-

©

| -

o))

O

| -

o ©

O 2

a' c

< 5

o) <C

n_nU O
. S X
S
@)

c O .

S s £g ¢

.m.u) W
. S _ 525 gt
., SE o SE5202Casg
O = LG >=2=53 8
S 0OQP 6 o D o 9O = o
cESE csSsS=H S =)
QTS 2T 2O R G=2
& S S S?W v =
C - C ¢ © ® = o =S5 =
DNy onLaoOown-=->2"DDonwmw =

http://www.opensparc.net/

Agenda

| 1.Chip Multi-Threading (CMT) Era

www.opensparc.net

2. Microarchitecture of OpenSPARC T1
3.0penSPARC T1 Program

4.SPARC Architecture

5.0penSPARC in Academia
6.0penSPARC T1 simulators

/. Hypervisor and OS porting

8. Compiler Optimizations and tools

9. Community Participation

Recent Trends in Processor Architecture -2007 , NIT Trichy, India

Making the Right Waves

Chip Multi-threading
(CoolThreads™)

Symmetrical
Multi-processing (SMP)

Reduced Instruction Set
Computing (RISC)

Improved Price/Performance

1980 1990 2000 2010

Www.opensparc.net Recent Trends in Processor Architecture -2007 , NIT Trichy, India

The Processor Growth

Single Chip Multiprocessors

Integer Unit -
= m:.! i %l‘rt
= |

Coenter

,._JH.-V
).

<20K gates

1982 1990 1998
RISC SMP RAS

64 bit

Mltiple cores

>350M xstors

2005
SWAP

CMT

Source: Sun Network San Francisco, NC03Q3, Sep. 17,
2003

The Big Bang Is Happening—
Four Converging Trends

Network Computing Is Moore’s Law

Thread Rich A fraction of the die can
already build a good
s K processor core; how am |
going to use a billion

Web services, Java™
transistors?

applications, database
Worsening z R Growing Complexity

transactions, ERP. ..

Memory Latency of Processor Design
It’s approaching 1000s Forcing a rethinking of
of CPU cycles! Friend or foe? processor architecture —

modularity, less is more,
time-to-market

. .net
www.opensparc.ne Recent Trends in Processor Architecture -2007 , NIT Trichy, India

The Big Bang Has Happened—
Four Converging Trends

Network Computing Is Moore’s Law

Thread Rich A fraction of the die can
already build a good
s K processor core; how am |
going to use a billion

Web services, Java™
transistors?

applications, database
Worsening z R Growing Complexity

transactions, ERP. ..

Memory Latency of Processor Design
It’s approaching 1000s Forcing a rethinking of
of CPU cycles! Friend or foe? processor architecture —

modularity, less is more,
time-to-market

. .net
www.opensparc.ne Recent Trends in Processor Architecture -2007 , NIT Trichy, India

0 o o o AU
a . a a . ¢ ¢
AI'CI10
~ ~ ~ \ I N\ L .
- U - ep ApPp Se Pata R -
eb 00O = = D
Application Web Server OLTP ERP ERP DSS
Category Server NEWE
g::gtljléﬁlizzq-level Low Low Low Medium Low High
Thread-level
Parallelism High High High High High High
{/r\]/f)tr"ll:i(r:]gog/e [t)ata Large Large Large Medium Large Large
Data Sharing Low Medium High Medium High Medium

Memory Bottleneck

Relative Performance

10000
B CPU Frequency
B DRAM Speeds
1000
100
10
1
1980 1985 1990 1995 2000 2005

Source: Sun World Wide AnalySt COIlf%l‘GIlC FQP(SI‘%%W(%OAQIQYS'[Conference Feb. 25, 2003

ource: Sun

Single Threading

Up to 85% Cycles Waiting for Memory

Single Threaded
Performance

Typical Processor
Utilization:15-25%

Thread

B v @A v @ w

Memory Latency B Compute

www.opensparc.net Recent Trends in Processor Architecture -2007 , NIT Trichy, India

The Power of CMT - CoolThreads

UltraSPARC T1 Core . .
Utilization: Up to 85% TONT) Porfermane

Thread 4

G mEME M

M M M
Thread 2

Threadl M M M

Thread 3

Memory Latency B Compute

www.opensparc.net 10

Recent Trends in Processor Architecture -2007 , NIT Trichy, India

Chip Multi-Threading (CMT) to the rescue

CMP HMT CMT

(chip multiprocessing) (hardware multithreading) (chip
multithreading)

n cores per processor m strands per core n x m threads per processor

www.opensparc.net 11

Recent Trends in Processor Architecture -2007 , NIT Trichy, India

Why CMT Works

Goal: “100% Resource Utilization” (given a fixed die size)

10

S
2 Multi-Core, Multi-Thread

AV

~4

Lo -‘Single-Core, Multi-Thread

ingle-Core, Single-Thread

SPARC: 4 threads per core

0.05 e Increases core die area by ~20%
 Improves performance by ~50—100%

Relative Performance on thread-
rich memory-bound workloads

Size of Each Core

20% Maximum

Example - SpecJBB Execution Efficiency

Idle Time

A
s N\

3.79 cycles 1 21%

Single o — ici
Threaded 1+3.79 Efficiency

Idle Time
1.96 cycles
EE | s
¢ 72%

Four — 4 +1.56 _Efficiency
Threaded :

: : : ! —L— : : »Cycles
) 0 4 8
[Compute [Pipeline Conflict Pipeline Latency N Memory Latency
A. S. Leon et al., “A Power-Efficient High Throughput 32-Thread SPARC Processor,” ISSCCO06, Paper 5.1

Copyright Sun Microsystems 2006, Sun Microsystems, Inc. All rights reserved. Used by permission.

UltraSPARC T1 Processor

* SPARC V9 (Level 1) implementation
DDR-2 DDR-2 DDR-2 DDR-2

* Up to eight 4-threaded cores (32 SDRAM SDRAM SDRAM SDRAM
simultaneous threads)

* All cores connected through high bandwidth
(134.4GB/s) crossbar switch

* High-bandwidth, 12-way associative 3MB ----
Level-2 cache on chip 25 | L2$ | L2§ | L2§

+ 4 DDR2 channels (23GB/s)
» Power: <80W c1lic2 callce c5lice c7lics

* ~300M transistors
» 378 sq. mm die

Sys I/F
Buffer Switch
Core

|

1 0of 8
Cores

BUS

www.opensparc.net Recent Trends in Processor Architecture -2007 , NIT Trichy, India

14

Faster Can Be Cooler

Single-Core Processor CMT Processor

107¢ C1 C2 C3 C4

102C

96C

91C

85C

80C

74C

69C

63C

58C C5 C6 C7 C8

(Not to Scale)

www.opensparc.net 15

Recent Trends in Processor Architecture -2007 , NIT Trichy, India

CMT: On-chip = High Bandwidth

32-thread

Traditional SMP System

Example: Typical SMP Machine Configuration

HEEE
Switch
MEMEMEM
HEEE
Switch
MEMEMEM
HEEE
Switch
MEMEMEM
HEEE
Switch
MEMEMEM

PEPEPRP
Switch
M MMM
PEPEPRP
Switch
MMM M

PEPEPEP
Switch
M MM M
PEPEPEP
Switch
M MM M

32-thread
OpenSPARC T1 Processor

One motherboard, no switch ASICs

B Mem Ctr |
Ve Ctir_

I/O

Direct crossbar interconnect

-- Lower cost

-- better RAS

-- lower BTUs,

-- lower and uniform latency,

-- greater and uniform bandwidth. . .

CMT Benefits

Performance

Cost

* Fewer servers
Less floor space
Reduced power consumption
Less air conditioning
Lower administration and
maintenance

Reliability

Www.opensparc.net Recent Trends in Processor Architecture -2007 , NIT Trichy, India

17

cro;y;terns

CMT Pays Off with CoolThreads™ Technology

E

71000 and T2000

Ire

SunF

X TR
B XX R
e, e, ettt S
e ote o
fo%%ooo..voo. g X2
PRSIRKNKS KX
S,

XN
totatetors, 1000, 23
S, Tejnieiaeele, ‘ege, e
SN N Yeletetetetete, Poiele
g LXXXRXXNY
oeteteretnse,

O

EXRRARARRAARD
205

ettt tetetetete

b

>
cDQ
ae.a
==
mee
.._He._nm
o= <t
o

~— U
=
< 0 =
205
O »n w
D) <C <C
e Ooe o

18

Recent Trends in Processor Architecture -2007 , NIT Trichy, India

WWW.0BeB $RI6s0Rls

CoolThreads Servers are a Hit

NETWORKWORLD

BusinessWeek E

«> InfoWorld

www.opensparc.net 19

Recent Trends in Processor Architecture -2007 , NIT Trichy, India

Uniprocessor Performance (SPECint)

10000
From Hennessy and Patterson, Computer
Architecture: A Quantitative Approach, 4th
edition, 2006
S 1000
=
s
2 100
S
&
£
HC_)
&
10
25%lyear
) processors per chip
1 *47\ \ \ \ \ \ \ \ \ \ \ \ \

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

* VAX : 25%lyear 1978 to 1986
* RISC + x86: 52%l/year 1986 to 2002
* RISC + x86: ??%l/year 2002 to present MultiCore Expo 2006

Source: David Patterson presentation at

UltraSPARC-T1: Choices & Benefits

Simple core (6-stage, only 11mm?in 90nm), 1 FPU

— maximum # of cores/threads on die

— pipeline built from scratch, useful for multiple generations
— modular, flexible design ... scalable (up and down)

Caches, DRAM channels shared across cores
— better area utilization

Shared L2 cache

—> cost of coherence misses decrease by order of magnitude
— enables highly efficient multi-threaded software

On-die memory controllers
— reduce miss latency

Crossbar switch
— good for b/w, latency, functional verification

For reference: in 90nm technology, included 8 cores, 32 threads, and only dissipate 70%

LSun

microsystems

UltraSPARC-T1 Processor Core

- Four threads per core
- Single issue 6 stage pipeline

- 16KB |-Cache, 8KB D-Cache
> Unique resources per thread
> Registers
> Portions of I-fetch datapath
> Store and Miss buffers
> Resources shared by 4 threads
> Caches, TLBs, Execution Units
> Pipeline registers and DP

- Core Area = 11mm2 in 90nm
- MT adds ~20% area to core

UltraSPARC T1 Processor Core Pipeline

T
rea
Select

x4

Fetch Decode xecute emory riteback

[Cache — | Inst Thrd T Alu DCache
Itlb bufx 4 Sel - Decode —» Mul T D-TLB 4>b
M Shft < Stbufx 4 Crossbar
ux Div Interface
A { I
<« Instruction type
Thread selects Thread 550 yP
select - traps & interrupts
logic <¢—Tresource conflicts

Thrd

T PC logic
Sel x 4
Mux

Thread Selection Policy

* Every cycle, switch among available (ready to run)
threads

— priority given to least-recently-executed thread

 Thread becomes not-ready-to-run due to:

 Long latency operation like load, branch, mul, or div
« Pipeline stall such as cache miss, trap, or resource conflict

 Loads are speculated as cache hits, and the thread is
switched in with lower priority

ower

 Power Efficient Architecture
— Single issue, in-order six stage pipeline
— Minimal speculation, predication or branch prediction
* Thermal monitoring for power throttling
— 3 external power throttle pins
* Controlled by thermal diodes

« Stall cycles injected, affecting all threads
— Memory throttling

° Open page limit T1 Power Components
* Design Implementation

Mios
— Fully static design g
— Fine granularity clock gating B G
» Limited clock issue on stall, FGU i;::;ge
] SPARC Cores

* Limited L2 Cache & Memory clock gating
— Wire classes optimized for power * delay

25
Accellera/SI2 Unified Power Format Technical Meeting 10/5/06

Microarchitecture details of the
UltraSPARC -T1 CPU

Thread Selection — All Threads Ready
Pipelined Flow

Next Fetch

t0-1d

" t0-add s

3-add Et3-add

Thread Selection — Two Threads Ready

Pipelined Flow

v

. S D E M W

- {0-1d 0d "—t0-1d t0-1d {0-1d

Q

E * FtO-add Ye-sub Dtl—sub Etl-sub Mtl-sub th- ub

-

é) Ft 1d Stl-ld Dtl-ld Etl-ld Mtl- Wt1-1d
* Ftl-br t0%agd DtO-add EtO-ad MtO-add

Thread '0' is speculatively switched in before cache hit information
is available, in time for the 'load' to bypass data to the 'add’

28

Instruction Fetch/Switch/Decode Unit(IFU)

* |-cache complex
> 16KB data, 4ways, 32B line size
> Single ported Instruction Tag.

> Dual ported(1R/1W) Valid bit array to hold Cache line
state of valid/invalid

> Invalidates access Vbit array not Instruction Tag
> Pseudo-random replacement

 Fully Associative Instruction TLB
> 64 entries, Page sizes: 8k,64k, 4M, 256 M
> Pseudo LRU replacement.
> Multiple hits in TLB prevented by doing autodemap on fill

www.opensparc.net 29

Recent Trends in Processor Architecture -2007 , NIT Trichy, India

microsystems

IFU Functions (cont'd)

» 2 instructions fetched each cycle, though only one is issued/clk.
Reduces 1$ activity and allows opportunistic line fill.

» 1 outstanding miss/thread, and 4 per core. Duplicate misses do
not request to L2

* PC's, NPC's for all live instructions in machine maintained in [FU

WWW. .net
opensparc.ne Recent Trends in Processor Architecture -2007 , NIT Trichy, India 30

Windowed Integer Register File

5KB 3R/2W/1T structure
> 640 64b regs with ECC!

Only the 32 registers from current
window is visible to thread

==

win+1)

win)

win-1)

<<

(16 reg x 8 windows + 8 global regs x 4 sets)x4 threads

Acrchitectural Set

(compact sram cells)
outs{0-7]
T% lacalsf0-7]
outg[0-7]| ws(0-7]
locals|0-7]

. - -
culs|l=7) ms|0-7] Transfer
locals -7 = aE
irs[(-7) %

www.opensparc.net

Access from pipe

Recent Trends in Processor Architecture -2007 , NIT Trichy, India

Working Set
{fazt RF cells)

outs[0-7]

locals[(3-7]

mns[0-7]

v

Read/'Write

Window changing in background
under thread switch. Other threads
continue to access IRF

Compact design with 6T cells for
architectural set & multi ported cell
for working set.

Single cycle R/W access

31

Execution Units

- Single ALU and Shifter. ALU reused for Branch Address and
Virtual Address Calculation

* Integer Multiplier
> 5 clock latency, throughput of 2 per cycle for area saving
> Contains accumulate function for Mod Arithmetic.
> 1 integer mul allowed outstanding per core.

> Multiplier shared between Core Pipe and Modular
Arithmetic unit on a round robin basis.

- Simple non restoring divider, with one divide outstanding per
core.

» Thread issuing a MUL/DIV will rollback and switch out if
another thread is occupying the mul/div units.

-opensparc.net Recent Trends in Processor Architecture -2007 , NIT Trichy, India 32

Load Store Unit(LSU)

« D-Cache complex
> 8KB data, 4ways, 16B line size
> Single ported Data Tag.

> Dual ported(1R/1W) Valid bit array to hold Cache line
state of valid/invalid

> Invalidates access Vbit array but not Data Tag
> Pseudo-random replacement
> Loads are allocating, stores are non allocating.

« DTLB: common macro to ITLB(64 entry FA)

* 8 entry store buffer per thread, unified into single 32
entry array, with RAW bypassing.

www.opensparc.net 33

Recent Trends in Processor Architecture -2007 , NIT Trichy, India

LSU(cont'd)

 Single load per thread outstanding. Duplicate request
for the same line not sent to L2

* Crossbar interface

>LSU prioritizes requests to the crossbar for FPops,
Streaming ops, | and D misses, stores and interrupts
etc.

>Request priority:
imiss>ldmiss>stores, {fpu,strm,interrupt}.

>Packet assembly for pcx.

 Handles returns fror_n cro_ssbar and maintains order for
cache updates and invalidates.

www.opensparc.net 34

Recent Trends in Processor Architecture -2007 , NIT Trichy, India

Other Functions

« Support for 6 trap levels. Traps cause pipeline flush and thread
switch until trap PC is available

« Support for upto 64 pending interrupts per thread

 Floating Point
> FP registers and decode located within core
> On detecting an Fpop
> The thread switches out
> Fpop is further decoded and FRF is read

> Fpop with operands are packetized and shipped over the
crossbar to the FPU

> Computation done in FPU and result returned via
crossbar

> Writeback completed to FRF and thread restart

www.opensparc.net 35

Recent Trends in Processor Architecture -2007 , NIT Trichy, India

Virtualization

OS instance 2

UltraSPARC T1

Hypervisor layer
virtualizes CPU

Multiple OS instances

Better RAS as failures
In one domain do not
affect other domain

mproved OS
portability to newer
nardware

Virtualization on UltraSPARC T1

* Implementation on UltraSPARC-T1

> Hypervisor uses Physical Addresses
> Supervisor sees 'Real Addresses' — a PA abstraction

> VA translated to 'RA" and then PA. Niagara MMU and TLB
provides h/w support.

> Upto 8 partitions can be supported. 3Bit partion ID is part of TLB
translation checks

> Additional trap level added for hypervisor use

)

Crossbar

Corel

Si=

Core1

HHE

v 1

v 1

Core7

=Sl=
i

Core to L2 Cache, Shared FPU/CRI

| Bank0
Banki
FPU/CRI

L2 Cache, FPU, CRI to Core
% 1_/1 21 | .
2.k — I~
O
10
BankO0 FPU CRI
!t !t | T
=B |.. HE | |IHH| HHE
L2 BankO L2 Bank3| | FPU CRI

www.opensparc.net

Recent Trends in Processor Architecture -2007 , NIT Trichy, India

Each requestor queues upto 2
packets per destination.

3 stage pipeline: Request,
Arbitrate and Transmit

Centralised arbitration with
oldest requestor getting priority

Core to cache bus optimized
for address + doubleword store

Cache to core bus optimized
for 16B line fill. 32B I$ line fill
delivered in 2 back to back clks

38

L2 Cache

- 3MB, 4-way banked, 12way SA, Writeback
* 64B line size, 64B interleaved between banks

* Pipeline latency: 8 clks for Load, 9 clks for I-miss, with
critical chunk returned first

» 16 outstanding misses per bank -> 64 total

- Coherence maintained by shadowing L1 tags in an L2
directory structure.

» L2 is point of global visibility. DMA from 1O is serialised
wrt traffic from cores in L2

L2 Cache — Directory

* Directory shadows L1 tags

> L1 set index and L2 bank interleaving is such that %4 of
L1 entries come from an L2 bank

>0n an L1 miss, the L1 replacement way and set index
identify the physical location of the tag which will be
updated by miss address

>0n a store, directory will be cammed.
- Directory entries collated by set so only 64 entries need to
be cammed. Scheme is quite power efficient

- Invalidates are a pointer to the physical location in the L1,
eliminating the need for a tag lookup in L1

Coherence/Ordering

» Loads update directory & fill the L1 on return

» Stores are non allocating in L1

> Two flavors of stores: TSO, RMO.
One TSO store outstanding to L2 per thread to preserve
store ordering. No such limitation on RMO stores

> No tag check done at store buffer insert

> Stores check directory and determine L1 hit.
> Directory sends store ack/inv to core

> Store update happens to D$ on store ack

» Crossbar orders responses across cache
banks

On Chip Mem Controller

* 4 independent DDRII DRAM channels

« Can supports memory size of upto 128GB
« 25GB/s peak bandwidth

» Schedules across 8 rds + 8 writes

« Can be programmed to 2 channel mode in reduced
configuration

« 128+16b interface, chipkill support, nibble error
correction, byte error detection

« Designed to work from 125-200Mhz

New wave requires rethinking everything

microsystems

= b

OPEN source
hardware?

soLaris
ITRASPARG ¢

] | CoolThreads™ Technoloav

Recent Trends in Processor Architecture -2007 , NIT Trichy, India

www.opensparc.net

lﬂ\NE RE J
OPEN OpenSPARC

Pa rtlclpatlon

X Sun

World's First Open Source Microprocessor
OpenSPARC.net

—
o Szm

microsystems

/erification suite and
architectural models

« Simulation model for Solari
bringup on s/w
14 million lines of code

{*\.- 'L

soLaris
IITRASPARG &

CoolThreads™ T

e —

x‘“&

solLa rIS OpenSPARC ..-e \

Recent Trends in Processor Architecture -2007 , NIT Trichy, India

l

—

www.opensparc.net

Get the Source ... Start Innovating!

20 GB/s read/write bandwidth

DDR2 DIMM

.y
)

DDR2 DIMM DDR2 DIMM DDR2 DIMM

iy v
. e,

.y
)

16B @ 333 MT/s

Memory Memory Memory Memory
3MB L2§ Controller Controller Controller Controller
L2$ Bank L2$ Bank L2$ Bank L2$ Bank

Crossbar

Ct C2 C3 C4 C5 Cé6 C7 C8

4 threads per core

System Interface
Buffer Switch Core

16B @ 200Mhz
3.2GB/s peak, 2.5GB/s effective

10 BUS

Things you can do:
-use as is

- add/delete threads

- add/delete cores

- add new instructions

- change or add FPUs

- add custom coprocessors
- add video/graphics

- add network interface

- change memory interface
- change 1/O interface

- change cache/mem interface
- efc...

Innovate anywhere —
within it or outside it

OpenSPARC Communities

Academia/Universities EDA Vendors
Architecture, ISA, VLSI course work Benchmarking
Threading, Scaling, Parallelization Reference flow
Benchmarks FPGA

Emulation
. Verification
| f n B Physical Design
p e n Multi-threaded tools
e i)
ompilers, Threading -
S, Hardware IP Suppliers
Performance Analysis PCI cores, SERDES etc.
Operating Systems
OpenSolaris, - Chip Designers
Linux, BSD variants, SoC designs, Hard macros
Embedded OSs Telecom applications

www.opensparc.net 47

Recent Trends in Processor Architecture -2007 , NIT Trichy, India

OpenSPARC momentum

Innovation Happens Everywhere

www.opensparc.net
pensp Recent Trends in Processor Architecture -2007 , NIT Trichy, India

OpenSPARC community achievements

> Single core (S1) design released by Simply RISC based
in Italy (less than 6 months of effort)

» David Miller ported Linux in less than 6 weeks to T2000
system

» Cadence uses OpenSPARC for benchmarking of two
generation of hardware accelelrators

- John Hennessy and David Patterson's fourth edition of
“Computer architecture” book includes section on T1

» UCSC professor Jose Renau releases 65nm synthesis
results

» Collaborative effort on RAMP (build 1000 core system)
» > 4500 downloads.

Cool tools for SPARC systems

http://cooltools.sunsource.net/

~ collect

» GCC for SPARC Systems
» Simple Performance Optimisation Tool
» Automatic Tuning and Troubleshooting Tool

www.opensparc.net 50

Recent Trends in Processor Architecture -2007 , NIT Trichy, India

http://cooltools.sunsource.net/

OpenSPARC.net: Get the Source

* Browse online

Sort by:

> Modules
> Signals

> Files

> Tasks

> Functions

» or Download
the .tar files

-

File Edit

‘| £ Home |

Miew Go Bookmarks Tools

Window Help

mp_top -

Bookmarks %5 Internet F3Lookup E3Mew&Cool %5 Netcaster

64 Bits. 32 Threads.

Get the
source
Freel

OpenSPARC"

OpenSPARC

§ Hide All I§ Showr P.II|§ Files I

Functions|§ Search || Help |

Hierarchy for cmp_top

OpenSPARCT1

* cmp top FE

OOOOOOOOOOOOOOOOOOO

o

i

ol F
mp_dram * &
cmp_mem *
cpx stall *
db ort chik ®
dffrl asvnc ' = 4
err_inject *
jbus monitor *
sl m He

i

i

sas taskst
slam init * B
arc_pipe flow *
stub *

TF

§ Hide All I§ Show AIII§ Files I
=

%Functionsl% search | Hep |

This
paga.

Craatad:

[«]

Thiidar 5
110417 2008

B

<&

module OpenSPARCTLE (/+AUTOARGH S

S/ Outputs

DEZMO_EAS L, DREAMO CAS I, DEAMO WE L, DEaMO CS L, DRAMO_CEE,
DEAMO_ATDDE. DRAMO Ea, DREAMO CE P, DRAMO CE M, DEAMI RaAS L.
DE&M]_CAS L, DEAM]1 WE_L, DEAM] CS_L, DEAMI1 CKE, DEAM] ATTE.
DEZM]_Ea, DEAM1 CKE_P, DEAM1 CK N, DRAMZ EaS I, DRAME CAS L.
DEAMZ WE_L. DRAME CS_L, DEAMZ CKE, DRAMZ ADDER, DRAME Ea,
DEAMZ_CE_P. DRAMZ CE_N, DREAM3I _FRaS [, DRAM3_CAS L. DRAM3 WE L.
DE&M3_CS5_L. DRAM3_CEE, DEAMS_ATDE, DRAMI_EA., DRAMI_CE_P,
DEAM3_CE_N., J_PACKEO, J_Packl, J_EEQO_oOUT L. J_EEQ]l _OUT I, J_EEE.
TSE_TESTIO. TOO,

£ Inouts

DEZMO_D0O, DR&MO_CE, DE&MO_DOS, SPARE_DDRO_PIN, DRAMI DO, DEAMI_CE,

DE&M] D0OS, CLEOES, SPARE_DDR1_PIN, DEAMZ D, DEAMZ CE, DREAMZ DOS,
SPARE _DDRZ PIM, DE&M3I 00, DRE&MI CE, DRAME DOS, SPARE DORZ _EPIH,
J_an, J_anp, J_ANTYPE, SPARE JEUSE _PIM, DEG_DO, DEG_CE P,
TEC_CE N, Wl H, ¥DDA, VDDEOQ, ¥DDCO, ¥DDTO, ¥DDL18, WDDR1S, DIODE_TOR,
LDIODE EOT, VPP, S55I MISO, S55I MOSI, S55I SCE, PMO, YDD_SENSE,
Y55 _SENSE, SPARE MISC PIN, SPARE MISC PAD, SPARE DORO_PAT,
SPARE_DDR1_PaN, SPARE _DDRZ _PADN, SPARE DDEZ PAN, SPARE DEG_PAD,
/4 Inputs

DEZMO1_P_REF_RES, DEaM01l W FEF_RES., DRAMZ3_P_REF_RES,
DE&MZ3_N_EREF_RES, J_PaR, J_PACK4, J_PACES, J_EEQ4 TM L.
J_EBEQS_INW L, J_EST L., DTL_L_WREF, DTL_E_VEEF, JEUS_P_KEF_EES,
JEUS_N_REF_RES, DEG_WEEF, J_CLE, TCE, TCEZ, TRST L. IDI, THS,
TEST MODE., TEMP_TRIG, BWRON RST 1., CLE_STRETCH, DO_ETST,

EXT TNT 1. BUENIN. PMI, PGEM _EN, PLL_CHAR TN, ¥EEG_SELEG_L.
TRIGIN., HSTL_VEEF

¥

oukput DRAMO_R&S L A4 From pad_ddel of pad_ddel. w
output DEAMO_CAS L; A4 From pad_ddel of pad_dde0. w
output DEAMO_WE_L; AF From pad_ddel of pad_ddel.w
output [3:0] DEAMO_CS_L; AF From pad_dde0 of pad_ddel. <
output DEAMO_CEE; 4 From pad_dde0 of pad_ddel. <
output [14:0] DEAMO_ADDE ; A From pad_dde0 of pad_ddel. <
output [2:0] DEAMO_E&; 4 From pad_dde0 of pad_ddel. <
inout [127:0] DEAMO_D0; A To/From pad_ddr0 of pad_ddcO. +
inout [15:0] DEAMO_CE; A To/From pad_ddcl of pad_ddcl. «
incut [35:0] DEAMO_DOS; A To/From pad_ddel of pad_ddel. w
output [3:0] DEAMO_CE_P;: A4 From pad_dde0 of pad_ddel w
output [3:0] DEAMO_CE_N;: A4 From pad_dde0 of pad_ddel w
input DE&MO1_P_REF_RES; A4 To pad_ddel of pad ddel. w
input DEAMO1_N_REF_RES; A4 To pad_ddel of pad ddel. w
inout SPARE_DORO_PIN: A To/From pad_ddel of pad_ddel. w
output A4 From pad_ddrl of pad_ddrl.
cutput 4 From pad_ddrl of

output A From pad_ddrl of

output [3:0] A From pad_ddrl of

output A From pad_ddrl of

output [14:0] From
output [2:0]
inout [127:0]
inout [15:0]
inout [35:0]
output [3:0]
output [3:0]
input
input

pad_ddrl of
From pad_ddrl of
4 To/From pad_ddrl
4 To/From pad_ddrl
£F To/From pad_ddril
£F From pad_ddrl of
£F From pad_ddrl of

pad_ddrl. «
pad_ddrl. w

£F To pad_ddrl of pad_ddrl. w
FF To pad_ddrl of pad ddrl. w

of pad_ddrl.
of pad_ddrl

Sun

microsystems

64 Bits. 32 Threads. Free.

Imagine what's
next...

"Sun's decision to release Verilog source code for the UltraSPARC hardware design
under a free software license is a historic step. Sun is showing its profound

understanding of the forces shaping our technological future in making this decision.
-- Eben Moglen, founding director of the Software Freedom Law Center

"The free world welcomes Sun's decision to use the Free Software Foundation's GNU
GPL for the freeing of OpenSPARC. We'd love to see other hardware companies

follow in Sun's footsteps.”
-- Richard Stallman, Free Software Foundation

Legal Substantiation — Benchmarks

»Sun Fire T2000 (8 cores, 1 chip) 14,001 SPECweb2005. IBM p5 550 (4 cores, 2 chips) 7881 SPECweb2005. IBM
eServer Xseries x346 (2 cores, 2 chips) 4348 SPECweb2005. SPEC, SPECweb reg tm of Standard Performance

Evaluation Corporation. Sun Fire T2000 results submitted to SPEC. Other results from www.spec.org as of December 6,
2005.

« SPECjAppServer2004 with BEA - Sun Fire T2000 (8 cores, 1 chip) 615.64 JOPS@Standard. SPECjAppServer2004 Sun
Fire rx4600 (4 cores, 4 chip) 471.28 JOPS@Standard. SPEC, SPECjAppServer reg tm of Standard Performance
Evaluation Corporation. Sun Fire T2000 results submitted to SPEC. Other results from www.spec.org as of 12/06/2005.

» SPECjAppServer2004 with Sun Java System Application Server. SPECjAppServer2004 Sun Fire T2000 (8 cores, 1 chip)
436.71 JOPS@Standard. SPECjAppServer2004 HPrx4640 (4 cores, 4 chip) 471.28 JOPS@Standard. SPEC,
SPECjAppServer reg tm of Standard Performance Evaluation Corporation. Sun Fire T2000 results submitted to SPEC.
Other results from www.spec.org as of 12/06/2005. Sun HW+SW application tier cost = $37,484.95, appl cost per JOP =
$85.83. HP HW+SW application tier cost = $140,537.88, appl cost per JOP = $298.20 HP Bill of Material from
http://www.spec.org/jAppServer2004/results/res2005q3/jAppServer2004-20050913-00016.html BEA pricing from
http://www.awaretechnologies.com/BEA/index.html.System pricing dated 11/29/05

» Sun Fire T1000 Server (1 chip, 8 cores, 1-way) 51,540 bops, 12,885 bops/JVM. IBM x346 (2 chip, 4 cores, 4-way)
39,585 bops, 39,585 bops/JVM. IBM p520 (1 chip, 2 cores, 2-way) 32,820 bops, 32,820 bops/JVM. Dell SC1425 (2 chip,
2 cores, 2-way) 24,208 bops, 24,208 bops/JVM. SPEC, SPECjbb reg tm of Standard PerformanceEvaluation Corporation.
Sun Fire T1000 results submitted to SPEC. Other resultss as of 12/6/2005 on www.spec.org

www.opensparc.net 53

Recent Trends in Processor Architecture -2007 , NIT Trichy, India

mailto:JOPS@Standard
http://www.spec.org/
http://www.spec.org/jAppServer2004/results/res2005q3/jAppServer2004-20050913-00016.html
http://www.awaretechnologies.com/BEA/index.html

Legal Substantiation — Benchmarks
(Cont'd)

* NotesBench R6iNotes Sun Fire T2000 (1x1200 MHz UltraSPARC T1, 32GB), 4 partitions, Solaris[TM] 10, Lotus[R] Domino
7.0, 19,000 users, $4.36 per user, 16,061 NotesMark tpm, 400 ms avg rt. NotesBench R6iNotes IBM x346 (2 x 3.4 GHz
Xeon processors, 8GB), 1 partition, SUSE Linux 8, Lotus[R] DominoR6.5.3, 6,50 users, $9.07 per user, 5,109 NotesMark
tpm, 569 ms avg rt.More info www.notesbench.org

Portal tests conducted on Sun Fire Sun Fire T2000 configured with 6 cores, 1.0GHz UltraSPARC T1 processor and 16GB
memory. Dell 6650 configured with 4 x Intel Xeon processors at 2GHz and 4GB memory. 1 processor was active to run

the test. Internal test using SLAMD Distributed Load Generation Engine AE & Mercury Load Runner. Both systems were
installed with Solaris 10 OS and Sun Java Portal Server 7. Test date: 11/14/05.

» Crypto Processing RSA & DSA sign operations @ 1024-bit

www.opensparc.net 54

Recent Trends in Processor Architecture -2007 , NIT Trichy, India

http://www.notesbench.org/

Legal Substantiation — Benchmarks
(Cont'd)

Two-tier SAP ECC 5.0 Standard Sales and Distribution (SD) benchmark Sun Fire T2000 (1 processor, 8 cores, 32 threads)
1.2 GHz UltraSPARC T1, 32 GB mem, 950 SD benchmark users, 1.91 sec avg resp, MaxDB 7.5 database, Solaris 10.
SAP certification number was not available at press time, please see: www.sap.com/benchmark. Benchmark data
submitted for approval: 950 SD Users (Sales &Distribution), Ave. dialog resp. time: 1.91 seconds, Throughput: Fully
processed order line items/hour:95,670, Dialog steps/hour: 287,000, SAPS: 4,780, Average DB req. time (dia/upd): 0.080
sec/0.157 sec, CPU utilization of central server: 99%, central server OS: Solaris 10, RDBMS: MaxDB 7.5, SAP ECC

Release: 5.0, Configuration: Sun Fire Model T2000, 1 processor/ 8 cores / 32 threads, UltraSPARC T1, 1200 MHz, 64

KB(D) + 128 KB(l) L1 cache, 3 MB L2 cache, 32 GB main memory. Two-tier SAP SD Standard Application Benchmark
Release 4.70 (64-bit)results for the HP ProLiant DL580 (4-way, 4 procs, 4 cores, 4 threads) included 4x 3.33 Ghz Xeon, 32
GB mem, 937 SAP SD Benchmark users,1.96 sec avg response time, Cert#2005012, running Microsoft® Windows Server

2003, Enterprise x64 Edition (64-bit) and Microsoft SQL Server 2000 Enterprise Edition (32-bit), certified on March 29,

2005. Two-tier SAP SD Standard Application Benchmark Release 4.70 (64-bit) results for the HP rx4640 (4-way, 4 procs, 4
cores, 4 threads) included 4x 1.5 Ghz Itanium2, 32 GB mem, 880 SAP SD Benchmark users, 1.89 sec avg response time,
Cert#2004030, running HP-UX 11i,0Oracle 9i certified on June 4, 2004. More information on SAP Benchmark results can be
found at www.sap.com/benchmark

www.opensparc.net 55

Recent Trends in Processor Architecture -2007 , NIT Trichy, India

Agenda

| 1.Chip Multi-Threading (CMT) Era

www.opensparc.net

2. Microarchitecture of OpenSPARC T1
3.0penSPARC T1 Program

4.SPARC Architecture

5.0penSPARC in Academia
6.0penSPARC T1 simulators

/. Hypervisor and OS porting

8. Compiler Optimizations and tools

9. Community Participation

Recent Trends in Processor Architecture -2007 , NIT Trichy, India

SPARC Architecture
Generations

Generations of SPARC

- SPARC V8 (S.I., 1987): 32-bit

» SPARC V9 (S.I., 1994): 64-bit addr+data
> UltraSPARC 1, 1995 - VIS-1 instructions
> UltraSPARC Ill, ~2000 - VIS-2 instructions
> UltraSPARC 1V, ~2004 — basic CMT

* UltraSPARC Architecture 2005 (Sun,2005): full CMT,
hyperprivileged mode

> UltraSPARC T1, 2005 «—[OpenSPARC T1]

Specification Differences, V9 — UA
2005

» Formatting improvements

» More complete and more precise than SPARC V9; for
example:

> lists the specific conditions under which each exception may
be raised, for every instruction

> clarifies relative trap priorities
> closes many old implementation dependencies
> gpecifies many extensions to architecture

» Document Design:
> Architecture Spec + Implementation Supplements

Architecture Extensions, V9 — UA

2005
» Sun’s VIS1 and VIS2 instructions

* GSR register

» Privileged register-window management instructions
ALLCLEAN, OTHERW, NORMALW, and INVALW

* “Deferred” traps split into two categories

> SPARC V9 deferred traps are now
"resumable deferred” traps

Architecture Changes, V9 — UA 2005

* Hyperprivileged mode has been added, including:
> several hyperprivileged registers

> a few hyperprivileged instructions
> notably RDHPR and WRHPR (hyperprivileged register access)

> effects on the Tcc instruction

> effects on the trap model

> SIR instruction is now hyperprivileged

> VER register is now the hyperprivileged (HVER)
> full control of Chip MultiThreading (CMT) features

Architecture Changes,
Earlier UltraSPARCs — UA 2005

* For Block Store instructions, an intermediate "zero" state
Is allowed to be observed during execution

Feature Classification in UA 2005

» Architectural features are now classified and tagged
> Software Class (letter)
> Implementation Class (digit)

> allows smooth long-term architectural evolution
(addition and deprecation of features)

Why Hyperprivileged Mode?

* Allows running multiple simultaneous guest OSs
> (and/or multiple versions of the same OS)

» Allows running older OS (that uses hypervisor API) on
newer hardware, without need to port the OS

» Simplifies OS ports (Linux in 2 months!)
» Allows implementation of logical domains
* Allows virtualization

Why Virtualization?

» Insulates higher levels of software from underlying
hardware, by adding another software abstraction layer

> Protects customers' investment in application software from
changes in underlying software (OS)

> Buying new, faster HW no longer requires running a new
version of the OS

> Allows ability to "oversubscribe" resources (run multiple
top-level software)

Virtualization

« Thin software layer between OS and Sundv virtual

platform hardware

Para-virtualized OS

Hypervisor + sun4yv interface

* Virtualizes machine HW and isolates OS from

register-level
» Delivered with platform, not with OS
* Not itself an OS

stable interface “sun4v”

—— e —— e — i — — —— e —— e ——

sundv virtual
}nachme n

|

|

|

i 'I User); ! User ;!
:. App Appj.

LS

|

|

|

|

|

SPARC hardware

OpenSPARC --
What’s Available

OpenSPARC T1

» Complete Solution
> Full implementation -- CPU core, FPU

> Tools — Verification suite, Simulation, Performance,
Compiler optimization tools

> Multiple OpenSource Operating Systems:
Solaris 10, Linux, FreeBSD, etc

» All Open Source on the web
> from OpenSPARC.net and additional web sites

» Actively enabling community for Open Sourcing of
hardware and software

What’s Available — for HW Engineering
» RTL (Verilog) of OpenSPARC T1 design

(8 cores, 32 threads — 14 million lines of code!)
» RTL for reduced OpenSPARC, for FPGA
» Synthesis scripts for RTL
» Verification test suites
» UltraSPARC Architecture 2005 spec
» UltraSPARC T1 implementation spec
* Full OpenSPARC simulation environment

» “CoolTools”, including Sun Studio software, SPARC-
optimized GCC compiler, development tools, ATS, etc

What’s Available — for SW Engineering

* Architecture and Performance Modeling
Package, including:

SAS — Instruction-accurate SPARC Architecture
Simulator (includes source code)

SAM — SPARC instruction-accurate full-system
simulator (includes source code)

Solaris Images for simulation: Solaris 10,
Hypervisor, OBP

Legion — SPARC full-system simulation model for
Software Developers (includes source code)

Hypervisor source code
Documentation

What’s Available — other sources

» OpendSolaris (OpenSolaris.org)

» Linux ports for T1-based systems:
> Ubuntu
> (Gentoo
> Wind River Linux
> FreeBSD

» “Simply RISC” processor design based on OpenSPARC
(SRisc.com)

* New Hennesey & Patterson book, Chap 4
* ...efc...

FPGA Implementations

FPGA Implementation

» Initial version released May 2006
(on OpenSparc.net website)

> full 8-core, 32-thread

> First-cut implementation;
not yet optimized for Area/Timing

> Synplicity scripts for Xilinx/Altera FPGAs

» Reduced version released Mar 2007 — Release 1.4
> single-core, single-thread
> Reduced I$/D$/TLB
> Optimizations for Area

OpenSPARC FPGA Implementation

» Single core, single thread implementation of T1

> Small, clean and modular FPGA implementation

> About 39K 4-input LUTs, 123 BRAMs (synplicity on
Virtex{2/2Pro/4})

> Synchronous, no latches or gated clocks
> Better utilization of FPGA resources (BRAMs, Multiplier)

> Functionally equivalent to custom implementation,
except
> 8 entry Fully Associative TLB as opposed to 64 entry
> Removed Crypto unit (modular arithmetic operations)

Single Thread T1 on FPGAs

» Functionally stable
> Passing mini and full regressions
» Completely routed
> No timing violations
> Easily meets 20ns (50MHz) cycle time

- Expandable to more threads
> Reasonable overhead for most blocks (~30% for 4 threads)
> Some bottlenecks exist (Multi-port register files)

System Block Diagram — T1 on FPGA

microsystems

MultiPort Xilinx Embedded
Developer's (EDK)
Memo _
FPGA Boundary Block must be Contmﬁ'er Design

External DDR2 Dimm

developed

IBM Coreconnect
OPB Bus

System Theory of Operation — T1 on FPGA

* OpenSPARC T1 core communicates exclusively via the
processor-to-crossbar interface (PCX)

> PCX s a packet based interface

» Microblaze softcore will sit in a polling loop and accept these
packets, perform any protocol conversion, and forward them
to the appropriate peripheral

> Could even implement floating point operations via the Microblaze
FPU unit

* Microblaze will also poll (or accept interrupts from) the
peripherals, convert the info to a PCX packet, and forward it
to the PCX interface

> Microblaze has its own UART for its own diagnostic input/output

Implementation Results

» XC4VFX100-11FF1152 FPGA
> 42,649/84,352 LUT4s (50%)
> 131/376 BRAM-16kbits (34%)
> 50MHz operation

> Have not attempted any faster
> Synplicity Synthesis: 25 minutes
> Place and Route: 42 minutes

GRP1 '"Grouped by User" (Microblaze & Related Logic)
iop_fpga Ociop_fpga O-sparcOffu “sparc_ffu"
iop_fpga Ociop_fpga O/sparcQifu “sparc_ifu"
iop fppa O<iop fppa O-sparc@ mul "spare mul top"

[+] {[+]

[+]

iop_fpea_Oiop_fppa O/sparcll test stub "test stwh bist

[+]

iop fpga @iop fpea O-sparcO-lsu 'Teu"

[+]

iop fpega O7iop fppa O sparc@-tv "Hu"

[+]

iop_fpga OQiop_fpea @ sparcOexu "spare_exu"

Preliminary Virtex5 Results

* Virtex5 xcbvix1 10tff1 136
> Same as FPGA in RAMP Bee3 board

» 30,508 6-input LUTs used out of 69,120 (44%)

* 119 used out 0f148 BRAM-36kbits (80%)
> Working through mapping issues...

- 50MHz placed and routed design
> Have not attempted any faster

OpenSPARC FPGA HW Roadmap

» Current reference design occupies about
45% of XC4V100FX FPGA. This design
includes:

> Single core, single thread of OpenSPARC T1

> Microblaze to communicate with peripherals
(DRAM, Ethernet)

> Glue logic to connect T1 core with Microblaze

» More design paths exist, e.qg.

1) Two single thread cores in single FPGA
2) Up to 4 threads per FPGA

www.opensparc.net 80

Recent Trends in Processor Architecture -2007 , NIT Trichy, India

OpenSPARC FPGA SW Roadmap

» Boot Solaris and Linux on a single thread
FPGA version of the design

> Include support for all packet types with
Microblaze

> Hypervisor changes to support this variant of T1
> Reduction in TLB size
> Device driver support for the system

> Emulation routines in OS for floating point ops
> Mainly for ISA compliance

FPGA Reference Design

* ml410 board with Virtex4-100 FPGA (aka mi411)

> Bit file and elf is stored on CompactFlash card

- Each design is a hardware implementation of one regression
suite test

> Microblaze soft-core sends the test packets to the OpenSPARC core
and verifies the return packets

“& Xilinx Board - HyperTerminal

Eile Edit Yiew Call TIransfer Help

De = 8 058

Beginning of test: packets_5Sb/win_restoref.packets
End of test:
Num PCK Packets received: 186, Errors: @
Num CPX Packets sent: 181, Errors: @
Total Errors:
Beginning of test: packets Gb/exu_alu.packets
End of test:
Num PCK Packets received: 119, Errors: 0
Num CPH Packets sent: 208, Errors: 0
Total Errors:
Beginning of test: packets Lb/imiss sameset.packets

End of test:
Num PCK Packets received: 222, Errors: 0
Num CPH Packets sent: 412, FErrors: B

Total Errors:
Beginning of test: packets_Sh/dmiss_imiss.packets
End of test:

Num PCH Packets received: 180, Errors: 0

Num CPH Packets sent: 166, Errors: 8

Total Errors:

Connected 1:37:30 | Auto detert 9600 8-N-1 SLEOLL cabs LRI snkine e et

Operating Systems for
OpenSPARC T1

Solaris on UltraSPARC T1

» Solaris 10 (and beyond) run on UltraSPARC T1
* Run on top of Hypervisor (“sun4v”) layer

* Fully supported by Sun and OpenSolaris

Linux Ports to date

» Sun T1000 support putback to kernel.org
> Bulk of support for UltraSPARC/OpenSPARC T1

> putback by David Miller, approx Dec 2005
> 1n 2.6.17 Linux kernel
> runs on top of Hypervisor

* Full Ubuntu distribution (announced ~Spring 2006)
» (Gentoo Distribution (announced August 2006)

* Wind River Linux (announced October 2006)
> “carrier-grade” Linux, notably for Telecom applications

©Sun

Linux on UltraSPARC T1

» Ubuntu 6.06 LTS support on
UltraSPARC T1-based T1000/T2000

» Expands innovation and choice for developers &
customers

per Colm MacCarthaigh, Senior IT Administrator at HEANet:

“As a Linux and Apache developer, the prospect of running Ubuntu
GNU/Linux — a rock solid operating system - on a CoolThreads
system is exciting. I'm impressed with the innovation that's
coming out of Sun these days and look for more good things
going forward ”

-
. 3 ubuntu

*BSD on OpenSPARC T1

* FreeBSD port for UltraSPARC T1
announced Nov 2006

» Other *BSD ports are underway

» SUn

microsystems

OpenSPARC.net: Find Cool Tools

* Your resource for
developer tools — FREE !

> GCC

SPARC systems
highly optimized

> SPOT

Simple Performance
Optimization Tool

> RST Trace

> ATS

Automatic Tuning System

And -

Share your tools with the
community at this site

OpenSPARC

OpenSPARC

Specifications M

Get Connected

Mews

Events

Community Registration
Cool Tools Mailing List
Farums

Reqistration Help

Cool Threads

Feature Story

FAQ

UltraSPARC
UitraSPARC-TI

Ferformance

Cool Stuff

Cool Tools Mew!

ECA Resources
University Research
Fuhlications

White Papers

Other Related Documents
Glassary

Community Profiles Ml

OREnSPARG Frappr MEW

OpensPARC net » Cool Tools
Cool Tools

Welcome to the Cool Tools Community. Our Goals are:

« Toshare and discuss toals and resources related to porting or perfarmance aptimization in suppoart of
OpenSPARC.
+ Tofoster and encourage the development of OpenSPARC related tools.

Flease use aur Forums far any gquestions, help or other disucssions.

New Tools

+ GCC for SPARC® Systems
CiC++ compiler that dramatically impraves the performance of applications
that are normally compiled with goc on SPARC systems.

« ATS

Automatic Tuning and Trouhleshooting Systern (ATS) is a binary
reaptimization and recompilation tool that can he used for tuning and
troubleshooting applications. Add-on Coal Taols far Sun

« BIT Studio 11. Download includes
Binary Improvement Tool (BIT) works directhy with SPARC binaries to ATS, BIT, and SPOT.
instrument, optimize, and analkze them far perfarmance or CQE COVErAge. [m o arape Svsterns

* SPOT o extends GGG to be able to use
Simple performance optimizations tool (SPOT), produces a report on the the optimizing Sun Code
perfarmance of an application. The spot report contains detailed Generator for SPARC systems.
infarmation aboutvarious common conditions that impact peformance. | Download includes Cic++

« RST Trace Tool Campiler, ATS, and BIT.
RET iz atrace format for SPARC instruction-level traces. The RST Tools
package consists ofthe trace format definition, a trace readeriwriter library, RST Trace Tool
and a trace viewear program, Alsao included is a sample trace from a CoolThreads Selection Tool

32-strand application.
+ cooltst

OpenSPARC Community
and Governance

OpenSPARC Community Groups

Academia/Universities EDA Vendors
Architecture, ISA, VLSI course work Benchmarking
Threading, Scaling, Parallelization Reference flow
Benchmarks FPGA

Emulation
; - Verification
Physical Design
pe n Multi-threaded tools

CMT Tools
Compilers, Threading -
Optimization Hardware IP Suppliers

Operating Systems
OpensSolaris, Chip Designers
Linux, BSD variants, SoC designs, Hard macros

Embedded OSs Telecom applications

OpenSPARC Grows the Community

- Simply RISC “S1”
> Single-core version of UltraSPARC T1
> Targets small embedded devices
> Runs Solaris and Linux
> Design also released under GPL

» Allows Sun to grow the SPARC community
by virtue of having great technology and
not by handing out money

“Due to the collaborative nature of the GPL license
Simply RISC plans to add new features to the SI Core
and test them extensively over the next months with
the help of the community.”

http.://www.Srisc.com

OpenSPARC Governance Board

» Initial Advisory Board announced Sept 2006

> 3 Community members:

> Nathan Brookwood, industry analyst (Insight64)
> Jose Renau, Univ. of California at Santa Cruz

> Robert Ober, Fellow, CTO Office, LS| Logic
> 2 members from Sun:

> Simon Phipps, Chief Open-Source Officer
> David Weaver, Sr. Staff Engineer, UltraSPARC Architecture
» Governance Board

> Advisory Board became initial Governance Board Jan'07
> New Board to be elected from Community in a year

OpenSPARC in Academia

Example Uses for OpenSPARC (1)

» Create variations from the basic design
> more/fewer cores
> more/fewer threads per core
> add new instructions
> add video/graphics
> add network interface
> change cache/memory interface
> change /O interface

Example Uses for OpenSPARC 2)

» Experimental processor designs
> highly threaded, high-bandwith network processor
> add more FPUs, for highly threaded HPC processing node

> add crytographic processing elements, for high-bandwidth crypto
engine

> add coprocessors for specialized functions

> research into optimizing useful work done per watt of power
consumed (efficiency)

> computer architecture research - add/remove instructions, new
operating modes

> pohrt to)ols to other hardware and/or OS platforms (x86/x64, Linux,
others

Example Uses for OpenSPARC (3)

- Starting point for lab courses

> a known-good design that can be modified for lab projects in
computer architecture or VLSI design courses

» Real-world input to test robustness of CAD tools and
simulators developed at Univ.

> major industry CAD tool vendors already doing this!

* Burn derivative processors into FPGAs
> quick design iterations
> high-speed emulation

» Trigger spin-off/start-up ventures?

OpenSPARC in the Curriculum

» UltraSPARC T1 is now the “putting it all
together” example of multiprocessors in conrlrl Ao reedliG
the world's most iconic textbook on

Computer Architecture

» Chapter on Intel [tanium was removed
altogether

> Placed on the companion CD because,
according to Dr. Patterson, “it wasn't worth

the paper’

Computer Architecture:
A Quantitative Approach, 4™ ed.
by John Hennessy and David Patterson

...Students are emerging from university Computer Science
programs already understanding SPARC!

_ microsystems

Processor Performance

6.5
6.0
5.5
5.0
4.5
4.0
35|
3.0 1
28 T
2.0
1.5

150
05 r
0 . i

SPECintRate SPECfRate SPECJBB05 SPECWeb05 TPC-like

B Power5+
B Opteron
M sunTi

Ll T Ll T I 1

Performance relative to Pentium D

Figure 4.33 Four dual-core processors showing their performance on a variety of
SPEC benchmarks and a TPC-C-like benchmark. All the numbers are normalized to the
Pentium D (which is therefore at 1 for all the benchmarks). Some results are estimates
from slightly larger configurations (e.g., four cores and two processors, rather than two
cores and one processor), including the Opteron SPECJBB2005 result, the Power5
SPECWebO05 result, and the TPC-C results for the Power5, Opteron, and Pentium D. At
the current time, Sun has refused to release SPECRate results for the FP portion of the
suite.

Source: Computer Architecture, 4™ ed. John Hennessy & David Patterson

Processor Performance

SPECintRate/mm?
SPECintRate/Watt
B Power5+
SPECfpRate/mm? B Opteron
B sunT1
SPECfpRate/watt
SPECJBB05/mm?
SPECJBB05/Watt
TPC-C/mm?
TPC-C/watt
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Efficiency normalized to the Pentium D

microsystems

Figure 4.34 Performance efficiency on SPECRate for four dual-core processors,

normalized to the Pentium D metric (which is always 1).

Source: Computer Architecture, 4™ ed. John Hennessy & David Patterson

University Programs

» Sun supports/encourages academic use of OpenSPARC

> Collaborations

> Centers of Excellence (CoE)
> First OpenSPARC CoE announced Feb 2007
> more to come

> technology access, greater equipment discounts, equipment
grants, publicity and prestige that aids in obtaining other
grants, other support

» For university program info, contact:
David.Weaver@sun.com

Call for Action

» Participate in OpenSPARC community

> Download, Innovate, Contribute

http://OpenSPARC.net

» Academia: apply for OpenSPARC University
collaboration or Center of Excellence programs

http://OpenSPARC.net/

[
i
iy

Dxed
E e ":
libre

ek
=NE

livre
libero

A,
FF Y
acik
open
nyilt

NiN5S

A—-—Tv

livre

OVOlKTO

offen

otevieny

oppen

OTKpPbITbIN
Qeuefl LILiemL_

64 bit, 32 threads, free

open

OpenSPARC SAM-T1
Simulator

March15, 2007

Jhy-Chun Wang
Sun Microsystems

jhy-chun.wang@sun.com

Agenda

* OpenSPARC SAM-T1 overview
» RTL co-simulation

* Full-system simulation

» CPU & device model interface
 User interface

* Trace

» Disk image

* Function extension

OpenSPARC T1 Arch Tools Download

* http://opensparc-t1.sunsource.net/download_sw.html

* OpenSPARCT1-Arch_1.3.tar.bz

> SAM: instruction-accurate SPARC full-system simulator

> SAS: instruction-accurate SPARC arch. simulator

> Binary images for simulation: Solaris 10, Hypervisor, OBP, etc
> Legion: SPARC full-system simulator for software development
> Hypervisor source code

> Documentation

http://opensparc-t1.sunsource.net/download_sw.html

What is SAM

» SPARC Architecture Model

» SPARC architecture golden reference model
» SPARC full-system simulator

» Functional simulator, no timing, no cache

 Usage
> RTL verification
> Solaris boot disk validation
> Device model development
> Software development
> Benchmark tracing

Accurate CPU Simulation

» SAM models the functions of a SPARC cpu
> SPARC instruciton set
> memory management, TLB
> ASl translation
> privileged and hyperprivileged protection
> accurate trap priority
> |EEE floating-point instructions behavior and exceptions

» Used to verify RTL design

Functional Simulator

* No timing information

- Behavior will not match RTL exactly because of timing
ISSues:

> TLB replacement
> deferred and disrupting traps
> memory barrier

* No cache modeling

RTL Co-simulation

» Verify RTL by concurrently running the same
instructions in RTL and SAM, and cross-checking
architectural state instr-by- -instr

 RTL overrides SAM's behavior to correct timing
mismatches
> TLB replacement
> deferred and disrupting traps
> memory barrier
> execution latency, e.qg., crypto operations

» Co-simulation is run continuously through RR
> high level of fidelity to hardware

RTL Verification Co-simulation

TestBench

DUT
DUT "Monitor

|

PLI «

Socket

Core State s

Checker

* DUT: device under test, i.e., RTL

SAM

TLB
Model

Y

1.dSt Sparc Core
Model <> Model

Follow-me
Model

e
RTL Verification State Checking

TestBench SAM

DUT probes
ste SPARC Core
instruction retired P > Model
\/
state

per thread

delta state

v

delta state delta state
per thread - per thread

Full-system Simulation

» System framework with cpus and devices

» Use the same cpu module as in RTL verification, same
high degree of fidelity

» Collection of dynamically loadable device modules
» Runtime configuration

» Checkpoint and restart

» Benchmark tracing

» Availability
> Full-system simulation available on SPARC platform
> RTL co-simulation available on SPARC and x86 platforms

Full-system Simulation

User

-

T Sam
v

CPU |
Module

cCrrO<

<= MMI

A
iMMI Interface

Virtual System IO Bus

>

Platform/Usage Specific Modules ' -

/

: Configuration
<; Files

Configuration File

» Basic configuration
> simulated RAM size
> simulated MIPS
> number of simulated cpus

» Specify the type of device and cpu modules to be loaded
» Configuration parameters for each loaded module
* Architecture state setup

Sample Configuration

« conf ramsize 64M
« sysconf cpu name=cpul cpu-type=SUNW,UltraSPARC-TI1
« sysconf cpu name=cpul cpu-type=SUNW,UltraSPARC-T1

« sysconf dumbserial seriall type=GUEST
startpa=0x9£10000000 endpa=0x9£1000004¢

« load bin disk.sl0Ohw2 0x1£40000000
* load bin nvraml O0x1£f11000000

e load bin lup-hv.bin 0x1£12080000
e load bin lup-md.bin 0x1£12000000
 load bin reset.bin Oxff£f0000000

« setreg pc O0xf£f£0000020

» setreg npc O0xff£ff£0000024

VCPU: Virtual CPU Interface

* Interface between cpu model and system framework
- Control instruction execution

* Interface memory access

» Interface I/O activity

* Interface interrupt handling

» Access architecture registers and state

MMI: Modular device Model Interface

» Device model implemented as loadable module
* Map device instance to phys I/O address
 Perform DMA

* Trigger interrupts

* Model device hierarchy

* Define model specific user commands

* Interface to share device models with other system
simulators

User Interface

* Allow users fine control of execution
> penable, pdisable, stepi, run, stop

» Set breakpoints by PC and strand(s)
> pbreak, enable, disable, delete

* Architectural state is readable and writable
> registers, TLB's, ASl's, ASR's

- read-reg, read-fp-reg-i, pregs

-~ memory
- get, set

» Dynamically load/unload device and trace
modules
> mod load, mod unload

User Interface ...

- Control trace collection
> mod load analyzer rstracer.so
> rstrace -o out-file -n #instr

» Checkpoint and restart
> dump

- New commands defined by loadable modules

- Use python as underlying scripting processor,
allow native python statements from command
prompt

Tracing

* Rstracer: a loadable trace module

» Collect architecture state
> Instructions
> traps
> TLB updates
> DMAs
» Write RST records to output trace file(s)
- Data is compressed on-the-fly by RSTZIP

 Tools to examine & analyze trace files

 Trace data can be fed into performance
models (pipeline, cache model)

Trace Collection

* stop

e mod load analyzer rstracer.so

- rstrace -o output-file -n #instr
e run N

e rstrace off
e mod unload analyzer

Trace Analysis

* trconv, the “swiss army knife” of rst tool

* Process data by
> Cpu#
> record range
> PC/EA range
> summary

. cLiJSte together with rstunzip to process trace
ata

Sample Trace Records

e rstunzip trace file |

Counted: 20451321 records
9999998 1instruction recs

1 header recs
1 traceinfo recs
1071 tlb recs

2288 trap recs

8687727 regval recs

TLrconv

—C

Sample Trace Records ...

- rstunzip trace file

RST trace format (stdin)

Rec # Type

49 instr
67 instr
68 instr
71 instr
73 instr

User/
Priv PC Disassembly

: cpuid=0 p [0x0000000001063254] or %02, 0x80, %01

. cpuid=0 p [0x0000000001063258] stb %01, [%00 + Ox4b]
- cpuid=0 p [0x000000000106325¢] call 0x1069764

. cpuid=0 p [0x0000000001063260] Idx [%fp + OX7f7], %00
. cpuid=0 p [0x0000000001069764] jmpl %07 + 8, %g0

TLrconv

Branch
Taken EA

[0x0000070002503e4b]
[0x0000000001069764]
[0x000000000180b7h8]
[0x0000000001063264]

—1

Modify Disk Image

» Use lofiadm to add/remove/modify files in disk image
> with root access
> |lofiadm -a /absolute-path/disk_image
> (assume /dev/lofi/1 is the returned value)
> mount /dev/lofi/1 /mnt
> cd /mnt
> add/remove/modify files in /mnt
> umount /mnt
> lofiadm -d /dev/lofi/1

Transfer File to/from Simulator

* Transfer file to/from simulator without lofiadm
» Transfer speed is slow, only good for small file

* First boot the Solaris disk image up to shell prompt
> enter] (ctrl-right-bracket) to get netcons> prompt
> get_file <path-sim-file> <path-dest-file>
> put_file <path-src-file> <path-sim-file>
> cksum path-sim-file
> cksum path-src/dest-file

Save Modified Disk Image

» During initialization
> Ul(load): loading <disk1> memory image
> loading disk1, base addr 0x1f4000000, size 0x200000

* Sync up file system first
> sync
> halt

- syncing file system... done
— Program terminated

* Stop
« memdump new disk 0x1£4000000 0x200000

* use lofladm/mount to examine files

Function Extension

* Add/remove/modify
> Instructions
> ASl's
> fraps
> TLB
> memory access

» Change system configuration

Basic Source Code Structure

* Mimic SAM-T1, 1-cpu x 8-core x 4-thread

» sam-t1/src/riesling-cm/riesling/src:
> system/Ni/Ni_System.cc
> ¢pu/Ni/Ni_Cpu.cc
> core/Ni/Ni_Core.cc
> strand/Ni/Ni_Strand.cc
> mmu/Ni/Ni_Mmu.cc
> trap/Ni/Ni_Trap.cc
> asi/Ni/Ni_Asi.xml

Instruction Execution Flow

* Determine PC

* |TLB

* Fetch instruction
 Decode instruction
* Execute instruction
* (DTLB)

* Retire instruction

Instruction Execution:
Ni_Strand::step()

* handle pending interrupt
* ITLB: Ni_Mmu::handlelnstr()
- fetch, decode: Ni_lInstructionWord

> execute: Ni_InstructionEmulator::execute(),
Ni_Fgu:.execute()

» DTLB: Ni_Mmu::handleData()
» handle trap: Ni_InstructionEmulator::handleTrap()

ITLB: Ni_ Mmu::handlelnstr()

» check translation bypassing

» check trap violation:
> mem_address_not_aligned
> [nstruction_access_exception
> fast_instruction_access_MMU_miss
> |nst_real_translation_miss
> efc

» address translation

Decode: Ni_InstructionWord

» decode op/rd/rs1/rs2/etc

» check illegal_instruction violation
> wrong instruction syntax
> non-zero reserved bits
> efc

» check privileged_opcode violation

Execute:
Ni_InstructionEmulator::execute()

* map instruction to corresponding exec_inst()
> exec_retry()
> exec_rdasr()

» basic SPARC instructions are in sam-t1/src/riesling-
cm/riesling/src/strand/bcore

> some functions are in SPARC assembly for performance
reason

 x86 version is available in bcore/v9 inst c.c

DTLB: Ni_Mmu::handleData()

» check translation bypassing

» check trap violation:
> mem_address_not_aligned
> privileged_action
> VA_watchpoint
> data_access_exception
> fast_data_access_MMU_miss
> data_real_translation_miss
> fast_data_access_protection
> efc

* address translation

Handle Trap:
Ni_InstructionEmulator::handleTrap()

= Normal traps

> privileged traps

> hyperprivileged traps
- RED_state traps

> nonreset traps
> POR, WMR, XIR, SIR

* Ensure correct trap priority
» Update trap-related architecture state

ASI| Handling

* asi/Ni/Ni_Asi.xml
- asiReadHandler() & asiWriteHandler()

<asi>
<name>ASI I TLB DATA ACCESS</name>
<value>0x55</value>
<access>RW</access>
<priv>HYPER</priv>

<handler>
<class>Riesling::Ni Mmu</class>

<id>Riesling::Ni Mmu::T TLB DATA ACCESS</id>
</handler>
<start va>0x0</start va>
<end va>0x7f£8</end va>

</asi>

Major Extension Points

* Ni_InstructionWord

* Ni_InstructionEmulator
* Ni_Mmu

* Ni_Trap

* Ni_Asi.xml

[
i
iy

Dxed
libre

ek
=NE

livre
libero

A,
FF Y
acik
open
nyilt

NiN5S

A—-—Tv

livre

OVOlKTO

offen

otevieny

oppen

OTKpPbITbIN
Qeuefl LILiemL_

64 bit, 32 threads, free

open

http://OpenSPARC.net

Jhy-Chun Wang
Sun Microsystems

Legion
* Full-system simulator for firmware and
software development

* Implement enough architecture state to boot
up Solaris

- Share the same disk image and binary files
(Hypervisor/OBP/reset/etc) with SAM

- Startup script run_legion.sh

 Available configuration: 1-thread, 2-thread, 32-
thread

>run legion.sh 1/2/32 J[options]

Legion Runtime Options

» Available options
> —debug debug bits
> -t #physical cpu
> —h

» Debug options
> 0x2: PC & instruction
> 0x8000: hypervisor calls
> 0x20000: exceptions, XIR
> 0x100000: TLB miss
> 0x400000: trap, TSTATE
> efc

Legion Runtime Display

» Use ~ (tilde) on 'guest console' window to dump out
architecture state

> ~z: exit simulation

> ~I: dump |-TLB content

> ~d: dump D-TLB content

> ~: toggle debug enable bits
> efc

The sun4v Operating Environment

(aka “Your OS on the T1 Hypervisor”)

David Weaver

Virtual Machine for SPARC

* Thin software layer between OS and

platform hardware

 Para-virtualised OS

« Hypervisor + sun4v interface

* Virtualises machine HW and isolates OS from

reqgister-level

Delivered with platform not OS

Not itself an OS

stable interface “sun4v” «°*

—— o —— —— e —— i ——

sundv virtual
}machme n

SPARC hardware

Logical Domains

- Partitioning capability

> Create virtual machines oomi B Loom >
each with sub-set of

resources Solaris 10 Solaris 10 Solaris Next @

> Protection & Isolation
using HW+firmware
combination

O oo
OB
Hypervisor

Hardware

CPU CPU

Shared CPU,
Memory, 10 Memg 10

Topics

» CPU changes
* Memory management

e

* Interrupts
> x-cpu & devices

* Multiple Domains

- Additional Topics
> Error handling
> Machine Description
> Boot process

Basic Principles

* Ability to rebind virtual a D
resources to physical
components at any time Virtual
CPU
- Minimal state held in
Hypervisor to describe . /
guest OS sundv / AP
Slip-plane
* Never trust Guest OS - h
Physical
CPU
(strand)

Legacy SPARC execution mode

» Existing sun4u chips

interrupts &'errors

Privileged
Mode

Retry

New SPARC Execution mode

interrupts

interrupts & error

& errors _
hypervisor

Privileged
Mode

New SPARC Execution mode

interrupts

interrupts & error

& errors _
hypervisor

Privileged
Mode

__Virtual Machine
Environment

Privileged mode constrained

» Close derivative of legacy privileged mode, but:
> No access to diagnostic registers
> No access to MMU control registers
> No access to interrupt control registers
> No access to [/O-MMU control registers
> All replaced by Hypervisor API calls

» UltraSPARC-ness remains with minor changes
> timer tick registers
> softint registers efc.
> trap-levels & global registers etc.
> register window spill/ill

Translation hierarchy

Virtual Addressing Virtual Machine !
Environment 1 User Level

. Real Addressing

| Privileged
: Level

Context ID

Physical Addressing

Hyper-privileged
Nbit | + ContextID | + | Partition ID Level

Translation management

« Guest OS defines a “fault-status™ area of memory for each
virtual CPU (vCPU)

> Hypervisor fills in info for each MMU exception

« UltraSPARC does not use page-tables
> traditionally a software loaded TLB

» Hypervisor APls to support direct software management of
TLB entries

> map, demap
> Simple guests like OBP can use this

Translation Storage Buffers

« Guest OS managed cache of translations stored in memory
> Guest allocates memory for buffer

> Guest places translation mappings into buffer when
needed

> Hypervisor fetches from this cache into TLBs

» Guest specifies virtual -> real mappings
> Hypervisor translates real->physical to load into TLB
> TLB holds virtual -> physical mappings

* Multiple TSBs used simultaneously for multiple page sizes
and contexts

Address space control

* Hypervisor limits access to memory (and devices) --
creating partitions (logical domains)

Dom A: Real Map Physical Address Map Dom B: Real Map

Virtual 1/0O devices

* Provided via Hypervisor
> e.g. Console - getchar / putchar API calls
> Hypervisor generates virtual interrupts

Physical I/O devices

« PCI-Express root complex mapped into real address
space of guest domain

» Direct access to device registers
> OBP probes and configures bus and devices

» |/O Bridge and /O MMU configuration virtualized by
hypervisor APls

> Ensures that I/O MMU translations are validated by hypervisor
> Device interrupts are virtualized for delivery

Direct I/0 model

» For Solaris existing drivers . Domain owns PCI
continue to work *" root and tree
‘{ Driver

PCI Bridge
Driver

Privileged

Hyper Privileged Hypervisor

/O /0 MMU

Complex

Hardware

Interrupt and event delivery

- Device interrupts and error events need a mechanism to
asynchronously cause and exception for a virtual CPU

+ Typically also require some data to identify reason and
source and notification

* How to do this in an abstract manner?
> What if the virtual CPU is not currently bound to a physical CPU?

> Can't blockcj)hysical interrupt source until virtual CPU is
reschedule

Interrupts & CPU mondos

 Delivered to privileged mode via in-memory FIFO queues

> cpu-mondo, dev-mondo, resumable & non-resumable error
gueues

* 64- bgte entries carry cause information (interrupt
numbers)

- Head and Tail offsets available as CPU registers to
privileged code

> Tail manipulated by hypervisor, head by guest OS
> For either queue, head != tail causes trap

— T

Head Tall

Queue constraints

* Must be a power-of-2 number of entries, minimum of 2
> Entries always 64 bytes in size
> (tail+1)%size == head defines full state

* Must be aligned on a real address boundary identical to Q size
> Designed to make hardware mondo delivery easier

- May have queues defined for each virtual CPU
> dev_mondo queue must be sized for all possible interrupt sources
> dev_mondo queue may never contain more than one entry for
same source
« Hypervisor API to send 64Byte mondo to CPU queue
> Used for CPU to CPU x-calls
> Queue may fill and sender's API call fails

Logical Domaining Technology

» Virtualization and partitioning of resources

> Each domain is a full virtual machine, with a dynamically
re-configurable sub-set of machine resources, and its own
independing OS instance

> Protection & isolation via SPARC hardware and Ldoms firmware

OS Environmer Q“f Quf
of choice -< -<
SOLARIS® SOLARIS® FreeBSD
LDoms
Hypervisor - - o

CPU

Platform
Hardware

CPU CPU CPU

Memory//%

Lo

CPU CPU

Memo%

CPU CPU

Memo%

Memo%

110

I
Virtualized 1/O

Device Driver
/pci@B/glc@6

Virtual Device Ne;(ug(ggver
Virtual Device Service p
Driver

Privileged

Hyper Hypervisor
Privileged

Hardware 0

m Bridge

Virtual SAN 2

I/O Bridge

Redundancy; Multi-path virtual I/O

* Virtualised devices can be used for redundant fail-over if

guest OS supports it

p
Service

4)
Logical Domain

Domainl

V-Ether
Switch
Device-
Driver

I/O Briuge

Gb
Ethernet I/F

V-Ether

Driver

J(

V-Ether
Driver

4)
Logical Domain

p
Service

Virtual LAN 1b: 192.168.0/24

Domain2

CApp
Switch

V-Ether

Device-
Driver

I/O Bridg 2

Gb
Ethernet I/F

Domain Manager

* One manager per host HV
> Application that controls Hypervisor and its LDom

» Exposes external CLI & XML control interfaces

» Maps Domains to physical resources
> Constraint engine
> Heuristic binding of LDoms to resources

> Assists with performance optimisation
> Assists with handling failures and blacklisting

Dynamic Reconfiguration

» Hypervisor has ability to dynamically shrink or
grow LDoms upon demand

- Simply add/remove cpus, memory & |/O

> Abillity to cope with this without rebooting depends
on guest OS capabilities

> Guest OS indicates its capabilities to the domain
manager

. Opportunitg to improve utilisation by balancing
resources between domains

Summary

» Specifications & code published:
> http://www.opensparc.net
> http://www.opensolaris.net

* “Legion” instruction level simulator available to
assist with code development

> Provides level of code execution visibility not
possible on actual hardware

> Source code available on http://www.opensparc.net

» Contact alias:
> hypervisor@sun.com

Additional Topics

» Error handling
 Machine Descriptions
* Boot process

Error delivery philosophy

* Hypervisor handles and abstracts underlying
hardware errors

» All errors logged on service processor

» Guest OSs are told about impact of error
> No point in informing guest about correctable errors

» Legacy OS should be able to run on new
platform

Error handling

- Two simple classificiations; “after handling the error, can | ...”
> 1. Resume execution of what | was doing, or
> 2. Can't resume execution ... some policy to handle this

Simplest error handlers:
> 1. Retry
> 2. Panic

2 iIn-memory queues associated with these types, similar to
interrupts

* Queue entries contain error reports distilled by hypervisor

. Herrvisor creates reports and attempts to correct errors
when possible

Error handling agents

CPU/memory
error reports

Hardware
Error

/O & device
error reports

Service error report

microsystems

2l

Solaris
(Logical Domain)

Machine description

How the OS Inside a virtual machine finds its resources

Trivial list of nodes that detail the contents of each domain
> CPUs, Blocks of memory, I/O devices, I/O Ports etc.

Nodes are also inter-linked to form a DAG to convey more
advanced information for guest OSs that care

> e.g. cache sharing, NUMA memory latencies etc.

Key requirements;
> Very simple to parse by the simplest of guests
> Convey very complex information for guest OSs that care

> A guest need not understand all the information presented
> e.g. old OS running on a new platform

Simple list of nodes

cpu
id=0

cpu
id=1

cpu
id=2

B
B¢

memblk
base = 0x10000000
size = 0x1000000

memblk
base = 0x30000000
size = 0x1000000

;
) 0

Also arranged as a DAG

CEN oo
[-Car\
FEN -G

oot > Cmemory >

memblk
base = 0x10000000
size = 0x1000000

memblk
base = 0x30000000
size = 0x1000000

Boot process

Power on

¢

Reset & configuration code

Hypervisor

OBP OBP
ufs/net boot your bootloader OtherCZFéeeCia“St
exit/reboot L exit/reboot L

Solaris Your OS

[
i
iy

Dxed
E e ":
libre

ek
=NE

livre
libero

A,
FF Y
acik
open
nyilt

NiN5S

A—-—Tv

livre

OVOlKTO

offen

otevieny

oppen

OTKpPbITbIN
Qeuefl LILiemL_

open

64 bit, 32 threads, free

OpenSPARC T1 Tutorial

Compiler Optimizations

Jhy-Chun (JC) Wang

Senior Staff Engineer

jhy-chun.wang@sun.com

Agenda

» Background and Context
- Traditional (serial) optimization
- Parallelization

> Automatic, OpenMP, Libraries ...
* Analysis

- Embracing gcc users
* Summary

Traditional vs. Aggressive CMT

Performance (millions of app. instrns. / sec)

8000_ High ILP/in- Low ILP/out-of-
cache cache

7000

6000

5000 Parallel T -

workloads — High
4000 1 TLP, Low ILP -
\ . | II32T i

3000 :
Traditional

500 0; Target

Serial workloads —
- Cacheable, Low .
1000+~ TLP w_

\T\ |V+I1T\ T
0 L N
0 5 10 15 20 25 30 35 40 45 50

Mem. accesses per 1000 app. instrns.

©Sun

Designing for ILP vs. TLP

» Want to build a CPU with ~10BIPS capability?

* Option A |

2 Build a superscalar dual-core design Rare in most codes
3 Run the chip at

Q Look for 1-2 threads with an(([PC of 4-2@2.5GHz

* Option B

0 Build a 1-issue 8 core, 32-thread design Much easier to find

3 Run the chip at 1.25GHz
3 Look for 8-32 threads with andPC of 1-0.25@1.25GHz

Synergies Within a System

- Hardware

> Adequate cache/memory, I/O, and networking
bandwidth, plus RAS for large, parallel workloads

» Operating System

> Reliable and scalable OS for optimal management of

parallel threads

"« Developer Tools

> Compilers and tools to make application
development easy and efficient

~

\Focus of this section:

C/C++/Fortran Compilers & Tools
Free download: cooltools.sunsource.net

Basic Optimization

* An easy (naive) start:
>%cc foo.c
> No optimization (or very limited optimization)

Basic Optimization

* An easy (naive) start:
>$cc foo.c
> No optimization (or very limited optimization)

* A little better

>$cc -0 foo.c
> Optimization turned on at default level

Basic Optimization

* An easy (naive) start:
>$cc foo.c
> No optimization (or very limited optimization)

* A little better

>$cc -0 foo.c
> Optimization turned on at default level

* Even better
>$cc -x04 foo.c
> Optimization turned on at a high level

* What next?

Guiding/Controlling Optimizations

* Numerous advanced optimizations in the compiler

» Controls exist to leverage/guide most optimizations

> Inlining, inter-procedural analysis, profile feedback,
alias analysis, target system selection, prefetching,

pragmas/directives

- Significant benefits can be obtained by carefully
selecting and tuning available optimizations

$ cc -x04 -xinline=foo,no%bar -xprefetch level=3 \
-xchip=ultraTl program.c

Besides -O4, suggests that routine foo() be inlined and bar()
not be inlined in program.c, turns on aggressive prefetching,

and targets the T1 chip.

An All in One Flag?

» The -fast option includes various flags designed for a fairly
aggressive build

> Easy to start with -fast and add options after it to modify the
behavior as desired

> Fragment from makefile might look like this:

ISA = -xarch=v8plus
CFLAGS = -fast §(ISA) _
LDFLAGS = -fast $(ISA)

What did it do to my code?

- The compiler commentary explains how the
source code was optimized
> Build with “-g” added (does not disable optimizations)
> Get commentary with er_src command
> See documentation for details

* Improves understanding and helps user optimize
> User can derive hints on further options to use (or not use)
> User can derive hints on adding pragmas that might help
> User can derive hints on what reorganization might help

Example 1 — Loop Scheduling

for (j=1; j<n; j++) + 1 load eliminated
a[j] = a[j-11 + 4.0*b[jl*c[j] + *+ 1 fpmul eliminated
b[j1*b[j] + c[jl*c[j] + 6.0; + unrolled 4 times
+ optimally scheduled
+ resource limit =4
cc —-fast -xchip=ultrad4 -g -c loop.c v dependence limit = 4
er src -source foo 1 loop.o + achieved schedule = 4
+ 3 prefetches inserted

L-tag L1 scheduled with steady-state cycle count = 4
L-tag L1 unrolled 4 times
L-tag L1 has 2 loads, 1 stores, 3 prefetches, \
4 FPadds, 3 FPmuls, and 0 FPdivs per iteration
L-tag L1 has 0 int-loads, 0 int-stores, 5 alu-ops, \
0 muls, 0 int-divs and 0 shifts per iteration
Source loop below has tag L1l
7. for (J=1; j<n; j++)
8. al[j] = a[j-1] + 4.0*b[j]1*c[3] +
b[j]l*b[j] + c[j]l*c[]j] + 6.0;

Example 2 — IPO, Pointers, IF's

void propagate (int *p, int *q, int *r) ({
int x;

x=*p;

if (x < 50) {
...rl...
split(p,q)
...Xr2...
if (x < 100) {

merge (q, r) ;

}

}

@ Note x is a local variable
@ |f it can be proved that:
@ cond1 => cond?2
@ x is not modifiable in split
@ x is not modified in r1
@ x is not modified in r2
@ then:
@ the second 1if is eliminated

@ [nvolves
@ Pointer analysis
@ nter-procedural analysis
@ Conditional relationships

+ Complexity and “code rot” can cause such scenarios

+ Second conditional optimized away by the compiler

Example 3 — Whole Program Mode

setup (p) ;
for (i=0; i<STEPS; i++) {
transform x(p) ; *+ Original source has 32 byte struct
transform y (p) ;
transform z (p) ; * Program malloc's for large vector
transform t(p); :
} * All hot segments touch one field
t 2 . .
bt +» Ends up with poor cache behavior
+ 32 byte stride, 25% utilization
X x|y [l=z]]¢t + With whole program analysis:
pd LY LA LR » Compiler splits the vector
t
el Ml 0 Nl) » Generates four vectors
t # X Y 4 t .
— niaiaies * Hot segments get 8 byte stride
[y | = [y |[z][¢t]| +* 100% cache block utilization
z x||y||lz]||t * Performance is improved
t X Y z t

Parallelization: Automatic

» Compiler does the parallelization automatically

> Just use the -xautopar option
> No other user action required

- Automatic parallelization targets loop nests

>Works synergistically with loop transformations
> Steadily improving - handles many complex cases now

- Thread count controlled by environment variable

» Two versions generated (if profitability cannot be
statically determined)

> Run time selection between serial and parallel versions

> Serial version used if work/thread is too low

©Sun

Example — Autopar + Multiple Transforms

first(m,n) ;
second (m,n) ;

+ Top level routine has two calls

+ Loop in first()

for (j=0; j<n; j++)
for (i=0; i<m; i++)
a[i][j] = b[i]l[J] + c[i]1([3];

+ Loop in second()

/

for (i=1; i<m-1; i++) /
for (j=1; j<n-1; Jj++)
b[i][j] = 0.5*c[i][]]~

Routines inlined

Loop nest in first() interchanged
Loop nest in first() peeled

Fused with loop nest in second()
Loops parallelized at outer level
Inner loop pipelined

Prefetches inserted

=>» Difficult to understand final code
=» Use commentary, other options

v ¢ ¢ & ¢ ¢ ¢

Parallelization: OpenMP

» Itis an industry standard (www.openmp.org)
> Supported by a large number of compilers
> OpenMP code is portable
> Directives can be ignored for serial/unsupported systems

* Requires little programming effort
> Can start with just a handful of directives
> Applications can be parallelized incrementally

» Good performance and scalability possible
> Depends ultimately on the code, compiler, and system
> CMT-friendly shared-memory parallelism leveraged

Example 1 - Loop

for (i=0; i<n; i++)
a[index[i]] = a[i] + 2;

* -xautopar used
+ Not parallelized
+ Unsafe

'

$ cc -x04 -xautopar -xloopinfo loop.c
"loop.c", line 8: not parallelized, unsafe dependence (a)

#pragma omp parallel for shared(n,a) private (i)
for (i=0; i<n; i++)
a[index[i]] a[i] + 2;

+ Pragma added
+ -xopenmp used
+ Parallelized

'

$ cc -x04 -xopenmp -xloopinfo loop.c

"loop.c", line 9: PARALLELIZED, user pragma used

$ OMP NUM THREADS=4 // Controls number of threads
S a.out

Example 2 - Sections

#pragma omp sections

{

#pragma omp section + [t is not just for loops

fool(); * Arbitrary pieces easily parallelized
#pragma omp section * Must be legal, of course

£oo2 () ; _ + In this example:
#Pramzozglz : section ¥ f001() - foo4() run in parallel

#pragma omp section
food () ;

}

Value-Added Features

* OpenMP version 2.5 fully supported
> Includes support for nested parallelism

» Performance tuned for OpenSPARC systems
* |dle thread behavior can be controlled

- Static and runtime error checking

* OpenMP debugging using dbx

* OpenMP performance profiling

» Autoscoping

> The compiler can assist the user with scoping the
variables

C Autoscoping Example

$ er src -cc parallel -src loop.c loop.o

Source OpenMP region below has tag R1
Private variables in Rl: 1i
Shared variables in R1l: a, b, ¢, n

8. #pragma omp parallel for default(_ auto)

L1l parallelized by explicit user directive

9. for (i=0; i<n; i++)
10. a[i] = a[i] + 2*b[i] + c[i];
11. }

$ cc -fast -g -c -xopenmp -xloopinfo -xvpara loop.c

Variables autoscoped as SHARED in Rl: b, ¢, n, a

* Compiler commentary lists the autoscoping done

Parallelization: Math Library

for (i=0; i<n; i++)
af[i] = exp(b[i])

+ Normal compile calls exp
$ cc -fast -S loop.c

$ grep call loop.s

/* 0x0030 */ call exp

+ With -xvector, calls __ vexp
+ vexp () runs in parallel
$ cc -fast -xvector -S loop.c

/ + If idle processors available
$ grep call loop.s

/* 0x002c */ call Vexp

Loops may be split to enable
calling vector functions.

_ microsystems

Parallelization: Performance Library

do j5 = 1,n,nb

call zip(b(1,3jj),6 %val(nb))
do ii = 1,n,na
call zip(a(l,ii) , %val(na))
do jjj = jj,jj+nb-1,3
do iii = ii,ii+na-1,3
call getts()
call foo(a,b,c,iii,j]j])
call gette()
end do
end do
call gettp()
end do

end do + There's more code behind!

$ £90 -fast main.f \
hrtime.o -lsunperf

$ a.out

Mflops: 2640

$ PARALLEL=S8

$ a.out

Mflops: 19736

No coding sweat

No debugging pains
No tuning headaches
Great performance!
Portable!

And parallel!

v ¢ ¢ ¢ ¢ ¢

call dgemm('T','N',n,n,n,1.d0,a,num,b,num,0.d0,d, num)

Parallelization: Media/Graphics Library

for (n = 0; n < dlen; n ++) {
tmp = O;
for (k = 0; k < flen; k ++4)
tmp += fir[k] * src[n+k];
dst[n] = (vis _sl6) (tmp >> 16);

} y

vis write gsr(0);

da (vis_u8 *) dst;

(vis_d64 *) ((vis_u32) da & (~7));
off = (vis _u32) dp - (vis_u32) da;
dend = da + 2 * dlen - 1;

emask = vis_edgelé6(da, dend);

sa = (vis_u8 *) src;

num = ((vis_u32)dend>>3) - ((vis_u32)da>>3)

for (n = 0; n < num; n ++) {
sSs = sa;
rdh = vis_fzero(); rdl = vis_fzero();
for (k = 0; k < flen; k ++) {

sp = (vis_dé4 *) vis alignaddr(ss, off);
s0 = sp[0]; sl = sp[l];
sd = vis_faligndata(s0, -

No need to write VIS
No need to write MMX
Just use mediaLib functions
Perf. gain of ~6X (avg.)
“C” version exists
(can run on any system)

¥ ¢ ¢ & <&

+ There's more code!

+ 1;

Performance Analysis

. f\nelllyzer — an advanced performance analysis
00

* Intuitive GUI interface

* Clock based statistical profiling

* HW counter based statistical profiling

- Can relate data to function, source, assembly
level

* Integrated with compiler commentary
- Dataspace and memoryspace profiling
* Enhanced OpenMP support

_ microsystems

Analysis Example: Memory Bottleneck

Excl. Incl. Excl. Incl. Name
Instr cnt Instr cnt L3 miss L3 miss
Events Events Events Events
2452671487 2452671487 96803274 96803274 <Total>
2327052822 2327052822 93803181 93803181 loop
125618665 2452671487 3000093 96803274 main
0 2452671487 0 96803274 _start
...compiler commentary here...
0 0 0 0
11. for (i=0; i<n; i++)
2327052822 2327052822 93803181 93803181
12. t += a[index[i]];
9200436 9200436 0 0
[13] 10908: 1dd [$00 + %$10], %f4
0 0 0 0
[13] 1090c: faddd $f2, %$£10, %fl1l4
1154977323 1154977323 93803181 93803181
[13] 10910: sl1 %g5, 3, %g4

Function view

One click

\J
Source view,

with commentary

One click

Assembly view,
with line numbers

Analysis Example Continued

$ cc -fast -g main.c loop.c
main.c:

loop.c:

$ time a.out

real Oml7.49s
user Omlé6.24s
sys OmO0.97s

$ collect -h Instr cnt,h,L3 miss,h a.out
$ analyzer

$ cc -fast -g -xprefetch level=3 main.c loop.c
main.c:

loop.c:

$ time a.out

real Omé6.79s
user Om5.54s
sys OmO0.97s

First run,
simple compile

Analyze' - “Aha,

it's the indirect
Idd's L3 miss”

Add -xprefetch level=3,
prefetch emitted,
nice speedup

Race Detection: What is a race?

for (i=0; i<n; i++) Sequential execution: Results are deterministic
a[i] = a[i+l] + b[i]; Parallel execution: Results non-deterministic
a[0] = a[l] + b[O] ;[5] = a[6] + b[5]
Example:
1] = a[2 b[1l 6] = a[7] + b[6 .
2L = el s sl / 2LEl = =l 1oL Thread 1 executes i=0-4
a[2] = a[3] + b[2 a[7] = a[8] + b[7] Thread 2 executes i=5-9
Thread 2 might write a[9]
221 = albdll sl 21E] = alBll s allE) before thread 1 reads it.
a[4] = a[5] + b[4] a[9] = a[10] + b[9] Final value of a[4] wrong!
Thread 1 Thread 2

This is a data race.
DRDT: A Data Race Detection Tool

Using DRDT - Step 1

= Compile a program for instrumentation.

> Add “~xinstrument=datarace’ to the compiler/linker
options.

% cc -xinstrunent=datarace -nt al.c a2.c a3.cC

% cc -Xi nstrunent =dat arace -xopennp onpl.c onp2.c

Using DRDT - Step 2

» Run the application under collect (analyzer)
with the —r option

- Similar to using collect for performance analysis

% collect -r on a.out argl arg2

- This will create a data file that stores the race detection results

- Significant slowdown (> 50X) can occur when using DRDT
> Use a small input data set for a short run

Using DRDT — Step 3

* Check the result

> Use er_print for command line interface.
> For a summary report

% er print -races test. 1. er

> For a detailed report on one particular data race detected

%er print -rdetail 3 test.1l.er

> Use rdt for a GUI

%rdt test. 1. er

Example of DRDT Output

Tot al

Tot al

% er _print

Tot al Races:

Race #1, Vaddr:
Access 1:

Access 2:

Traces:

Race #2, Vaddr:
Access 1:

Access 2:

Traces:

-races test. 1. er

2 Experinment:

0x212cO
Read, work
i ne
Wite, work
i ne
3

0x212cO
Wite, work
| i ne
Wite, work
| i ne
2

test. 1. er

+ Ox000000AQ0,
42 in "pthr_prine.
+ 0x000000DC,
44 in "pthr_prine.

+ 0x000000DC,
44 in "pthr_prine.
+ 0x000000DC,
44 in "pthr_prine.

CII

CII

C

C

Analyzing & Improving Binaries

» BIT - Atool that operates reliably on binaries
» Can instrument and collect information for analysis

» Can create a new binary with improved performance
> Focusses on rearranging code to better use the I-cache
> Works best on large, complex applications

* Build with
> Option -xbinopt=prepare
> Use -O1 or higher optimization level

BIT: Examining Code Coverage

$ cc -fast -xbinopt=prepare *.c -1lm
and.c:

build-disjuncts.c:

extract-links.c:

$ bit instrument a.out

$ a.out.instr 2.1.dict -batch < input
$ bit coverage a.out

Creating experiment database test.l.er
BIT Code Coverage

Total Functions: 350

Covered Functions: 216

Function Coverage: 61.7%

Total Basic Blocks: 6,041

Covered Basic Blocks: 3,969

Basic Block Coverage: 65.7%

Total Basic Block Executions: 3,955,536,194

// Build for BIT

// Instrument the a.out
// Run a.out.instr
// Analyze coverage

Average Executions per Basic Block: 654,781.69

Total Instructions: 27,606
Covered Instructions: 17,680
Instruction Coverage: 64.0%

Total Instruction Executions: 18,866,478,764

Average Executions per Instruction: 683,419.50

Simplifying Performance Optimisation

. SP(IDT — A Simple Performance Optimisation
00

> Produces a report on a code's execution
> Exposes common causes of performance loss
> Very easy to use

« SPOT reports contain hyperlinked profiles

> Makes it easy to navigate from performance issue to
source to assembly

> For maximum information
> Add -g (-g0 for C++)
> Use -O1 or higher
> Include -xbinopt=prepare

Using SPOT

$ cc -fast -xbinopt=prepare -g *.c -1m // Build the code

and.c:
build-disjuncts.c:
extract-links.c:

$ spot -X a.out 2.1.dict -batch < input > /dev/null // Run SPOT
Copying spot resources

Collect machine statistics
Collect application details
Collect ipc data using ripc
Collect data using BIT

Output ifreq data from bit
Collect bandwidth data

Collect traps data

Collect HW counter profile data
Collect data for Rstall IU use & Re DC miss
Collect data for Rstall storeQ & Cycle cnt

Collect data for DispatchO 2nd br & Cycle cnt
Generating html output for HW counter profile data
Collect clock-based profiling data

Generating html output for time profile data

Done collecting, tidying up reports

S

SPOT runs the code many times
Approx. 20X longer (in this mode)
Invokes other tools to collect data
Generates comprehensive report

v ¢ & &

Embracing OpenSPARC/gcc Users

- Many developers use gcc
> Want to use the same compiler for different platforms
> Use gcc language extensions
> Familiar with & feel comfortable with gcc
> Migration to Studio is, or is viewed as being, difficult

Would be nice to bring the features of Studio to these users.

Making the Connection

gcc

IR

front-end | generator

GCC for
SPARC
Systems

Studio
front-end

/

\

4

PO

Parallelizer

Optimizer

Y

Code Generator

Y

Link time optimizer

Binary optimizer

Key Features

* Transparent to gcc users
> Feature compatible with gcc
> Debuggable with gdb and dbx

* Improved performance

> Through advanced optimizations tuned to SPARC
systems

> Extra optimizations such as -xipo, -xprefetch,
-xprofile

 Higher reliability

Summary

» A rich collection of compilers and tools is
available to OpenSPARC developers

> Components are thread-aware and work
synergestically

> Reliable, with advanced optimizations and
parallelization

> Fxclzellent multi-threaded analysis and debugging
ools

o]'cl'hese tools are all free and can be downloaded
rom:

http://cooltools.sunsource.net

[
i
iy

Dxed
libre

ek
=NE

livre
libero

A,
FF Y
acik
open
nyilt

NiN5S

A—-—Tv

livre

OVOlKTO

offen

otevieny

oppen

OTKpPbITbIN
Qeuefl LILiemL_

open

64 bit, 32 threads, free

Cool Tools — Automatic
Tuning and Trouble
Shooting Systems (ATS)

David Weaver

Agenda

» Automatic Tuning and Troubleshooting System

> Build the best binaries
> Bonus: troubleshooting

 Unified Solaris Binary
> Deliver the best-fit binary at run-time

Automatic Tuning and

Troubleshooting System
(ATS)

Automatic Tuning Through ATS

$ ats a.out

@ Sun

microsystems

pec.out - Mozilla Firefox 7l
File Edit View Go Bookmarks Tools Help ;:
. . =]

.. Automatic Tuning At Work

Spreadsheet {osv

Host: sctgo

fimport/go - saraswati/rprak/demotats mcf/pec.out g

______ T
.............
_____________ S
""""""" T I T
_____________ L B
_____________ e
""""""" s ot [mem |
_____________ e
""""""" s ootz | mem | im
_____________ e
Note: Other, user defined, metrics supported too -
____________ S S —
____________ e

How Does It Work? -- ATS uses PEC

PEC = Portable Execution Code
(SuniR is kept in the binary)

%cc -xOB8 -WI,-pec t.c
% gcc -G8 -xpec t.c

tl.o

t2.0

tn.o

—

a.out

1Y

Recompiling Binaries Through PEC

a.out The SuniIR is extracted and
reprocessed

tl.ir tl.0

N _
T T LU T t2.11 t2.0 a.out
Intermediate ﬂ_, T
Representation -
—or Each Module

tn.ir tn.o

- T >

Dramatic reduction in compile time

Troubleshooting - Findbug

 Find the offending options
» Then find the offending module

$ ats \
-i 'script:findbug -x03 -fsimple=2 -xlinkopt' \
a.out

ATa Results Hostiscigo pec.out - Mozilla Firefox
File Edit Miew Go Bookmarks Tools Help

Find the offending option, then the module(s) =

s LogFile
s 3preadsheet (cav file)

Status Runtime

Compiler flags

1 | -x03 —fsimple=2 —sinkopt Verification

, 1.65
il e Failed |
E : _ - ?aﬁﬁcaﬁnné

2 = —=203 —fsimple=2 § Failed le6

3 £ |-x03 —fsimple=1 = Passed | 166

... S | ——————— | SE———————————

:HIIII!—FIIIII%Igllll%gﬂ!ﬂgllllllllllllllIIIIIIIIIIIIIIIIIIIIIIIIIII

4 —W O, —pec keepfimport/go—saraswatyrprak/demo/ats mef/ A TErun1/pass Passed 187

| -W0,—no_dependency variables

| —203 —tsimple=2 |
5 | =W0,—pec_keep/import/go—saraswati/rprak/deme/ats_mef/ ATS/run2 1/ ail Verification
| -WQ,—no_dependency variables

Unified Solaris Binary

Making A Unified Solaris Binary

» Make platform specific versions of a binary
- Add them to a unified solaris binary
« Example:

% mkusb -c ultra3 build-ultra3/a.out -0 a.out

% mkusb -c ultraTl build-ultraTl/a.out —-a a.out

Running A Unified Solaris Binary

- Just as you would run a normal binary

o

5 a.out
Hello World!

5 setenv USB VERBOSE 1

$ a.out
BEST MATCHING BINARY ultra3

Hello World!

.
Making Another Unified Solaris Binary

» Example:
% mkusb -c¢ sparc sparc.out -0 a.out
% mkusb -c x86 x86.o0ut —a a.out

$ mkusb —-c ultrad ultrad.out —-a a.out

How Does It Work?

- Binaries are compressed, encoded and added to
the Unified Solaris Binary

* At runtime
> Run machine is recognized

> Best matching binary is extracted and cached into a
directory and executed

> For example, on an ultra3cu, order of perference

> ultra3cu ultra3i ultra3iplus ultra3
ultra2 ultra2i ultra2e
ultra sparc

- When run again, the cached binary is used

[
i
iy

Dked
E e :"
libre

ek
=NE

livre
libero

A,
FF Y
acik
open
nyilt

NiN5S

A—JT

livre

OVOlKTO

offen

otevieny

oppen

OTKpPbITbIN
Qeuefl LILiemL_

open

64 bit, 32 threads, free

http://OpenSPARC.net

microsystems

OpenSPARC participation

» Community Registration:

> http://lwww.sunsource.net/serv
confirming password, you can
http://www.sunsource.net.serv

* Forums:

ets/Join After registration and
join the mailing lists:
ets/ProjectMailingListsList

> http://forum.java.sun.com/category.jspa?categorylD=120

(separate registration required

www.opensparc.net

Recent Trends in Processor Architecture -2007 , NIT Trichy, India

for posting)

231

http://www.sunsource.net/servlets/Join
http://www.sunsource.net.servlets/ProjectMailingListsList

OpenSPARC participation

» Add your university (or company) to the marketplace:
http://lwww.opensparc.net/community-marketplace/

» Send us your profile and we'll post it:
http://lwww.opensparc.net/profiles/

* Add yourself to our Frappr!!:
http://wwwopensparc.net/frappr.html

» Contribute to our OpenSPARC Book:
http://wiki.opensparc.net/bin/view.pl/Main/\Webhome
(separate registration required for editing)

www.opensparc.net 232

Recent Trends in Processor Architecture -2007 , NIT Trichy, India

http://www.opensparc.net/community-marketplace/
http://www.opensparc.net/profiles/
http://wwwopensparc.net/frappr.html
http://wiki.opensparc.net/bin/view.pl/Main/Webhome

