emulation

• Trigger spin-off/start-up ventures?

OpenSPARC in the Curriculum
• UltraSPARC T1 is now the “putting it all

together” example of multiprocessors in
the world's most iconic textbook on
Computer Architecture

• Chapter on Intel Itanium was removed
altogether
> Placed on the companion CD because,

according to Dr. Patterson, “it wasn't worth
the paper”

Computer Architecture:
A Quantitative Approach, 4th ed.

by John Hennessy and David Patterson

...Students are emerging from university Computer Science
programs already understanding SPARC!

Processor Performance

Source: Computer Architecture, 4th ed. John Hennessy & David Patterson

Processor Performance

Source: Computer Architecture, 4th ed. John Hennessy & David Patterson

University Programs
• Sun supports/encourages academic use of OpenSPARC

> Collaborations
> Centers of Excellence (CoE)

> First OpenSPARC CoE announced Feb 2007
> more to come

> technology access, greater equipment discounts, equipment
grants, publicity and prestige that aids in obtaining other
grants, other support

• For university program info, contact:
 David.Weaver@sun.com

Call for Action

• Participate in OpenSPARC community
> Download, Innovate, Contribute

 http://OpenSPARC.net

• Academia: apply for OpenSPARC University
collaboration or Center of Excellence programs

http://OpenSPARC.net/

64 bit, 32 threads, free

OpenSPARC SAM-T1
Simulator
 March15, 2007

Jhy-Chun Wang
Sun Microsystems

jhy-chun.wang@sun.com

Agenda

• OpenSPARC SAM-T1 overview
• RTL co-simulation
• Full-system simulation
• CPU & device model interface
• User interface
• Trace
• Disk image
• Function extension

OpenSPARC T1 Arch Tools Download
• http://opensparc-t1.sunsource.net/download_sw.html
• OpenSPARCT1-Arch_1.3.tar.bz

> SAM: instruction-accurate SPARC full-system simulator
> SAS: instruction-accurate SPARC arch. simulator
> Binary images for simulation: Solaris 10, Hypervisor, OBP, etc
> Legion: SPARC full-system simulator for software development
> Hypervisor source code
> Documentation

http://opensparc-t1.sunsource.net/download_sw.html

What is SAM
• SPARC Architecture Model
• SPARC architecture golden reference model
• SPARC full-system simulator
• Functional simulator, no timing, no cache
• Usage

> RTL verification
> Solaris boot disk validation
> Device model development
> Software development
> Benchmark tracing

Accurate CPU Simulation

• SAM models the functions of a SPARC cpu
> SPARC instruciton set
> memory management, TLB
> ASI translation
> privileged and hyperprivileged protection
> accurate trap priority
> IEEE floating-point instructions behavior and exceptions

• Used to verify RTL design

Functional Simulator
• No timing information

• Behavior will not match RTL exactly because of timing
issues:
> TLB replacement
> deferred and disrupting traps
> memory barrier

• No cache modeling

RTL Co-simulation

• Verify RTL by concurrently running the same
instructions in RTL and SAM, and cross-checking
architectural state instr-by-instr

• RTL overrides SAM's behavior to correct timing
mismatches
> TLB replacement
> deferred and disrupting traps
> memory barrier
> execution latency, e.g., crypto operations

• Co-simulation is run continuously through RR
> high level of fidelity to hardware

RTL Verification Co-simulation

TestBench

DUT DUT
Monitor

PLI
Core State
Checker

SAM

Sparc Core
Model

TLB
Model

LdSt
Model

Follow-me
Model

Socket

* DUT: device under test, i.e., RTL

RTL Verification State Checking

TestBench SAM

DUT probes

state
per thread

delta state
per thread

instruction retired

delta state

====

SPARC Core
Model

delta state
per thread

step

Full-system Simulation
• System framework with cpus and devices
• Use the same cpu module as in RTL verification, same

high degree of fidelity
• Collection of dynamically loadable device modules
• Runtime configuration
• Checkpoint and restart
• Benchmark tracing
• Availability

> Full-system simulation available on SPARC platform
> RTL co-simulation available on SPARC and x86 platforms

Full-system Simulation

CPU
Module RAM

V
C
P
U

UI

MMI

User

Virtual System IO Bus

 sam

MMI Interface

 Platform/Usage Specific Modules

Configuration
 Files

Configuration File
• Basic configuration

> simulated RAM size
> simulated MIPS
> number of simulated cpus

• Specify the type of device and cpu modules to be loaded
• Configuration parameters for each loaded module
• Architecture state setup

Sample Configuration
• conf ramsize 64M
• sysconf cpu name=cpu0 cpu-type=SUNW,UltraSPARC-T1
• sysconf cpu name=cpu1 cpu-type=SUNW,UltraSPARC-T1
• sysconf dumbserial serial1 type=GUEST
 startpa=0x9f10000000 endpa=0x9f1000004f

• load bin disk.s10hw2 0x1f40000000
• load bin nvram1 0x1f11000000
• load bin 1up-hv.bin 0x1f12080000
• load bin 1up-md.bin 0x1f12000000
• load bin reset.bin 0xfff0000000
• setreg pc 0xfff0000020
• setreg npc 0xfff0000024

VCPU: Virtual CPU Interface

• Interface between cpu model and system framework
• Control instruction execution
• Interface memory access
• Interface I/O activity
• Interface interrupt handling
• Access architecture registers and state

MMI: Modular device Model Interface

• Device model implemented as loadable module
● Map device instance to phys I/O address
● Perform DMA
● Trigger interrupts
● Model device hierarchy
● Define model specific user commands
● Interface to share device models with other system

simulators

User Interface
• Allow users fine control of execution

> penable, pdisable, stepi, run, stop
• Set breakpoints by PC and strand(s)

> break, enable, disable, delete
• Architectural state is readable and writable

> registers, TLB's, ASI's, ASR's
– read-reg, read-fp-reg-i, pregs

> memory
– get, set

• Dynamically load/unload device and trace
modules
> mod load, mod unload

User Interface ...

• Control trace collection
> mod load analyzer rstracer.so
> rstrace -o out-file -n #instr

• Checkpoint and restart
> dump

• New commands defined by loadable modules
• Use python as underlying scripting processor,

allow native python statements from command
prompt

Tracing
• Rstracer: a loadable trace module
• Collect architecture state

> instructions
> traps
> TLB updates
> DMAs

• Write RST records to output trace file(s)
• Data is compressed on-the-fly by RSTZIP
• Tools to examine & analyze trace files
• Trace data can be fed into performance

models (pipeline, cache model)

Trace Collection

• stop
• mod load analyzer rstracer.so
• rstrace -o output-file -n #instr
• run N
• rstrace off
• mod unload analyzer

Trace Analysis
• trconv, the “swiss army knife” of rst tool
• Process data by

> cpu#
> record range
> PC/EA range
> summary

• Use together with rstunzip to process trace
data

Sample Trace Records
• rstunzip trace_file | trconv -c

Counted: 20451321 records
9999998 instruction recs
1 header recs
1 traceinfo recs
1071 tlb recs
...
2288 trap recs
...
8687727 regval recs
...

Sample Trace Records ...

• rstunzip trace_file | trconv -i

RST trace format (stdin)
================
 User/ Branch
 Rec # Type Priv PC Disassembly Taken EA
 49 instr : cpuid=0 p [0x0000000001063254] or %o2, 0x80, %o1
 67 instr : cpuid=0 p [0x0000000001063258] stb %o1, [%o0 + 0x4b] [0x0000070002503e4b]
 68 instr : cpuid=0 p [0x000000000106325c] call 0x1069764 T [0x0000000001069764]
 71 instr : cpuid=0 p [0x0000000001063260] ldx [%fp + 0x7f7], %o0 [0x000000000180b7b8]
 73 instr : cpuid=0 p [0x0000000001069764] jmpl %o7 + 8, %g0 T [0x0000000001063264]

Modify Disk Image

• Use lofiadm to add/remove/modify files in disk image
> with root access
> lofiadm -a /absolute-path/disk_image
> (assume /dev/lofi/1 is the returned value)
> mount /dev/lofi/1 /mnt
> cd /mnt
> add/remove/modify files in /mnt
> umount /mnt
> lofiadm -d /dev/lofi/1

Transfer File to/from Simulator
• Transfer file to/from simulator without lofiadm
• Transfer speed is slow, only good for small file
• First boot the Solaris disk image up to shell prompt

> enter ^] (ctrl-right-bracket) to get netcons> prompt
> get_file <path-sim-file> <path-dest-file>
> put_file <path-src-file> <path-sim-file>
> cksum path-sim-file
> cksum path-src/dest-file

Save Modified Disk Image
• During initialization

> UI(load): loading <disk1> memory image
> loading disk1, base addr 0x1f4000000, size 0x200000

• Sync up file system first
> sync
> halt

– syncing file system... done
– Program terminated

• stop
• memdump new_disk 0x1f4000000 0x200000
• use lofiadm/mount to examine files

Function Extension

• Add/remove/modify
> instructions
> ASI's
> traps
> TLB
> memory access

• Change system configuration

Basic Source Code Structure

• Mimic SAM-T1, 1-cpu x 8-core x 4-thread
• sam-t1/src/riesling-cm/riesling/src:

> system/Ni/Ni_System.cc
> cpu/Ni/Ni_Cpu.cc
> core/Ni/Ni_Core.cc
> strand/Ni/Ni_Strand.cc
> mmu/Ni/Ni_Mmu.cc
> trap/Ni/Ni_Trap.cc
> asi/Ni/Ni_Asi.xml

Instruction Execution Flow

• Determine PC
• ITLB
• Fetch instruction
• Decode instruction
• Execute instruction
• (DTLB)
• Retire instruction

Instruction Execution:
Ni_Strand::step()

• handle pending interrupt
• ITLB: Ni_Mmu::handleInstr()
• fetch, decode: Ni_InstructionWord
• execute: Ni_InstructionEmulator::execute(),

Ni_Fgu::execute()
• DTLB: Ni_Mmu::handleData()
• handle trap: Ni_InstructionEmulator::handleTrap()

ITLB: Ni_Mmu::handleInstr()

• check translation bypassing
• check trap violation:

> mem_address_not_aligned
> instruction_access_exception
> fast_instruction_access_MMU_miss
> inst_real_translation_miss
> etc

• address translation

Decode: Ni_InstructionWord

• decode op/rd/rs1/rs2/etc
• check illegal_instruction violation

> wrong instruction syntax
> non-zero reserved bits
> etc

• check privileged_opcode violation

Execute:
Ni_InstructionEmulator::execute()

• map instruction to corresponding exec_inst()
> exec_retry()
> exec_rdasr()

• basic SPARC instructions are in sam-t1/src/riesling-
cm/riesling/src/strand/bcore

• some functions are in SPARC assembly for performance
reason

• x86 version is available in bcore/v9_inst_c.c

DTLB: Ni_Mmu::handleData()

• check translation bypassing
• check trap violation:

> mem_address_not_aligned
> privileged_action
> VA_watchpoint
> data_access_exception
> fast_data_access_MMU_miss
> data_real_translation_miss
> fast_data_access_protection
> etc

• address translation

Handle Trap:
Ni_InstructionEmulator::handleTrap()

• Normal traps
> privileged traps
> hyperprivileged traps

• RED_state traps
> nonreset traps
> POR, WMR, XIR, SIR

• Ensure correct trap priority
• Update trap-related architecture state

ASI Handling
• asi/Ni/Ni_Asi.xml
• asiReadHandler() & asiWriteHandler()

<asi>
<name>ASI_I_TLB_DATA_ACCESS</name>
<value>0x55</value>
<access>RW</access>
<priv>HYPER</priv>
<handler>

<class>Riesling::Ni_Mmu</class>
<id>Riesling::Ni_Mmu::I_TLB_DATA_ACCESS</id>

</handler>
<start_va>0x0</start_va>
<end_va>0x7f8</end_va>

</asi>

Major Extension Points

• Ni_InstructionWord
• Ni_InstructionEmulator
• Ni_Mmu
• Ni_Trap
• Ni_Asi.xml

64 bit, 32 threads, free

Jhy-Chun Wang
Sun Microsystems

 http://OpenSPARC.net

Legion
• Full-system simulator for firmware and

software development
• Implement enough architecture state to boot

up Solaris
• Share the same disk image and binary files

(Hypervisor/OBP/reset/etc) with SAM
• Startup script run_legion.sh
• Available configuration: 1-thread, 2-thread, 32-

thread
> run_legion.sh 1/2/32 [options]

Legion Runtime Options
• Available options

> -debug debug_bits
> -t #physical_cpu
> -h

• Debug options
> 0x2: PC & instruction
> 0x8000: hypervisor calls
> 0x20000: exceptions, XIR
> 0x100000: TLB miss
> 0x400000: trap, TSTATE
> etc

Legion Runtime Display
• Use ~ (tilde) on 'guest console' window to dump out

architecture state
> ~z: exit simulation
> ~i: dump I-TLB content
> ~d: dump D-TLB content
> ~b: toggle debug enable bits
> etc

64 bit, 32 threads, free

David Weaver

The sun4v Operating Environment

(aka “Your OS on the T1 Hypervisor”)

Virtual Machine for SPARC

• Thin software layer between OS and
platform hardware

• Para-virtualised OS

• Hypervisor + sun4v interface
• Virtualises machine HW and isolates OS from

register-level
• Delivered with platform not OS
• Not itself an OS

SPARC hardware

Hypervisor

Solaris

User
App

sun4v virtual
machine 0

stable interface “sun4v”

User
App

OpenBoot

Other OS

User
App

sun4v virtual
machine n

User
App...

Logical Domains

Hardware

Hypervisor

LDom 1

Solaris 10

CPU

Mem

LDom 2

Solaris 10

LDom 3

Solaris Next

Zone 1Zone Zone 2

Shared CPU,
Memory, IO I/O

App

• Partitioning capability
> Create virtual machines

each with sub-set of
resources

> Protection & Isolation
using HW+firmware
combination App

App

App

App

App
App

App

CPU CPU CPU

Mem Mem

Topics
• CPU changes
• Memory management
• I/O
• Interrupts

> x-cpu & devices
• Multiple Domains
• Additional Topics

> Error handling
> Machine Description
> Boot process

Basic Principles
• Ability to rebind virtual

resources to physical
components at any time

• Minimal state held in
Hypervisor to describe
guest OS

• Never trust Guest OS

Virtual
CPU

Physical
CPU

(strand)

sun4v / API
Slip-plane

Legacy SPARC execution mode

Privileged
Mode

User
Mode

interrupts & errors

system
calls

Retry

• Existing sun4u chips

New SPARC Execution mode

Hyper-
Privileged

Mode

Privileged
Mode

User
Mode

interrupts
& errors

hypervisor
calls

Retry

system
calls

Retry

Retry

interrupts
& errors

New SPARC Execution mode

Virtual Machine
Environment

Hyper-
Privileged

Mode

Privileged
Mode

User
Mode

interrupts
& errors

hypervisor
calls

Retry

system
calls

Retry

Retry

interrupts
& errors

Privileged mode constrained
• Close derivative of legacy privileged mode, but:

> No access to diagnostic registers
> No access to MMU control registers
> No access to interrupt control registers
> No access to I/O-MMU control registers
> All replaced by Hypervisor API calls

• UltraSPARC-ness remains with minor changes
> timer tick registers
> softint registers etc.
> trap-levels & global registers etc.
> register window spill/fill

Translation hierarchy

Physical Addressing
Hyper-privileged

LevelPartition IDN bit Context ID+ +

Real Addressing
Privileged

Level64bit Context ID+

Virtual Addressing
User Level

64bit

Virtual Machine
Environment

Translation management
• Guest OS defines a “fault-status” area of memory for each

virtual CPU (vCPU)
> Hypervisor fills in info for each MMU exception

• UltraSPARC does not use page-tables
> traditionally a software loaded TLB

• Hypervisor APIs to support direct software management of
TLB entries
> map, demap
> Simple guests like OBP can use this

Translation Storage Buffers
• Guest OS managed cache of translations stored in memory

> Guest allocates memory for buffer
> Guest places translation mappings into buffer when

needed
> Hypervisor fetches from this cache into TLBs

• Guest specifies virtual -> real mappings
> Hypervisor translates real->physical to load into TLB
> TLB holds virtual -> physical mappings

• Multiple TSBs used simultaneously for multiple page sizes
and contexts

Address space control

Physical Address MapDom A: Real Map Dom B: Real Map

• Hypervisor limits access to memory (and devices) --
creating partitions (logical domains)

Virtual I/O devices
• Provided via Hypervisor

> e.g. Console - getchar / putchar API calls
> Hypervisor generates virtual interrupts

Physical I/O devices
• PCI-Express root complex mapped into real address

space of guest domain

• Direct access to device registers
> OBP probes and configures bus and devices

• I/O Bridge and I/O MMU configuration virtualized by
hypervisor APIs
> Ensures that I/O MMU translations are validated by hypervisor
> Device interrupts are virtualized for delivery

Direct I/O model
• For Solaris existing drivers

continue to work

Hypervisor

I/O
Bridge

PCI Bridge
Driver

Device
Driver

Root
Complex

I/O MMU

Guest Domain

Virtual Bridge I/FHyper Privileged

Privileged

Hardware

PCI-Express

Domain owns PCI
root and tree

Interrupt and event delivery
• Device interrupts and error events need a mechanism to

asynchronously cause and exception for a virtual CPU

• Typically also require some data to identify reason and
source and notification

• How to do this in an abstract manner?
> What if the virtual CPU is not currently bound to a physical CPU?
> Can't block physical interrupt source until virtual CPU is

rescheduled

Interrupts & CPU mondos
• Delivered to privileged mode via in-memory FIFO queues

> cpu-mondo, dev-mondo, resumable & non-resumable error
queues

• 64-byte entries carry cause information (interrupt
numbers)

• Head and Tail offsets available as CPU registers to
privileged code
> Tail manipulated by hypervisor, head by guest OS
> For either queue, head != tail causes trap

Head Tail

Queue constraints
• Must be a power-of-2 number of entries, minimum of 2

> Entries always 64 bytes in size
> (tail+1)%size == head defines full state

• Must be aligned on a real address boundary identical to Q size
> Designed to make hardware mondo delivery easier

• May have queues defined for each virtual CPU
> dev_mondo queue must be sized for all possible interrupt sources
> dev_mondo queue may never contain more than one entry for

same source
• Hypervisor API to send 64Byte mondo to CPU queue

> Used for CPU to CPU x-calls
> Queue may fill and sender's API call fails

Logical Domaining Technology
• Virtualization and partitioning of resources

> Each domain is a full virtual machine, with a dynamically
re-configurable sub-set of machine resources, and its own
independing OS instance

> Protection & isolation via SPARC hardware and Ldoms firmware

Platform
Hardware

LDom A LDom B LDom C LDom D

I/O

Memory

CPUCPU CPU CPU CPU CPU CPU CPU

Memory Memory Memory

Linux FreeBSD

LDoms
Hypervisor

OS Environment
of choice

I/O

Virtualized I/O

Logical Domain A

Hypervisor

I/O
Bridge

Nexus Driver
/pci@B

Device Driver
/pci@B/qlc@6

PCI
Root

I/O MMU

Service Domain

Virtual Nexus I/FHyper
Privileged

Privileged

Hardware

PCI B

Domain Channel

App

Virtual Device
Driver

App
App

App

Virtual Device
Service

Virtual (Block) Disk device & server

Logical Domain
2

V-Disk
Driver

Logical Domain
3

V-Disk
Driver

Logical Domain
1

App

V-Disk
Driver

Hyper-
visor

Service
Domain

Virtual SAN 1

Virtual SAN 2

I/O Bridge

FC-AL
I/F

V-Disk
Bridge

V-Disk
Bridge

Device-
Driver

App

App
App

App

App
App

App

App

App

Redundancy; Multi-path virtual I/O

Logical Domain
2

App

V-Ether
Driver

Logical Domain
3

V-Ether
Driver

I/O Bridge

V-Ether
Switch

Service
Domain2

Gb
Ethernet I/F

Virtual LAN 1: 192.168.0/24

Virtual LAN 1b: 192.168.0/24

Device-
Driver

I/O Bridge

Service
Domain1

Gb
Ethernet I/F

V-Ether
Switch

Device-
Driver

V-Ether
Driver

App

App

App

App App

• Virtualised devices can be used for redundant fail-over if
guest OS supports it

Domain Manager
• One manager per host HV

> Application that controls Hypervisor and its LDom

• Exposes external CLI & XML control interfaces

• Maps Domains to physical resources
> Constraint engine
> Heuristic binding of LDoms to resources

> Assists with performance optimisation
> Assists with handling failures and blacklisting

Dynamic Reconfiguration

• Hypervisor has ability to dynamically shrink or
grow LDoms upon demand

• Simply add/remove cpus, memory & I/O
> Ability to cope with this without rebooting depends

on guest OS capabilities
> Guest OS indicates its capabilities to the domain

manager

• Opportunity to improve utilisation by balancing
resources between domains

Summary
• Specifications & code published:

> http://www.opensparc.net
> http://www.opensolaris.net

• “Legion” instruction level simulator available to
assist with code development
> Provides level of code execution visibility not

possible on actual hardware
> Source code available on http://www.opensparc.net

• Contact alias:
> hypervisor@sun.com

Additional Topics
• Error handling
• Machine Descriptions
• Boot process

Error delivery philosophy

• Hypervisor handles and abstracts underlying
hardware errors

• All errors logged on service processor

• Guest OSs are told about impact of error
> No point in informing guest about correctable errors

• Legacy OS should be able to run on new
platform

Error handling
• Two simple classificiations; “after handling the error, can I ...”

> 1. Resume execution of what I was doing, or
> 2. Can't resume execution ... some policy to handle this

• Simplest error handlers:
> 1. Retry
> 2. Panic

• 2 in-memory queues associated with these types, similar to
interrupts

• Queue entries contain error reports distilled by hypervisor
• Hypervisor creates reports and attempts to correct errors

when possible

Error handling agents

Hypervisor

non-resumable
error queue

resumable
error queue

device
mondo queue

Service Provider
I/F

CPU/mem/PIO
error handler

Virtual I/O
error handler

Direct I/O
error handler

FMA Agent

FMA Agent
FMA error

report generator

Hardware
Error

Solaris
(Logical Domain)

Service Entity (Diagnosis Service Provider)

CPU/memory
error reports

I/O & device
error reports

Service error report

Machine description

• How the OS Inside a virtual machine finds its resources
• Trivial list of nodes that detail the contents of each domain

> CPUs, Blocks of memory, I/O devices, I/O Ports etc.
• Nodes are also inter-linked to form a DAG to convey more

advanced information for guest OSs that care
> e.g. cache sharing, NUMA memory latencies etc.

• Key requirements;
> Very simple to parse by the simplest of guests
> Convey very complex information for guest OSs that care
> A guest need not understand all the information presented

> e.g. old OS running on a new platform

Simple list of nodes

cpu
id=0

root

cpus

memory

cpu
id=1

cpu
id=2

cpu
id=3

MMU

memblk
base = 0x10000000
size = 0x1000000

memblk
base = 0x30000000
size = 0x1000000

I/O
VPCI
id=0

FPU

Also arranged as a DAG

cpu
id=0

root

cpus

memory

cpu
id=1

cpu
id=2

cpu
id=3

MMU

memblk
base = 0x10000000
size = 0x1000000

memblk
base = 0x30000000
size = 0x1000000

I/O
VPCI
id=0

FPU

Boot process Power on

Reset & configuration code

Hypervisor

OBP

Other specialist
code

ufs/net boot

Solaris
exit/reboot

OBP

your bootloader

Your OS
exit/reboot

64 bit, 32 threads, free

OpenSPARC T1 Tutorial
Compiler Optimizations

Jhy-Chun (JC) Wang
 Senior Staff Engineer

jhy-chun.wang@sun.com

Agenda

• Background and Context
• Traditional (serial) optimization
• Parallelization

> Automatic, OpenMP, Libraries ...
• Analysis
• Embracing gcc users
• Summary

Traditional vs. Aggressive CMT

0 5 10 15 20 25 30 35 40 45 50
0

1000

2000

3000

4000

5000

6000

7000

8000

Mem. accesses per 1000 app. instrns.

P
er

fo
rm

an
ce

 (m
ill

io
ns

 o
f a

pp
. i

ns
trn

s.
 /

se
c)

IV+/2T

Thick
er

lin
es

 in
dica

te
more

threa
ds.

IV+/1TT1/1T T1/4T

T1/8T

T1/32T

T1/16T

Parallel
workloads – High
TLP, Low ILP

Serial workloads –
Cacheable, Low
TLP

High ILP/in-
cache

 Low ILP/out-of-
cache

Aggr. CMT
TargetTraditional

Target

Designing for ILP vs. TLP

• Want to build a CPU with ~10BIPS capability?

• Option A
❑ Build a superscalar dual-core design
❑ Run the chip at 2.5GHz
❑ Look for 1-2 threads with an IPC of 4-2@2.5GHz

• Option B
❑ Build a 1-issue 8 core, 32-thread design
❑ Run the chip at 1.25GHz
❑ Look for 8-32 threads with and IPC of 1-0.25@1.25GHz

Rare in most codes

Much easier to find

Synergies Within a System
• Hardware

> Adequate cache/memory, I/O, and networking
bandwidth, plus RAS for large, parallel workloads

• Operating System
> Reliable and scalable OS for optimal management of

parallel threads
• Developer Tools

> Compilers and tools to make application
development easy and efficient

Focus of this section:
C/C++/Fortran Compilers & Tools
Free download: cooltools.sunsource.net

Basic Optimization
• An easy (naïve) start:

> $ cc foo.c
> No optimization (or very limited optimization)

Basic Optimization
• An easy (naïve) start:

> $ cc foo.c
> No optimization (or very limited optimization)

• A little better
> $ cc -O foo.c

> Optimization turned on at default level
Optimization Bag

Comm. Sub. Elim.
Dead Code Elim.
Loop Transformations
Instruction scheduling
Register allocation
Invariant hoisting
Peephole
.............

Basic Optimization
• An easy (naïve) start:

> $ cc foo.c
> No optimization (or very limited optimization)

• A little better
> $ cc -O foo.c

> Optimization turned on at default level
• Even better

> $ cc -xO4 foo.c
> Optimization turned on at a high level

• What next?

Optimization Bag

Comm. Sub. Elim.
Dead Code Elim.
Loop
Transformations
Instruction
scheduling
Register allocation
Invariant hoisting
Peephole
.............

Guiding/Controlling Optimizations
• Numerous advanced optimizations in the compiler
• Controls exist to leverage/guide most optimizations

> Inlining, inter-procedural analysis, profile feedback,
alias analysis, target system selection, prefetching,
pragmas/directives

• Significant benefits can be obtained by carefully
selecting and tuning available optimizations

$ cc -xO4 -xinline=foo,no%bar -xprefetch_level=3 \
 -xchip=ultraT1 program.c
Besides -O4, suggests that routine foo() be inlined and bar()
not be inlined in program.c, turns on aggressive prefetching,
and targets the T1 chip.

An All in One Flag?
• The -fast option includes various flags designed for a fairly

aggressive build
> Easy to start with -fast and add options after it to modify the

behavior as desired
> Fragment from makefile might look like this:

ISA = -xarch=v8plus
CFLAGS = -fast $(ISA)
LDFLAGS = -fast $(ISA) Think “-fast”!

What did it do to my code?
• The compiler commentary explains how the

source code was optimized
> Build with “-g” added (does not disable optimizations)
> Get commentary with er_src command
> See documentation for details

• Improves understanding and helps user optimize
> User can derive hints on further options to use (or not use)
> User can derive hints on adding pragmas that might help
> User can derive hints on what reorganization might help

Example 1 – Loop Scheduling
for (j=1; j<n; j++)
 a[j] = a[j-1] + 4.0*b[j]*c[j] +
 b[j]*b[j] + c[j]*c[j] + 6.0;

L-tag L1 scheduled with steady-state cycle count = 4
L-tag L1 unrolled 4 times
L-tag L1 has 2 loads, 1 stores, 3 prefetches, \
 4 FPadds, 3 FPmuls, and 0 FPdivs per iteration
L-tag L1 has 0 int-loads, 0 int-stores, 5 alu-ops, \
 0 muls, 0 int-divs and 0 shifts per iteration
Source loop below has tag L1
 7. for (j=1; j<n; j++)
 8. a[j] = a[j-1] + 4.0*b[j]*c[j] +
 b[j]*b[j] + c[j]*c[j] + 6.0;

1 load eliminated
1 fpmul eliminated
unrolled 4 times
optimally scheduled

resource limit = 4
dependence limit = 4
achieved schedule = 4

3 prefetches inserted

cc -fast -xchip=ultra4 -g -c loop.c
er_src -source foo 1 loop.o

Example 2 – IPO, Pointers, IF's

void propagate(int *p, int *q, int *r) {
 int x;
...
 x = *p;
...
 if (x < 50) {
 ...r1...
 split(p,q);
 ...r2...
 if (x < 100) {
 merge(q,r);
 }
 }
...

Note x is a local variable
If it can be proved that:

cond1 => cond2
x is not modifiable in split
x is not modified in r1
x is not modified in r2

then:
the second if is eliminated

Involves
Pointer analysis
Inter-procedural analysis
Conditional relationships

Complexity and “code rot” can cause such scenarios

Second conditional optimized away by the compiler

Example 3 – Whole Program Mode

Original source has 32 byte struct
Program malloc's for large vector
All hot segments touch one field
Ends up with poor cache behavior

32 byte stride, 25% utilization
With whole program analysis:

Compiler splits the vector
Generates four vectors
Hot segments get 8 byte stride
100% cache block utilization
Performance is improved

setup(p);
for (i=0; i<STEPS; i++) {
 transform_x(p);
 transform_y(p);
 transform_z(p);
 transform_t(p);
}
report(p);

x
y
z
t
x
y
z
t

x
x
x
x
x
x
x
x

y
y
y
y
y
y
y
y

z
z
z
z
z
z
z
z

t
t
t
t
t
t
t
t

Parallelization: Automatic
• Compiler does the parallelization automatically

> Just use the -xautopar option
> No other user action required

• Automatic parallelization targets loop nests
> Works synergistically with loop transformations
> Steadily improving - handles many complex cases now

• Thread count controlled by environment variable
• Two versions generated (if profitability cannot be

statically determined)
> Run time selection between serial and parallel versions
> Serial version used if work/thread is too low

Example – Autopar + Multiple Transforms

...
first(m,n);
second(m,n);
...

for (j=0; j<n; j++)
 for (i=0; i<m; i++)
 a[i][j] = b[i][j] + c[i][j];

for (i=1; i<m-1; i++)
 for (j=1; j<n-1; j++)
 b[i][j] = 0.5*c[i][j];

Top level routine has two calls

Loop in first()

Loop in second()

Routines inlined
Loop nest in first() interchanged
Loop nest in first() peeled
Fused with loop nest in second()
Loops parallelized at outer level
Inner loop pipelined
Prefetches inserted

➔ Difficult to understand final code
➔ Use commentary, other options

Parallelization: OpenMP
• It is an industry standard (www.openmp.org)

> Supported by a large number of compilers
> OpenMP code is portable
> Directives can be ignored for serial/unsupported systems

• Requires little programming effort
> Can start with just a handful of directives
> Applications can be parallelized incrementally

• Good performance and scalability possible
> Depends ultimately on the code, compiler, and system
> CMT-friendly shared-memory parallelism leveraged

Example 1 - Loop
for (i=0; i<n; i++)
 a[index[i]] = a[i] + 2;

$ cc -xO4 -xautopar -xloopinfo loop.c
"loop.c", line 8: not parallelized, unsafe dependence (a)

#pragma omp parallel for shared(n,a) private(i)
for (i=0; i<n; i++)
 a[index[i]] = a[i] + 2;

$ cc -xO4 -xopenmp -xloopinfo loop.c
"loop.c", line 9: PARALLELIZED, user pragma used
$ OMP_NUM_THREADS=4 // Controls number of threads
$ a.out

Pragma added
-xopenmp used
Parallelized

-xautopar used
Not parallelized

Unsafe

Example 2 - Sections

#pragma omp sections
 {
#pragma omp section
 foo1();
#pragma omp section
 foo2();
#pragma omp section
 foo3();
#pragma omp section
 foo4();
 }

It is not just for loops
Arbitrary pieces easily parallelized
Must be legal, of course
In this example:

foo1() - foo4() run in parallel

Value-Added Features
• OpenMP version 2.5 fully supported

> Includes support for nested parallelism
• Performance tuned for OpenSPARC systems
• Idle thread behavior can be controlled
• Static and runtime error checking
• OpenMP debugging using dbx
• OpenMP performance profiling
• Autoscoping

> The compiler can assist the user with scoping the
variables

C Autoscoping Example
$ cc -fast -g -c -xopenmp -xloopinfo -xvpara loop.c
$ er_src -cc parallel -src loop.c loop.o
...
...
 Source OpenMP region below has tag R1
 Variables autoscoped as SHARED in R1: b, c, n, a
 Private variables in R1: i
 Shared variables in R1: a, b, c, n
 8. #pragma omp parallel for default(__auto)

 L1 parallelized by explicit user directive
 9. for (i=0; i<n; i++)
 10. a[i] = a[i] + 2*b[i] + c[i];
 11. }

Compiler commentary lists the autoscoping done

Parallelization: Math Library
for (i=0; i<n; i++)
 a[i] = exp(b[i]);

$ cc -fast -S loop.c
$ grep call loop.s
/* 0x0030 */ call exp

Loops may be split to enable
calling vector functions.

$ cc -fast -xvector -S loop.c
$ grep call loop.s
/* 0x002c */ call __vexp_

Normal compile calls exp

With -xvector, calls __vexp
vexp() runs in parallel

If idle processors available

do jj = 1,n,nb
 call zip(b(1,jj),%val(nb))
 do ii = 1,n,na
 call zip(a(1,ii),%val(na))
 do jjj = jj,jj+nb-1,3
 do iii = ii,ii+na-1,3
 call getts()
 call foo(a,b,c,iii,jjj)
 call gette()
 end do
 end do
 call gettp()
 end do
end do

call dgemm('T','N',n,n,n,1.d0,a,num,b,num,0.d0,d,num)

$ f90 -fast main.f \
 hrtime.o -lsunperf
$ a.out
 Mflops: 2640
$ PARALLEL=8
$ a.out
 Mflops: 19736

+ There's more code behind!

No coding sweat
No debugging pains
No tuning headaches
Great performance!
Portable!
And parallel!

Parallelization: Performance Library

Parallelization: Media/Graphics Library
for (n = 0; n < dlen; n ++) {
 tmp = 0;
 for (k = 0; k < flen; k ++)
 tmp += fir[k] * src[n+k];
 dst[n] = (vis_s16) (tmp >> 16);
}

vis_write_gsr(0);
da = (vis_u8 *) dst;
dp = (vis_d64 *) ((vis_u32) da & (~7));
off = (vis_u32) dp - (vis_u32) da;
dend = da + 2 * dlen - 1;
emask = vis_edge16(da, dend);
sa = (vis_u8 *) src;
num = ((vis_u32)dend>>3) - ((vis_u32)da>>3) + 1;
for (n = 0; n < num; n ++) {
 ss = sa;
 rdh = vis_fzero(); rdl = vis_fzero();
 for (k = 0; k < flen; k ++) {
 sp = (vis_d64 *) vis_alignaddr(ss, off);
 s0 = sp[0]; s1 = sp[1];
 sd = vis_faligndata(s0, s1);
 ... + There's more code!

No need to write VIS
No need to write MMX
Just use mediaLib functions
Perf. gain of ~6X (avg.)
“C” version exists
 (can run on any system)

Performance Analysis
• Analyzer – an advanced performance analysis

tool
• Intuitive GUI interface
• Clock based statistical profiling
• HW counter based statistical profiling
• Can relate data to function, source, assembly

level
• Integrated with compiler commentary
• Dataspace and memoryspace profiling
• Enhanced OpenMP support

Analysis Example: Memory Bottleneck
Excl. Incl. Excl. Incl. Name
Instr_cnt Instr_cnt L3_miss L3_miss
Events Events Events Events
2452671487 2452671487 96803274 96803274 <Total>
2327052822 2327052822 93803181 93803181 loop
 125618665 2452671487 3000093 96803274 main
 0 2452671487 0 96803274 _start

Function view

...compiler commentary here...
 0 0 0 0
 11. for (i=0; i<n; i++)
2327052822 2327052822 93803181 93803181
 12. t += a[index[i]];

 9200436 9200436 0 0
 [13] 10908: ldd [%o0 + %l0], %f4
 0 0 0 0
 [13] 1090c: faddd %f2, %f10, %f14
1154977323 1154977323 93803181 93803181
 [13] 10910: sll %g5, 3, %g4

Source view,
with commentary

Assembly view,
with line numbers

One click

One click

Analysis Example Continued
$ cc -fast -g main.c loop.c
main.c:
loop.c:
$ time a.out
real 0m17.49s
user 0m16.24s
sys 0m0.97s

First run,
simple compile

$ collect -h Instr_cnt,h,L3_miss,h a.out
$ analyzer

Analyze - “Aha,
it's the indirect
ldd's L3 miss”

Add -xprefetch_level=3,
prefetch emitted,
nice speedup

$ cc -fast -g -xprefetch_level=3 main.c loop.c
main.c:
loop.c:
$ time a.out
real 0m6.79s
user 0m5.54s
sys 0m0.97s

Race Detection: What is a race?

for (i=0; i<n; i++)
 a[i] = a[i+1] + b[i];

Sequential execution: Results are deterministic
Parallel execution: Results non-deterministic

a[0] = a[1] + b[0]
a[1] = a[2] + b[1]
a[2] = a[3] + b[2]
a[3] = a[4] + b[3]
a[4] = a[5] + b[4]

Thread 1

a[5] = a[6] + b[5]
a[6] = a[7] + b[6]
a[7] = a[8] + b[7]
a[8] = a[9] + b[8]
a[9] = a[10] + b[9]

Thread 2

Example:
 Thread 1 executes i=0-4
 Thread 2 executes i=5-9
 Thread 2 might write a[5]
 before thread 1 reads it.
 Final value of a[4] wrong!

This is a data race.

DRDT: A Data Race Detection Tool

Using DRDT – Step 1

• Compile a program for instrumentation.

> Add “-xinstrument=datarace” to the compiler/linker
options.

% cc -xinstrument=datarace -mt a1.c a2.c a3.c

% cc -xinstrument=datarace -xopenmp omp1.c omp2.c

Using DRDT – Step 2

• Run the application under collect (analyzer)
with the -r option
- Similar to using collect for performance analysis

- This will create a data file that stores the race detection results
• Significant slowdown (> 50X) can occur when using DRDT

> Use a small input data set for a short run

% collect -r on a.out arg1 arg2

Using DRDT – Step 3

• Check the result
> Use er_print for command line interface.

> For a summary report
% er_print -races test.1.er

> For a detailed report on one particular data race detected

% er_print -rdetail 3 test.1.er

% rdt test.1.er

> Use rdt for a GUI

% er_print -races test.1.er

Total Races: 2 Experiment: test.1.er

Race #1, Vaddr: 0x212c0
 Access 1: Read, work + 0x000000A0,
 line 42 in "pthr_prime.c"
 Access 2: Write, work + 0x000000DC,
 line 44 in "pthr_prime.c"
 Total Traces: 3

Race #2, Vaddr: 0x212c0
 Access 1: Write, work + 0x000000DC,
 line 44 in "pthr_prime.c"
 Access 2: Write, work + 0x000000DC,
 line 44 in "pthr_prime.c"
 Total Traces: 2

Example of DRDT Output

Analyzing & Improving Binaries

• BIT - A tool that operates reliably on binaries
• Can instrument and collect information for analysis
• Can create a new binary with improved performance

> Focusses on rearranging code to better use the I-cache
> Works best on large, complex applications

• Build with
> Option -xbinopt=prepare
> Use -O1 or higher optimization level

BIT: Examining Code Coverage
$ cc -fast -xbinopt=prepare *.c -lm // Build for BIT
...
and.c:
build-disjuncts.c:
extract-links.c:
...
$ bit instrument a.out // Instrument the a.out
$ a.out.instr 2.1.dict -batch < input // Run a.out.instr
$ bit coverage a.out // Analyze coverage
Creating experiment database test.1.er ...
BIT Code Coverage
Total Functions: 350
Covered Functions: 216
Function Coverage: 61.7%
Total Basic Blocks: 6,041
Covered Basic Blocks: 3,969
Basic Block Coverage: 65.7%
Total Basic Block Executions: 3,955,536,194
Average Executions per Basic Block: 654,781.69
Total Instructions: 27,606
Covered Instructions: 17,680
Instruction Coverage: 64.0%
Total Instruction Executions: 18,866,478,764
Average Executions per Instruction: 683,419.50

Simplifying Performance Optimisation

• SPOT – A Simple Performance Optimisation
Tool
> Produces a report on a code's execution
> Exposes common causes of performance loss
> Very easy to use

• SPOT reports contain hyperlinked profiles
> Makes it easy to navigate from performance issue to

source to assembly
> For maximum information

> Add -g (-g0 for C++)
> Use -O1 or higher
> Include -xbinopt=prepare

Using SPOT
$ cc -fast -xbinopt=prepare -g *.c -lm // Build the code
...
and.c:
build-disjuncts.c:
extract-links.c:
...
$ spot -X a.out 2.1.dict -batch < input > /dev/null // Run SPOT
Copying spot resources
Collect machine statistics
Collect application details
Collect ipc data using ripc
Collect data using BIT
Output ifreq data from bit
Collect bandwidth data
Collect traps data
Collect HW counter profile data
Collect data for Rstall_IU_use & Re_DC_miss
Collect data for Rstall_storeQ & Cycle_cnt
Collect data for Dispatch0_2nd_br & Cycle_cnt
Generating html output for HW counter profile data
Collect clock-based profiling data
Generating html output for time profile data
Done collecting, tidying up reports
$

SPOT runs the code many times
Approx. 20X longer (in this mode)
Invokes other tools to collect data
Generates comprehensive report

Embracing OpenSPARC/gcc Users
• Many developers use gcc

> Want to use the same compiler for different platforms
> Use gcc language extensions
> Familiar with & feel comfortable with gcc
> Migration to Studio is, or is viewed as being, difficult

Would be nice to bring the features of Studio to these users.

Making the Connection
gcc

front-end
IR

generator

IPO
Parallelizer

Optimizer

Code Generator

Link time optimizer

Binary optimizer

TOOLS

Studio
front-end

 GCC for
 SPARC
 Systems

Key Features

• Transparent to gcc users
> Feature compatible with gcc
> Debuggable with gdb and dbx

• Improved performance
> Through advanced optimizations tuned to SPARC

systems
> Extra optimizations such as -xipo, -xprefetch,

-xprofile

• Higher reliability

Summary
• A rich collection of compilers and tools is

available to OpenSPARC developers
> Components are thread-aware and work

synergestically
> Reliable, with advanced optimizations and

parallelization
> Excellent multi-threaded analysis and debugging

tools
• These tools are all free and can be downloaded

from:
 http://cooltools.sunsource.net

64 bit, 32 threads, free

Cool Tools – Automatic
Tuning and Trouble

Shooting Systems (ATS)

David Weaver

Agenda

• Automatic Tuning and Troubleshooting System
> Build the best binaries
> Bonus: troubleshooting

• Unified Solaris Binary
> Deliver the best-fit binary at run-time

Automatic Tuning and
Troubleshooting System

(ATS)

Automatic Tuning Through ATS

% ats a.out

Automatic Tuning At Work

Note: Other, user defined, metrics supported too

How Does It Work? -- ATS uses PEC

Intermediate
Representation
For Each Module

Usual Text
and Data

...

t1.o

t2.o

tn.o

a.out

PEC = Portable Execution Code
(SunIR is kept in the binary)

% cc -xO3 -Wd,-pec t.c
% gcc -O3 -xpec t.c

Recompiling Binaries Through PEC

...

a.out

...

t1.ir

t2.ir

The SunIR is extracted and
reprocessed

Intermediate
Representation
For Each Module

Usual Text
and Data

a.out

t1.ot1.ir

t2.ot2.ir

tn.otn.ir

Dramatic reduction in compile time

Troubleshooting - Findbug

• Find the offending options
• Then find the offending module
% ats \-i 'script:findbug -xO3 -fsimple=2 -xlinkopt' \a.out

Find the offending option, then the module(s)

Unified Solaris Binary

% mkusb -c ultra3 build-ultra3/a.out -o a.out

% mkusb -c ultraT1 build-ultraT1/a.out -a a.out

Making A Unified Solaris Binary

• Make platform specific versions of a binary
• Add them to a unified solaris binary
• Example:

% a.out
Hello World!

Running A Unified Solaris Binary
• Just as you would run a normal binary

% setenv USB_VERBOSE 1

% a.out
BEST MATCHING BINARY ultra3
Hello World!

% mkusb -c sparc sparc.out -o a.out

% mkusb -c x86 x86.out -a a.out

% mkusb -c ultra4 ultra4.out -a a.out

Making Another Unified Solaris Binary
• Example:

How Does It Work?

• Binaries are compressed, encoded and added to
the Unified Solaris Binary

• At runtime
> Run machine is recognized
> Best matching binary is extracted and cached into a

directory and executed
> For example, on an ultra3cu, order of perference

> ultra3cu ultra3i ultra3iplus ultra3
ultra2 ultra2i ultra2e
ultra sparc

• When run again, the cached binary is used

64 bit, 32 threads, free

 http://OpenSPARC.net

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 231www.opensparc.net

OpenSPARC participation

• Community Registration:
> http://www.sunsource.net/servlets/Join After registration and

confirming password, you can join the mailing lists:
http://www.sunsource.net.servlets/ProjectMailingListsList

• Forums:
> http://forum.java.sun.com/category.jspa?categoryID=120

(separate registration required for posting)

http://www.sunsource.net/servlets/Join
http://www.sunsource.net.servlets/ProjectMailingListsList

Recent Trends in Processor Architecture -2007 , NIT Trichy, India 232www.opensparc.net

OpenSPARC participation

• Add your university (or company) to the marketplace:
http://www.opensparc.net/community-marketplace/

• Send us your profile and we'll post it:
http://www.opensparc.net/profiles/

• Add yourself to our Frappr!!:
http://wwwopensparc.net/frappr.html

• Contribute to our OpenSPARC Book:
http://wiki.opensparc.net/bin/view.pl/Main/Webhome
(separate registration required for editing)

http://www.opensparc.net/community-marketplace/
http://www.opensparc.net/profiles/
http://wwwopensparc.net/frappr.html
http://wiki.opensparc.net/bin/view.pl/Main/Webhome

