
Random Test Generators for
Microprocessor Design Validation
Joel Storm
Staff Engineer, Hardware
Technology, Validation, & Test
Sun Microsystems Inc.
12 May 2006

8th EMICRO Porto Alegre, RS, Brazil
http://www.inf.ufrgs.br/emicro

http://www.inf.ufrgs.br/emicro

2
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Agenda
• Design Verification Process Overview

> Functional Verification Only
>No performance
>No timing
>No electrical, circuit, power, etc.

• Random Instruction Generator Design
> Full Featured Generator

>Useful in simulation
>Bootable on hardware

• OpenSPARC http://opensparc.sunsource.net/

3
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

UltraSPARC-T1: Some Design
Choices • Simpler core architecture to

maximize cores on die

• Caches, dram channels shared
across cores give better area
utilization

• Shared L2 decreases cost of
coherence misses by an order of
magnitude

• On die memory controllers reduce
miss latency

• Crossbar good for b/w, latency,
functional verification

• 378mm2 die in 90nm dissipating
~70W

• http://opensparc.net

4
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Importance of Design Verification

• Cost of manufacturing prototype silicon increasing
• Chip manufacturing turn around time increasing
• Cost of design faults in hardware increasing

> Money
> Electronics now used in “life critical” applications

• Time is money
> A great product 2 years late is not so great
> “Hacking” is too slow

5
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

PART 1: Design Verification Process

• Design for Verification
• Pre silicon Verification
• Post silicon Verification
• Review results to improve things for next time

6
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Design for Verification
• Architecture Features

> Instruction monitors
> Address monitors
> Data saved on exceptions

• Microarchitecture Visibility
> Special access to microarchitecture for software
> External visibility: Scan
> Error injection for RAS testing

• Repeatability / Determinism
> Ability to see problem again (and again, and)

7
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Bad Design for Verification

• Architecture Features
> Write Only Registers
> Undefined Fields or Actions

• Repeatability / Determinism
> No way to sync clock domains
> Random state after reset

• Typical reasons for poor Design for Verification
> Mistaken belief decision makes verification easier
> Concerns about impact to size or performance

8
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Pre Silicon Verification

• Environments
> RTL simulation

>Stand Alone Test environments (SATs)
>Fullchip

> RTL simulation methods
>Software
>Hardware accelerated

> Architectural simulation

9
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Pre Silicon Verification 2

• Tools
> Formal verification
> Architectural directed tests
> Microarchitectural directed tests
> Pseudo Random tests

• Common problems
> No tests for “hard” cases
> Too many tests

10
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Post Silicon Verification

• “Bootable” or “Bare Metal” or “Native Mode” tests
> From PROM
> Like Operating System

• Operating Systems based tests
> Runs like normal application program
> May use special debug/validation system calls

11
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Design Verification Philosophy

• Test to the specification!!!
• Test all reasons for exceptions
• Do not limit testing to the “real” cases

> No one really knows all “real” cases
> New “real” cases will appear in the future
> Users will hit “no one would ever do that” cases

by accident
• Do give priority to “real” case

> OK, honestly we do have a pretty good idea what
users do

12
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Design Verification Philosophy 2

• Know critical path in schedule (important!)
• Understand “chicken & egg” problem

> What comes first? The test or the debug
platform?

> Best to work this out with software model
> Bad to work it out with RTL

13
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Priorities -> This is What's Important

• 1: Test Coverage
• 2: Usability
• 3: Efficiency (time/cycles to get to specific case)
• 4: Serious problems in 2 & 3 can affect #1

> Note that a common mistake is to use too many
resources on 2 & 3.
>An intuitive interface and cycle efficient code

that can test 80% of the design is not as useful
as a crude interface and slow code that can
test 95%

14
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

PART 2: Random Instruction
Generator Design

• Full featured, do everything CPU test generator
> Works in all simulation environments
> Boots on hardware like an Operating System
> Automatic stress test generation
> User selectable features
> Pseudo Random

>Some built in intelligence on randomness
>Completely random is not very usefull

> Too big for 1 Engineer

15
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Random Generator Usage

• Simulation environments
> Generate tests on good system
> Run only individual tests on target

• Hardware & hardware like environments
> Load (boot) test generator on target system
> Generate and run tests on target system

>Usually “infinite” loop
–Generate test
–Run test
–Repeat

16
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Architecture of Random Generator

• Three main sections
> Infrastructure
> Test Generator
> Run time environment

17
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Architecture of Random Generator 2

• Infrastructure
> User interface

>Command reader
>Output displays

> Boot code
> Debug aids

>Event history tables
>Instruction breakpoints

18
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Architecture of Random Generator 3

• Test Generator
> Memory Allocation

>Data areas
>Instruction areas
>Address translations (Virtual to Physical)

> Feature Selection
>Architectural / Microarchitectural features
>Instruction mix

19
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Architecture of Random Generator 4

• Run time environment
> Test start up code (context switch)

>Stand alone tests
>Switch from generator control code to test

> Exception handlers (interrupts, traps)
>Handle & recover from exception
>Verify correct behavior

> Test end code (context switch)
>Switch back to generator control code
>Final state checks

20
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Important Considerations

• Not a “normal” application!
• Must be debugable on broken hardware

> Limit outside dependencies (none is best)
>Outside code may not work
>Link to outside code may not work

> Software deterministic
> “Efficient” programing strategies not always good

>Keep run time environment in 100% assembly
–Debuggers will be stepping through this

21
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Important Considerations 2

• Leverage other code carefully!
> Don't try to convert another program into a test
> Grabbing small functions if fine (stack, parse,

print)
> Check if the code you want to use requires more

code, that uses a library, that includes....
• If in doubt, write it yourself

> Time to convert code for verification use often
longer than time to write new usage specific
code.

22
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Programming Techniques

• Data structure are better than logic!
> Tables of data can greatly reduce the need for

long switch/case logic statements
• Pointers are better than logic

> Pass pointers to data structures
> Use function pointers

• Just say “NO” to recursive algorithms
> Remember: need to debug on broken hardware

23
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Instruction Generator Goals

• Build all combinations of instructions
> Instruction X before and after instruction Y
> No limits on what can precede/follow instruction

• Conditional branches to/around any instruction
• Microarchitecture testing

> Fill instruction cache (subroutines a good way)
> Branches over “interesting” boundaries

>Cache lines
>Pages

24
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Instruction Data Table

• All instruction data in one place
> Opcode (bit pattern that is unique to instruction)
> Mnemonic
> Number of operands
> Operand size
> Pointers to build/simulation/disassembly functions
> Flags for valid exceptions
> Instruction family flags (Branch, Floating-Point)

25
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Instruction Data Table Example Entry

0x81a00d20 (opcode)

“fsmuld” (mnemonic)

SOURCE1_SINGLE (flag, mask, or constant for 1'st operand)

SOURCE2_SINGLE (flag, mask, or constant for 2'nd operand)

DESTINATION_DOUBLE (same info for destination reg)

FP_DISABLED | XYZ (flags for valid exceptions on this inst)

build_FP_s_to_d (function pointer to build code for this type)

sim_FP_s_to_d (function pointer to simulation code [if any])

disassemble_FP_s_to_d (fcn pointer to disassembly code)

26
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Instruction Data Table 2

• Organize instruction table as a tree
> Use opcode to determine layout
> Leaf nodes are variable length arrays of

instruction structures
> Easy to traverse

>With tree traversal algorithm
>Using opcode

27
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Random Instruction Generation

• Once during program initialization (or when table is
modified):
> Traverse whole instruction tree and build sub

tables
>Array of pointers to all Floating-Point

instructions
>All branch instructions
>All integer multiply instructions
>etc.

• Used by code to stress specific features

28
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Random Instruction Generation 2

• Once for each test built:
> Combine user specified adjustments with

automatic instruction tuning
> Fill instruction mix array with pointers to

instruction sub tables
>100 element array allows 1% adjustments
>1000 elements for 0.1% adjustments (duh)

29
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Main Instruction Generation Loop

• Get a random number
• Use it to index into the instruction mix array
• Use another random number and pointer from

instruction mix array to index into a sub table
• Follow pointer in sub table to instruction data

structure
• Call instruction build function pointed to by function

pointer in instruction data structure

30
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Instruction Build Function

• One for each type of instruction (not each inst.)
> Example: 2 integer register sources and 1 integer

register destination
> Floating-Point register load instructions

• Is passed a pointer to the instruction data entry
• Simple logic uses masks and flags from data entry

to build a complete instruction
• Calls common functions for access to resources

31
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Resource Allocation Functions

• One for each type of major resource
> Integer registers
> Floating-Point registers
> Memory addresses

• Can track usage and force data dependencies
• Can force no dependencies
• Can reserve resources for special uses

> Loop counters

32
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

“Split Up” Instruction Sequence

• Loop (backward branch sequence)
> Initialize loop counter
> Decrement/Increment counter

>Set condition code
> Conditional branch back to point after loop

counter initialization
• Forward branch

> Build branch skeleton (not finished instruction)
> Fill in offset for target address

33
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

“Split Up” Instruction Sequence 2

• Other sequences
> Load subroutine address
> Call subroutine

• Two ways to implement
> Recursive calls from build function to main loop
> Scoreboard

34
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Result Testing

• Simulation environments usually include built in
checking
> Results on RTL checked against software model

• Three major types of random generator built in
testing
> Sanity checks of exceptions
> Two pass comparison (Very Powerful)
> Instruction simulation

• End of test sanity checks

35
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Sanity Checks of Exceptions

• Divide by zero trap
> Divide instruction?
> Operand was zero?

• TLB miss trap
> Load or Store?
> Miss was expected/allowed

• Illegal instruction trap
> Is it illegal
> Did the generator put it in this test (Important!)

36
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Two Pass Comparison First Pass

• Run test in single step mode
> Use hardware feature or software traps

>Software trap method is self modifying code
that walks trap instruction through test code

• Save state data at periodic checkpoints
> Registers
> Exceptions taken

37
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Two Pass Comparison Second Pass

• Reset all data
• Run test normally (no single step)
• Check state data at periodic checkpoints

> Registers
> Exceptions taken

>Can be part of checkpoint
>Can be part of exception handling

38
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Instruction Simulation

• Include simulation functions in random generator
> Connections to separate simulation engines don't

work (trust me on this)
• Leverage pass one single step functions

> Easy to implement
> Allows partial simulation (don't need to simulate

simple instructions)
> Use function pointer from instruction data table

>Easy implementation: look up instruction & call
function from function pointer

39
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

End of Test Sanity Checks

• If CPU1 sent CPU7 12 messages, were they all
received?

• Did all CPUs complete the test?
• Were expected exceptions actually seen?

40
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Test Tuning

• Instruction mix
• Data stress

> Boundary conditions
> IEEE Floating-Point fun

• Microarchitecture stress
> Instruction cache
> Data cache
> Store buffers
> Data dependencies

41
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Test Tuning 2

• Controls
> On
> Off
> Random

• Range variables
> Percent forward branches or loops
> Percent register or immediate operands

42
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Usability Extras

• Common sense displays
> Registers & addresses in Hexadecimal
> Instruction dump disassembler

>Use function pointer in instruction data table
>Add helpful comments

• Access to microarchitecture: TLBs, Control registers
• Exception history logs
• Error logs

43
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

PART 3: OpenSPARC

• Freely available version of Sun's UltraSPARC T1
microprocessor

• Architecture documentation
• RTL
• Software models
• Verification tests
• http://OpenSPARC.net

44
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

OpenSPARC Introduction

All Following pages taken from David Yen's
“Opening Doors to the Multicore Era”

presentation for the Multicore Expo in March
2006

45
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Network Computing Is
Thread Rich
Web services, JavaTM
applications, database
transactions, ERP . . .

Moore’s Law
A fraction of the die can
already build a good processor
core; how am I going to use a
billion transistors?

Worsening
Memory Latency
It’s approaching 1000s
of CPU cycles! Friend or foe?

Forcing a rethinking of
processor architecture –
modularity, less is more,
time-to-market

Growing Complexity
of Processor Design

The Big Bang Has Happened
—
Four Converging Trends

46
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Attributes of Commercial
Workloads

Attribute

Application
Category

Web
Server

Instruction-level
Parallelism

Thread-level
Parallelism

Instruction/Data
Working Set

Data Sharing

SAP 2T SAP 3T
(DB)

DSS
(TPC-H)

Server
Java

OLTP ERP ERP DSS

Low Low Low LowMedium High

High High High High High High

Large Large Large Medium Large Large

Low Medium High Medium High Medium

TIER1
Web

(Web99)

TIER2
App Serv

(JBB)

TIER3
Data

(TPC-C)

Web Services Client Server Data
Warehouse

47
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Memory Bottleneck
Relative Performance

10000

 1
1990 1995 2005 1980

1000

100

10

 1985 2000

2x Every 6 Years

2x Every 2 Years

Gap

CPU Frequency
DRAM Speeds

Source: Sun World Wide Analyst Conference Feb. 25, 2003

48
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

C MC MC M

 Memory Latency Compute

 Time
 Memory Latency Compute

Typical Complex High
Frequency Processor

Thread

 Memory Latency Compute

 Time

 Time Saved

 Memory Latency Compute

C M C M C MThread

Note: Up to 75% Cycles Waiting for
Memory

HURRY
UP AND
WAIT!

49
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Chip Multithreading (CMT)

 Memory Latency Compute

 Time
 Memory Latency Compute

C MC MC MThread 1

Thread 2 C MC MC M

Thread 3 C MC MC M

Thread 4 C MC MC M

50
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Core 1

 Memory Latency Compute

CMT – Multiple Multithreaded Cores

Thread 4
Thread 3
Thread 2
Thread 1

Core 2
Thread 4
Thread 3
Thread 2
Thread 1

Core 3
Thread 4
Thread 3
Thread 2
Thread 1

Thread 4
Thread 3
Thread 2
Thread 1

Core 4

Core 5
Thread 4
Thread 3
Thread 2
Thread 1

Core 6
Thread 4
Thread 3
Thread 2
Thread 1

Core 7
Thread 4
Thread 3
Thread 2
Thread 1

Core 8
Thread 4
Thread 3
Thread 2
Thread 1

 Time

51
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Why CMT Works

“Goal: 100% Resource Utilization”

20% MaximumCore Size

SPARC: 4 threads per core
● Increases core die area by ~20%
● Improves performance by ~50–100%

.05

1.0

10.0

2.0
Multi-Thread, Single-Core

Multi-Thread, Multi-Core

Single-Thread, Single-Core

R
el

at
iv

e
Pe

rf
or

m
an

ce
 o

n
th

re
ad

-
ri

ch
 m

em
or

y
bo

un
d

w
or

kl
oa

ds

52
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

• SPARC V9 implementation

• Up to eight 4-way multi-
threaded cores for up to
32 simultaneous threads

• All cores connected through a
134.4GB/s crossbar switch

• High-bandwidth 12-way associative
3MB Level-2 cache on chip

• 4 DDR2 channels (23GB/s)

• Power : < 80W

• ~300M transistors

• 378 sq. mm die

1 of 8 Cores BUS

C8C7C6C5C4C3C2C1

L2$L2$L2$L2$

Xbar

DDR-2
SDRAM

DDR-2
SDRAM

DDR-2
SDRAM

DDR-2
SDRAM

FPU

UltraSPARC T1 Processor

Sys I/F
Buffer Switch

Core

53
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Single-Core Processor CMT Processor

(Not to Scale)

C1 C2 C3 C4

C5 C6 C7 C8

Faster Can Be Cooler

107C

102C

96C

91C

85C

80C

74C

69C

63C

58C

54
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

CMT: On-chip = High Bandwidth

Switch
P P P P

M M M M

IO

Switch
P P P P

M M M M

IO

Switch
P P P P

M M M M

IO

Switch
P P P P

M M M M

IO

Niagara: 32 Threads

Direct crossbar interconnect
Lower cost, better RAS, lower BTUs,

lower and uniform latency,

greater and uniform bandwidth. . .

PP
PP
PP
PP

Mem Ctlr

Mem Ctlr

Mem Ctlr

Mem CtlrI/OSw
it

ch
Traditional SMP: 32 Threads

Example: Typical SMP Machine Configuration
One motherboard, no switch ASICs

Switc
h

Switch
P P P P

M M M M

IO

Switch
P P P P

M M M M

IO

Switch
P P P P

M M M M

IO

Switch
P P P P

M M M M

IO

Sw
itch
XB

ar

L2
L2
L2
L2

55
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

CMT Benefits

Performance

Cost
● Fewer servers
● Less floor space
● Reduced power consumption
● Less air conditioning
● Lower administration and

 maintenance

Reliability

56
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

OpenSPARC: New Frontier in Choice!

• Sun's OpenSPARC initiative intends to
open source UltraSPARC T1 design
point
> Announced Dec. 6, 2005

> RTL in Verilog released March 21, 2006

• Initial publications also include:
> A verification suite and simulation models

> ISA specification (UltraSPARC Architecture
2005)

> UltraSPARC T1-specific ISA supplement

> A Solaris port

57
Joel Storm 8th EMICRO, Porto Alegre, RS, Brazil

Innovation
will happen everywhere

About the Community: opensparc.net

Innovation Happens Everywhere

Clustermaps for http://opensparc.net

64 bit, 32 threads,
free

www.opensparc.net

Get the code. Start
innovating.

Multi-threaded algorithms and applications,
Operating Systems, System Architecture, EDA

Tools/Methodology,
Circuit implementations, Compiler Tools, System

Modeling, System on a Chip, Debug tools,
Performance analysis and benchmarking

Joel Storm
Joel.Storm@sun.com

Random Test Generators for
Microprocessor Design Validation

