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Agenda
• Design Verification Process Overview

> Functional Verification Only
>No performance
>No timing
>No electrical, circuit, power, etc.

• Random Instruction Generator Design
> Full Featured Generator

>Useful in simulation
>Bootable on hardware

• OpenSPARC http://opensparc.sunsource.net/
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UltraSPARC-T1: Some Design 
Choices • Simpler core architecture to 

maximize cores on die

• Caches, dram channels shared 
across cores give better area 
utilization 

• Shared L2 decreases cost of 
coherence misses by an order of 
magnitude

• On die memory controllers reduce 
miss latency

• Crossbar good for b/w, latency, 
functional verification

• 378mm2 die in 90nm dissipating 
~70W

• http://opensparc.net
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Importance of Design Verification

• Cost of manufacturing prototype silicon increasing
• Chip manufacturing turn around time increasing
• Cost of design faults in hardware increasing

> Money
> Electronics now used in “life critical” applications

• Time is money
> A great product 2 years late is not so great
> “Hacking” is too slow
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PART 1: Design Verification Process

• Design for Verification
• Pre silicon Verification
• Post silicon Verification
• Review results to improve things for next time
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Design for Verification
• Architecture Features

> Instruction monitors
> Address monitors
> Data saved on exceptions

• Microarchitecture Visibility
> Special access to microarchitecture for software
> External visibility: Scan
> Error injection for RAS testing

• Repeatability / Determinism
> Ability to see problem again (and again, and ....)
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Bad Design for Verification

• Architecture Features
> Write Only Registers
> Undefined Fields or Actions

• Repeatability / Determinism
> No way to sync clock domains
> Random state after reset

• Typical reasons for poor Design for Verification
> Mistaken belief decision makes verification easier
> Concerns about impact to size or performance
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Pre Silicon Verification

• Environments
> RTL simulation

>Stand Alone Test environments (SATs)
>Fullchip

> RTL simulation methods
>Software
>Hardware accelerated

> Architectural simulation
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Pre Silicon Verification 2

• Tools
> Formal verification
> Architectural directed tests
> Microarchitectural directed tests
> Pseudo Random tests

• Common problems
> No tests for “hard” cases
> Too many tests
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Post Silicon Verification

• “Bootable” or “Bare Metal” or “Native Mode” tests
> From PROM
> Like Operating System

• Operating Systems based tests
> Runs like normal application program
> May use special debug/validation system calls
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Design Verification Philosophy

• Test to the specification!!!
• Test all reasons for exceptions
• Do not limit testing to the “real” cases

> No one really knows all “real” cases
> New “real” cases will appear in the future
> Users will hit “no one would ever do that” cases 

by accident
• Do give priority to “real” case

> OK, honestly we do have a pretty good idea what 
users do
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Design Verification Philosophy 2

• Know critical path in schedule (important!)
• Understand “chicken & egg” problem

> What comes first?  The test or the debug 
platform?

> Best to work this out with software model
> Bad to work it out with RTL



13
Joel Storm  8th EMICRO,  Porto Alegre, RS, Brazil

Priorities -> This is What's Important

• 1: Test Coverage
• 2: Usability
• 3: Efficiency (time/cycles to get to specific case)
• 4: Serious problems in 2 & 3 can affect #1

> Note that a common mistake is to use too many 
resources on 2 & 3.
>An intuitive interface and cycle efficient code 

that can test 80% of the design is not as useful 
as a crude interface and slow code that can 
test 95%
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PART 2: Random Instruction 
Generator Design

• Full featured, do everything CPU test generator
> Works in all simulation environments
> Boots on hardware like an Operating System
> Automatic stress test generation
> User selectable features
> Pseudo Random

>Some built in intelligence on randomness
>Completely random is not very usefull

> Too big for 1 Engineer
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Random Generator Usage

• Simulation environments
> Generate tests on good system
> Run only individual tests on target

• Hardware & hardware like environments
> Load (boot) test generator on target system
> Generate and run tests on target system

>Usually “infinite” loop
–Generate test
–Run test
–Repeat
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Architecture of Random Generator

• Three main sections
> Infrastructure
> Test Generator
> Run time environment
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Architecture of Random Generator 2

• Infrastructure
> User interface

>Command reader
>Output displays

> Boot code
> Debug aids

>Event history tables
>Instruction breakpoints
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Architecture of Random Generator 3

• Test Generator
> Memory Allocation

>Data areas
>Instruction areas
>Address translations (Virtual to Physical)

> Feature Selection
>Architectural / Microarchitectural features
>Instruction mix
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Architecture of Random Generator 4

• Run time environment
> Test start up code (context switch)

>Stand alone tests
>Switch from generator control code to test

> Exception handlers (interrupts, traps)
>Handle & recover from exception
>Verify correct behavior

> Test end code (context switch)
>Switch back to generator control code
>Final state checks
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Important Considerations

• Not a “normal” application!
• Must be debugable on broken hardware

> Limit outside dependencies (none is best)
>Outside code may not work
>Link to outside code may not work

> Software deterministic
> “Efficient” programing strategies not always good

>Keep run time environment in 100% assembly
–Debuggers will be stepping through this
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Important Considerations 2

• Leverage other code carefully!
> Don't try to convert another program into a test
> Grabbing small functions if fine (stack, parse, 

print)
> Check if the code you want to use requires more 

code, that uses a library, that includes....
• If in doubt, write it yourself

> Time to convert code for verification use often 
longer than time to write new usage specific 
code.
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Programming Techniques

• Data structure are better than logic!
> Tables of data can greatly reduce the need for 

long switch/case logic statements
• Pointers are better than logic

> Pass pointers to data structures
> Use function pointers

• Just say “NO” to recursive algorithms
> Remember: need to debug on broken hardware
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Instruction Generator Goals

• Build all combinations of instructions
> Instruction X before and after instruction Y
> No limits on what can precede/follow instruction

• Conditional branches to/around any instruction
• Microarchitecture testing

> Fill instruction cache (subroutines a good way)
> Branches over “interesting” boundaries

>Cache lines
>Pages
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Instruction Data Table

• All instruction data in one place
> Opcode (bit pattern that is unique to instruction)
> Mnemonic
> Number of operands
> Operand size
> Pointers to build/simulation/disassembly functions
> Flags for valid exceptions
> Instruction family flags (Branch, Floating-Point)
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Instruction Data Table Example Entry

0x81a00d20  (opcode)

“fsmuld”  (mnemonic)

SOURCE1_SINGLE  (flag, mask, or constant for 1'st operand)

SOURCE2_SINGLE  (flag, mask, or constant for 2'nd operand)

DESTINATION_DOUBLE (same info for destination reg)

FP_DISABLED | XYZ (flags for valid exceptions on this inst)

build_FP_s_to_d (function pointer to build code for this type)

sim_FP_s_to_d (function pointer to simulation code [if any])

disassemble_FP_s_to_d (fcn pointer to disassembly code)
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Instruction Data Table 2

• Organize instruction table as a tree
> Use opcode to determine layout
> Leaf nodes are variable length arrays of 

instruction structures
> Easy to traverse

>With tree traversal algorithm
>Using opcode
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Random Instruction Generation

• Once during program initialization (or when table is 
modified):
> Traverse whole instruction tree and build sub 

tables
>Array of pointers to all Floating-Point 

instructions
>All branch instructions
>All integer multiply instructions
>etc.

• Used by code to stress specific features
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Random Instruction Generation 2

• Once for each test built:
> Combine user specified adjustments with 

automatic instruction tuning
> Fill instruction mix array with pointers to 

instruction sub tables
>100 element array allows 1% adjustments
>1000 elements for 0.1% adjustments (duh)
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Main Instruction Generation Loop

• Get a random number
• Use it to index into the instruction mix array
• Use another random number and pointer from 

instruction mix array to index into a sub table
• Follow pointer in sub table to instruction data 

structure
• Call instruction build function pointed to by function 

pointer in instruction data structure
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Instruction Build Function

• One for each type of instruction (not each inst.)
> Example: 2 integer register sources and 1 integer 

register destination
> Floating-Point register load instructions

• Is passed a pointer to the instruction data entry
• Simple logic uses masks and flags from data entry 

to build a complete instruction
• Calls common functions for access to resources
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Resource Allocation Functions

• One for each type of major resource
> Integer registers
> Floating-Point registers
> Memory addresses

• Can track usage and force data dependencies
• Can force no dependencies
• Can reserve resources for special uses

> Loop counters
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“Split Up” Instruction Sequence

• Loop (backward branch sequence)
> Initialize loop counter
> Decrement/Increment counter

>Set condition code
> Conditional branch back to point after loop 

counter initialization
• Forward branch

> Build branch skeleton (not finished instruction)
> Fill in offset for target address
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“Split Up” Instruction Sequence 2

• Other sequences
> Load subroutine address
> Call subroutine

• Two ways to implement
> Recursive calls from build function to main loop
> Scoreboard
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Result Testing

• Simulation environments usually include built in 
checking
> Results on RTL checked against software model

• Three major types of random generator built in 
testing
> Sanity checks of exceptions
> Two pass comparison (Very Powerful)
> Instruction simulation

• End of test sanity checks
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Sanity Checks of Exceptions

• Divide by zero trap
> Divide instruction?
> Operand was zero?

• TLB miss trap
> Load or Store?
> Miss was expected/allowed

• Illegal instruction trap
> Is it illegal
> Did the generator put it in this test (Important!)
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Two Pass Comparison First Pass

• Run test in single step mode
> Use hardware feature or software traps

>Software trap method is self modifying code 
that walks trap instruction through test code

• Save state data at periodic checkpoints
> Registers
> Exceptions taken
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Two Pass Comparison Second Pass

• Reset all data
• Run test normally (no single step)
• Check state data at periodic checkpoints

> Registers
> Exceptions taken

>Can be part of checkpoint
>Can be part of exception handling
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Instruction Simulation

• Include simulation functions in random generator
> Connections to separate simulation engines don't 

work (trust me on this)
• Leverage pass one single step functions

> Easy to implement
> Allows partial simulation (don't need to simulate 

simple instructions)
> Use function pointer from instruction data table

>Easy implementation: look up instruction & call 
function from function pointer
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End of Test Sanity Checks

• If CPU1 sent CPU7 12 messages, were they all 
received?

• Did all CPUs complete the test?
• Were expected exceptions actually seen?



40
Joel Storm  8th EMICRO,  Porto Alegre, RS, Brazil

Test Tuning

• Instruction mix
• Data stress

> Boundary conditions
> IEEE Floating-Point fun

• Microarchitecture stress
> Instruction cache
> Data cache
> Store buffers
> Data dependencies
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Test Tuning 2

• Controls
> On
> Off
> Random

• Range variables
> Percent forward branches or loops
> Percent register or immediate operands
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Usability Extras

• Common sense displays
> Registers & addresses in Hexadecimal
> Instruction dump disassembler

>Use function pointer in instruction data table
>Add helpful comments

• Access to microarchitecture: TLBs, Control registers
• Exception history logs
• Error logs
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PART 3: OpenSPARC

• Freely available version of Sun's UltraSPARC T1 
microprocessor

• Architecture documentation
• RTL
• Software models
• Verification tests
• http://OpenSPARC.net
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OpenSPARC Introduction

All Following pages taken from David Yen's 
“Opening Doors to the Multicore Era” 

presentation for the Multicore Expo in March 
2006 
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Network Computing Is 
Thread Rich
Web services, JavaTM 
applications, database 
transactions, ERP . . .

Moore’s Law
A fraction of the die can 
already build a good processor 
core; how am I going to use a 
billion transistors?

Worsening 
Memory Latency
It’s approaching 1000s
of CPU cycles! Friend or foe?

Forcing a rethinking of 
processor architecture – 
modularity, less is more, 
time-to-market

Growing Complexity
of Processor Design 
 

The Big Bang Has Happened
—
Four Converging Trends
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Attributes of Commercial 
Workloads

Attribute

Application
Category

Web
Server

Instruction-level 
Parallelism

Thread-level 
Parallelism

Instruction/Data
Working Set

Data Sharing

SAP 2T SAP 3T
(DB)

DSS
(TPC-H)

Server
Java

OLTP ERP ERP DSS

Low Low Low LowMedium High

High High High High High High

Large Large Large Medium Large Large

Low Medium High Medium High Medium

TIER1
Web

(Web99)

TIER2
App Serv

(JBB)

TIER3
Data

(TPC-C)

Web Services Client Server Data 
Warehouse
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Memory Bottleneck
Relative Performance

10000

 1
1990  1995  2005 1980

1000

100

10

 1985  2000

2x Every 6 Years

2x Every 2 Years

Gap

CPU Frequency
DRAM Speeds

Source: Sun World Wide Analyst Conference Feb. 25, 2003
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C MC MC M

 Memory Latency  Compute

 Time
 Memory Latency  Compute

Typical Complex High
Frequency Processor

Thread

 Memory Latency  Compute

 Time

 Time Saved

 Memory Latency  Compute

C M C M C MThread

Note: Up to 75% Cycles Waiting for 
Memory

HURRY
UP AND
WAIT!
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Chip Multithreading (CMT)

 Memory Latency  Compute

 Time
 Memory Latency  Compute

C MC MC MThread 1

Thread 2 C MC MC M

Thread 3 C MC MC M

Thread 4 C MC MC M
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Core 1

 Memory Latency  Compute

CMT – Multiple Multithreaded Cores

Thread 4
Thread 3
Thread 2
Thread 1

Core 2
Thread 4
Thread 3
Thread 2
Thread 1

Core 3
Thread 4
Thread 3
Thread 2
Thread 1

Thread 4
Thread 3
Thread 2
Thread 1

Core 4

Core 5
Thread 4
Thread 3
Thread 2
Thread 1

Core 6
Thread 4
Thread 3
Thread 2
Thread 1

Core 7
Thread 4
Thread 3
Thread 2
Thread 1

Core 8
Thread 4
Thread 3
Thread 2
Thread 1

 Time



51
Joel Storm  8th EMICRO,  Porto Alegre, RS, Brazil

Why CMT Works

“Goal: 100% Resource Utilization”

20% MaximumCore Size

SPARC: 4 threads per core
● Increases core die area by ~20%
● Improves performance by ~50–100%

.05
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• SPARC V9 implementation

• Up to eight 4-way multi-
threaded cores for up to
32 simultaneous threads

• All cores connected through a 
134.4GB/s crossbar switch

• High-bandwidth 12-way associative 
3MB Level-2 cache on chip

• 4 DDR2 channels (23GB/s)

• Power : < 80W 

• ~300M transistors 

• 378 sq. mm die

1 of 8 Cores BUS

C8C7C6C5C4C3C2C1

L2$L2$L2$L2$

Xbar

DDR-2
SDRAM

DDR-2
SDRAM

DDR-2
SDRAM

DDR-2
SDRAM

FPU

UltraSPARC T1 Processor 

Sys I/F
Buffer Switch

Core



53
Joel Storm  8th EMICRO,  Porto Alegre, RS, Brazil

Single-Core Processor CMT Processor

(Not to Scale) 

C1 C2 C3 C4

C5 C6 C7 C8

Faster Can Be Cooler

107C

102C

96C

91C

85C

80C

74C

69C

63C

58C
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CMT: On-chip = High Bandwidth

Switch
P P P P

M M M M

IO

Switch
P P P P

M M M M

IO

Switch
P P P P

M M M M

IO

Switch
P P P P

M M M M

IO

Niagara: 32 Threads

Direct crossbar interconnect
Lower cost, better RAS, lower BTUs,

lower and uniform latency,

greater and uniform bandwidth. . .

PP
PP
PP
PP

Mem Ctlr

Mem Ctlr

Mem Ctlr

Mem CtlrI/OSw
it

ch
Traditional SMP: 32 Threads

Example: Typical SMP Machine Configuration
One motherboard, no switch ASICs

Switc
h

Switch
P P P P

M M M M

IO

Switch
P P P P

M M M M

IO

Switch
P P P P

M M M M

IO

Switch
P P P P

M M M M

IO

Sw
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XB
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L2
L2
L2
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CMT Benefits

Performance

Cost
●  Fewer servers
●  Less floor space
●  Reduced power consumption
●  Less air conditioning
●  Lower administration and

 maintenance

Reliability
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OpenSPARC: New Frontier in Choice! 

• Sun's OpenSPARC initiative intends to 
open source UltraSPARC T1 design 
point 
> Announced Dec. 6, 2005

> RTL in Verilog released March 21, 2006

• Initial publications also include:
> A verification suite and simulation models

> ISA specification (UltraSPARC Architecture 
2005)

> UltraSPARC T1-specific ISA supplement

> A Solaris port
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Innovation
will happen everywhere

About the Community: opensparc.net 

Innovation Happens Everywhere

Clustermaps for http://opensparc.net



64 bit, 32 threads, 
free

www.opensparc.net 

Get the code.  Start 
innovating.

Multi-threaded algorithms and applications, 
Operating Systems, System Architecture, EDA 

Tools/Methodology, 
Circuit implementations, Compiler Tools, System 

Modeling, System on a Chip, Debug tools, 
Performance analysis and benchmarking
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