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Niagara2's Key features

2" generation CMT (Chip Multi-Threading) processor
optimized for Space, Power, and Performance (SWaP).

8 Sparc Cores, 4MB shared L2 cache; Supports concurrent
execution of 64 threads.

>2x UltraSparc T1's throughput performance and
performance/\Watt.

>10x improvement in Floating Point throughput performance.

Integrates important SOC components on chip:
> Two 10G Ethernet (XAUI) ports on chip.
> Advanced Cryptographic support at wire speed.

On-chip PCI-Express, Ethernet, and FBDIMM memory
interfaces are SerDes based.
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Niagara2 Block Diagram
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* System-on-a-Chip, CMT architecture => lower # of system

components, reduced complexity, power => higher system reliability.
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Sparc Core (SPC) Architecture Features

TLU 1 IFU | * Implementation of the 64-bit
SPARC V9 instruction set.

* Each SPC has:

> Supports concurrent execution of 8 threads.
1 load/store, 2 Integer execution units.

1 Floating point and Graphics unit.

8-way, 16 KB 1$; 32 Byte line size.

4-way, 8 KB D$; 16 Byte line size.

64-entry fully associative ITLB.

128-entry fully associative DTLB.

MMU supports 8K, 64K, 4M, 256M page
sizes; Hardware Tablewalk.

> Advanced Cryptographic unit.

* * Combined BW of 8 Cryptographic
Units is sufficient for running the

SPC Block Diagram 10 Gb ethernet ports encrypted.
d
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SPC Architecture Features (Cont'd.)

* 8-stage Integer Pipeline (Fetch, Cache, Pick, Decode,
Execute, Memory, Bypass, Writeback).

> 3-cycle load-use latency.

* 12-stage FP and Graphics Pipeline (Fetch, Cache, Pick,
Decode, Execute, FX1, FX2, FX3, FX4, FX5, FB, FW).

> 6-cycle latency for dependent FP operations.
> Longer pipeline for Divide/Sqrt.

* Upto 4 instructions fetched per cycle in the 'Fetch' stage.

* Has 2 thread-groups (TGs); 'Pick' tries to find 2 instructions
to execute every cycle — one per TG.

> Can lead to hazards (e.g. Loads picked from both TGs).
* 'Decode’ stage resolves hazards that 'Pick’ cannot.
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Niagara2 Die Micrograph
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Physical Implementation Highlights

65 nm CMOS (from

Technology Texas Instruments)
Nominal 1.1V (Core), 1.5V
Voltages (Analog)
# of Metal 11
Layers
Transistor 3 (SVT, HVT, LVT)
types
Frequency 1.4 Ghz@ 1.1V
Power 8S4W@1.1V
Die Size 342 mm”2
Transistor 1543 \tillion
Count
Flip-Chip Glass

Package CeI:amicp
4 of pins 1831 total; 711

P Signal 1/0

* Flat cluster composition allows better
design optimization; custom clock
insertion/routing to meet tight clock
skew budgets.

* Static cell-based methodology for
most design.

* Selective use of Low-VT gates to
speed up critical paths.

* Extensive use of DFM:
> Larger-than-minimum design rules.
> Shielding gates using dummy polys.
> QOPC simulations of critical layouts.
> Extensive use of statistical simulations.
>

All custom designs proven on testchips
prior to 15 Si.



Level2 Cache

* 4-MB shared L2 Cache:
> 8 banks of 512 KB each.
> 64 B line size; 16-way set associative.
> Read 16 B per cycle per bank with 2-cycle latency.
> Address hashing capability to distribute accesses across different sets.

* SEC DED ECCl/parity protected.
* Data from different ways/words interleaved to improve SER.

* Tag arrays contain reverse-mapped directory:

> Maintains L1 1$ and D$ coherency across 8 SPCs.
> Store L2 Index/Way bits instead of all the tag bits.

* Memory cell NWELL power separated out as a test hook:

> Helps identify weak memory bits susceptible to read-disturb fails due to
PMOS NBTI effect.

> Significantly improves DPPM/reliability.
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Level2 Cache — Row Redundancy

array

array disable
array enable

i snare rows for
bottom array

Defective top row
address

Address for access

Defective bottom row

address Spare rows for

— » W top array

array disable
array enable

* Redundancy

implemented at 32-
KB level.

Spare rows for one
array located in
adjacent array.

* Adjacent array

(which is normally
not enabled) is
enabled if 'incoming
address' = 'defective
row address'.

Reduces X-decoder
area by ~30 %.



Crossbar - Provides high-BW interface

between 8 SPCs and 8 L2
COREO | CORE || CORE2 || CORE3 || CORE4 || CORES || CORES || CORE7 cache banks/NCU.

BHIEH|IBE|IBEIBE|IBE|IBH|BH| ° Consists of 2 blocks:
DN B B B

s > PCX (Processor to
L H B B Cache/NCU transfer):
N 8-i/p, 9-0/p mux.
Bank0 > CPX (CaChe/NCU to

Processor transfer):
9-i/p, 8-0/p mux.
o * PCX/CPX combined provide

Rd/Wr BW of ~270 GB/s (Pin
BW of ~400 GB/s).

* 4-stage pipeline:
Request, Arbitration,
Selection, Transmission.

RE||FE|(|{FE|| RE||FE||FE||RE||RE||FE| < 2-deep queue for each
NCU || Bank0 | { Bank1 || Bank2 | | Bank3 | | Bank4 | | Bank5 | | Bank6 | | Bank? source-destination pair tO
hold data transfer requests.
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Clocking

REF 133/167/200 MHz
CMP 1.4 GHz
Asynchronous 350 MHz
g ™~ - 700 MHz
MCU FSR.refclk  133/167/200 MHz
A ELE EUTEr  1.6/20/24 GHz
o P S E Y FSR.byteclk | 267/333/400 MHz
MCU DR 267/333/400 MHz
PSR.refclk | 100/125/250 MHz
14 CCX
% " 146H_ ><_" PSR bitclk 1.25 GHz
PSR.byteclk 250 MHz
40)MHZ ~ | x 2
HHEEEHEHEE PCIEx 50 Wt
MCU |||l |ln|len|on e |em Y4
JID(DT (2|3 |S ESR.bitclk 1.56 GHz
312.5 MHz
\T’ J\ 7 312.5 MHz
Mesochronous Ratioed synchronous Asynchronous MAC.2 156 MHz

MAC.3 125/25/2.5 MHz
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Clocking (Cont'd.)

* On-chip PLL generates Ratioed Synchronous Clocks (RSCs);
Supported fractional divide ratios: 2 to 5.25 in 0.25 increments.

* Balanced use of H-Trees and Grids for RSCs to reduce power
and meet clock-skew budgets.

* Periodic relationship of RSCs exploited to perform high BW
skew-tolerant domain crossings.

* Clock Tree Synthesis used for Asynchronous Clocks; domain
crossings handled using FIFOs and meta-stability hardened
flip-flops.

* Cluster/L1 Headers support clock gating to save clock power.
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RSC domain crossings: Sync_en generation
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* Example shows:

=13/4 = 3.25

'Sgnc_En' pulse identifies
FCLK cycle for data
transfers in both
directions, i.e.

> FCLK -> SCLK, and
> SCLK -> FCLK.

Desired FCLK cycle is
the one whose rising
edge is closest to the
center of the SCLK cycle
(vellow vertical lines In
timing diagram).

F../

FCLK" " SCLK



RSC domain crossings
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* Same 'Sync_en' signal

used for FCLK -> SCLK
and SCLK -> FCLK
domain crossings.

* This methodology greatly

reduces clock balancing
requirements on all RSCs.
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Niagara2's SerDes Interfaces

FBDIMM PCI-Express |Ethernet-XAUI

Signalling VSS VDD VDD
Reference

Link-rate (Gb/s) 4.8 2.5 3.125

# of North-bound 14 * 8 8 4%

(Rx) lanes

# of South-bound 10 * 8 8 4%

(Tx) lanes

Bandwidth (Gb/s) 921.6 40 50

* All SerDes share a common micro-architecture.

* Level-shifters enable extensive circuit reuse across the three
SerDes designs.

* Total raw pin BW in excess of 1Tb/s.

* Choice of FBDIMM (vs DDRZ2) memory architecture provides
~2x the memory BW at <0.5x the pin count.
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Niagara2's True Random Number Generator

entropy cell

Consists of 3 entropy cells.

Amplified n-well resistor thermal noise modulates VCO frequency; VCO o/p
sampled by on-chip clock.

LFSR accumulates entropy over a pre-set accumulation time.

> Privileged software programs a timer with desired entropy accumulation time.

> Timer blocks loads from LFSR before entropy accumulation time has elapsed.
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Power

Niagara2 Worst Case Power =
84 W@ 1.1V, 1.4 GHz

CMT approach used to
optimize the design for
performance/watt.

Clock gating used at
cluster and local clock-
header level.

'GATE-BIAS' cells used to
reduce leakage.
> ~10 % increase in channel

length gives ~40 % leakage
reduction.

Interconnect W/S
combinations optimized for
power-delay product to
reduce interconnect
POWEr.



Power management

Effect of Throttling on
Dynamic Power
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Software can turn threads on/off.

'Power Throttling’ mode controls
Instruction Issue rates to manage
power consumption.

On-chip thermal diodes monitor
die temperature.

> Helps ensure reliable operation in
case of cooling system failure.

Memory Controllers enable
DRAM power-down modes and/or
control DRAM access rates to
control memory power.



Design for Testability

* Deterministic Test Mode (DTM) used to test core by
eliminating uncertainty of asynchronous domain crossings.

* Dedicated 'Debug Port' observes on-chip signals.
* 32 scan chains cover >99 % flops; enable ATPG/Scan testing.

* All RAM/CAM arrays testable using MBIST and Macrotest.

> Direct Memory Observe (DMO) using Macrotest enables fast bit-
mapping required for array repair.

* Path Delay/Transition Test technique enables speed testing of
targeted critical paths.

* SerDes designs incorporate loopback capabilities for testing.

* Architecture design enables use of <8 SPCs/L2 banks.
> Shortened debug cycle by making partially functional die usable.

> Will increase overall yield by enabling partial-core products.
20



Mission Mode vs DTM
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F vs Vdd Shmoo

1% Si very clean — booted
Solaris in 5 days.

Several parts from 1% Si
running in lab systems at
1.4 GRHz.

2000MH=
1939MH=
1382MH=
1529MH=
177T0MH=
1730MH=
1684MH=
1641MH=
1600MH=
1561MH=
1524MH=
1458MH=
14EEMH=
1422MH=
1391MH=
1362MH=
1333MH=
1306MH=
12B80MH=
1255MH=
1231MH=
1208MH=
1185MH=
1164MH=
1143MH=
1123MH=
1103MH=
1085MH=
106THH=
1049MH=
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Conclusions

* Sun's 2" generation 8-core, 64-thread, CMT SPARC
processor optimized for Space, Power, and Performance
(SWaP) integrates all major system functions on chip.

* Doubles the throughput and throughput/watt compared to
UltraSparcT1.

* Provides an order of magnitude improvement in floating point
throughput compared to UltraSparcT1.

* Enables secure applications with advanced cryptographic
support at wire speed.

* Enables new generation of power-efficient, fully-secure
datacenters.
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