Random Test Generators for
Microprocessor Design Validation

http://www.inf.ufrgs.br/emicro

Agenda

» Design Verification Process Overview
> Functional Verification Only
>No performance
>No timing
>No electrical, circult, power, efc.

» Random Instruction Generator Design
> Full Featured Generator
>Useful in simulation
>Bootable on hardware

* OpenSPARC http://opensparc.sunsource.net/

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

UltraSPARC-T1: Some Design

Choices

o

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Simple.r core architeqture to
maximize cores on die

Caches, dram phannels shared
across cores give better area
utilization

Shared L2 decreases cost of
coherence misses by an order of
magnitude

On die memory controllers reduce
miss latency

Crossbar good for b/w, latency,
functional verification

378mmz2 die in 90nm dissipating
~70W

http://opensparc.net

Importance of Design Verification

- Cost of manufacturing prototype silicon increasing
» Chip manufacturing turn around time increasing

» Cost of design faults in hardware increasing
> Money
> Electronics now used in “life critical” applications

» Time Is money
> A great product 2 years late is not so great
> "Hacking” is too slow

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

PART 1: Design Verification Process

» Design for Verification

* Pre silicon Verification

» Post silicon Verification

» Review results to improve things for next time

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Design for Verification

* Architecture Features
> |nstruction monitors
> Address monitors
> Data saved on exceptions

» Microarchitecture Visibility
> Special access to microarchitecture for software
> External visibility: Scan
> Error injection for RAS testing

* Repeatability / Determinism
> Ability to see problem again (and again, and)

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

6

Bad Design for Verification

 Architecture Features
> Write Only Registers
> Undefined Fields or Actions

* Repeatability / Determinism
> No way to sync clock domains
> Random state after reset

» Typical reasons for poor Design for Verification
> Mistaken belief decision makes verification easier
> Concerns about impact to size or performance

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Pre Silicon Verification

 Environments
> RTL simulation
>Stand Alone Test environments (SATS)
>Fullchip
> RTL simulation methods

>Software

>Hardware accelerated
> Architectural simulation

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Pre Silicon Verification 2

* Tools
> Formal verification
> Architectural directed tests
> Microarchitectural directed tests
> Pseudo Random tests

» Common problems
> No tests for “hard” cases
> Too many tests

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Post Silicon Verification

* “Bootable” or “Bare Metal” or “Native Mode” tests
> From PROM
> Like Operating System
» Operating Systems based tests
> Runs like normal application program
> May use special debug/validation system calls

10

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Design Verification Philosophy

» Test to the specification!!!
» Test all reasons for exceptions

» Do not limit testing to the “real” cases
> No one really knows all “real” cases
> New “real” cases will appear in the future
> Users will hit “no one would ever do that” cases
by accident
» Do give priority to “real” case
> OK, honestly we do have a pretty good idea what

users do
11

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Design Verification Philosophy 2

» Know critical path in schedule (important!)

» Understand “chicken & egg” problem

> What comes first? The test or the debug
platform?

> Best to work this out with software model
> Bad to work it out with RTL

12

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Priorities -> This is What's Important

» 1. Test Coverage
» 2. Usability
- 3: Efficiency (time/cycles to get to specific case)

» 4: Serious problems in 2 & 3 can affect #1

> Note that a common mistake is to use too many
resources on 2 & 3.

>An intuitive interface and cycle efficient code
that can test 80% of the design is not as useful
as a crude interface and slow code that can
test 95%

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

13

PART 2: Random Instruction
Generator Design

* Full featured, do everything CPU test generator

> Works In all simulation environments

> Boots on hardware like an Operating System

> Automatic stress test generation

> User selectable features

> Pseudo Random
>Some built in intelligence on randomness
>Completely random is not very usefull

> Too big for 1 Engineer

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

14

Random Generator Usage

» Simulation environments
> (Generate tests on good system
> Run only individual tests on target

» Hardware & hardware like environments
> Load (boot) test generator on target system
> (Generate and run tests on target system

>Usually “infinite” loop
—(@Generate test
—Run test

—~Repeat

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

15

Architecture of Random Generator

* Three main sections
> Infrastructure
> Test Generator
> Run time environment

16

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Architecture of Random Generator 2

* Infrastructure

> User interface
>Command reader
>Qutput displays

> Boot code

> Debug aids
>Event history tables
>[nstruction breakpoints

17

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Architecture of Random Generator 3

» Test Generator
> Memory Allocation
>Data areas
>|nstruction areas
>Address translations (Virtual to Physical)
> Feature Selection
>Architectural / Microarchitectural features
>|nstruction mix

18

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Architecture of Random Generator 4

* Run time environment

> Test start up code (context switch)
>Stand alone tests
>Switch from generator control code to test

> Exception handlers (interrupts, traps)
>Handle & recover from exception
>Verify correct behavior

> Test end code (context switch)
>Switch back to generator control code
>Final state checks

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

19

Important Considerations

» Not a "normal” application!

 Must be debugable on broken hardware
> Limit outside dependencies (none is best)
>Qutside code may not work
>Link to outside code may not work
> Software deterministic
> “Efficient” programing strategies not always good

>Keep run time environment in 100% assembly
—Debuggers will be stepping through this

20

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Important Considerations 2

» Leverage other code carefully!
> Don't try to convert another program into a test
> GraBbing small functions if fine (stack, parse,
prin
> Check if the code you want to use requires more
code, that uses a library, that includes....
* If in doubt, write it yourself

> Time to convert code for verification use often
longer than time to write new usage specific
code.

21

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Programming Techniques

- Data structure are better than logic!

> Tables of data can greatly reduce the need for
long switch/case logic statements

» Pointers are better than logic
> Pass pointers to data structures
> Use function pointers

> Just say “NO” to recursive algorithms
> Remember: need to debug on broken hardware

22

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Instruction Generator Goals

» Build all combinations of instructions
> |nstruction X before and after instruction Y
> No limits on what can precede/follow instruction

» Conditional branches to/around any instruction

» Microarchitecture testing
> Fill instruction cache (subroutines a good way)
> Branches over “interesting” boundaries
>Cache lines
>Pages

23

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Instruction Data Table

- All instruction data in one place
> Opcode (bit pattern that is unique to instruction)
> Mnemonic
> Number of operands
> Operand size
> Pointers to build/simulation/disassembly functions
> Flags for valid exceptions
> Instruction family flags (Branch, Floating-Point)

24

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Instruction Data Table Example Entry

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Instruction Data Table 2

» Organize instruction table as a tree
> Use opcode to determine layout

> Leaf nodes are variable length arrays of
Instruction structures

> Easy to traverse
>With tree traversal algorithm
>Using opcode

26

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Random Instruction Generation

» Once during program initialization (or when table is
modified):
> Traverse whole instruction tree and build sub
tables

>Array of pointers to all Floating-Point
instructions

>All branch instructions
>All integer multiply instructions
>etc.

» Used by code to stress specific features
27

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Random Instruction Generation 2

* Once for each test built;

> Combine user specified adjustments with
automatic instruction tuning

> Fill instruction mix array with pointers to
instruction sub tables

>100 element array allows 1% adjustments
>1000 elements for 0.1% adjustments (duh)

28

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Main Instruction Generation Loop

» Get a random number
» Use it to index into the instruction mix array

» Use another random number and pointer from
instruction mix array to index into a sub table

* Follow pointer in sub table to instruction data
structure

» Call instruction build function pointed to by function
pointer in instruction data structure

29

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Instruction Build Function

» One for each type of instruction (not each inst.)

> Example: 2 integer register sources and 1 integer
register destination

> Floating-Point register load instructions
» |s passed a pointer to the instruction data entry

- Simple logic uses masks and flags from data entry
to build a complete instruction

» Calls common functions for access to resources

30

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Resource Allocation Functions

» One for each type of major resource
> Integer registers
> Floating-Point registers
> Memory addresses

» Can track usage and force data dependencies
» Can force no dependencies

» Can reserve resources for special uses
> Loop counters

31

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

“Split Up” Instruction Sequence

» Loop (backward branch sequence)
> |nitialize loop counter
> Decrement/Increment counter
>Set condition code

> Conditional branch back to point after loop
counter initialization

» Forward branch
> Build branch skeleton (not finished instruction)
> Fill in offset for target address

32

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

“Split Up” Instruction Sequence 2

» Other sequences
> Load subroutine address
> Call subroutine

 Two ways to implement
> Recursive calls from build function to main loop
> Scoreboard

33

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Result Testing

» Simulation environments usually include built in
checking

> Results on RTL checked against software model

» Three major types of random generator built in
testing

> Sanity checks of exceptions
> Two pass comparison (Very Powerful)
> |nstruction simulation

» End of test sanity checks

34

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Sanity Checks of Exceptions

» Divide by zero trap
> Divide instruction?
> Operand was zero?

* TLB miss trap
> Load or Store?
> Miss was expected/allowed

» lllegal instruction trap
> |s it illegal
> Did the generator put it in this test (Important!)

35

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Two Pass Comparison First Pass

* Run test in single step mode
> Use hardware feature or software traps

>Software trap method is self modifying code
that walks trap instruction through test code

- Save state data at periodic checkpoints
> Registers
> Exceptions taken

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

36

Two Pass Comparison Second Pass

* Reset all data
* Run test normally (no single step)

» Check state data at periodic checkpoints
> Registers
> Exceptions taken
>(Can be part of checkpoint
>Can be part of exception handling

37

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Instruction Simulation

* Include simulation functions in random generator

> Connections to separate simulation engines don't
work (trust me on this)

» Leverage pass one single step functions
> Easy to implement

> Allows partial simulation (don't need to simulate
simple instructions)

> Use function pointer from instruction data table
>Easy implementation: look up instruction & call
function from function pointer

38

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

End of Test Sanity Checks

» [f CPU1 sent CPU7 12 messages, were they all
received?

» Did all CPUs complete the test?
» Were expected exceptions actually seen?

39

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Test Tuning

* |nstruction mix

» Data stress
> Boundary conditions
> |EEE Floating-Point fun

» Microarchitecture stress
> |nstruction cache
> Data cache
> Store buffers
> Data dependencies

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

40

Test Tuning 2

* Controls
> 0n
> Off
> Random
» Range variables

> Percent forward branches or loops
> Percent register or immediate operands

41

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Usability Extras

= Common sense displays
> Registers & addresses in Hexadecimal
> Instruction dump disassembler
>Use function pointer in instruction data table
>Add helpful comments

» Access to microarchitecture: TLBs, Control registers
» Exception history logs
» Error logs

42

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

PART 3: OpenSPARC

* Freely available version of Sun's UltraSPARC T1
microprocessor

* Architecture documentation
* RTL

» Software models

» Verification tests

* http://OpenSPARC.net

43

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

OpenSPARC Introduction

All Following pages taken from David Yen's
“Opening Doors to the Multicore Era”
presentation for the Multicore Expo in March

2006

44

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

The Big Bang Has Happened

r Gonverging Trends

Network &(l)mputmg Is Moore’s Law

Thread Rich A fraction of the die can
Web services, Java™
applications, atabase

already build a good processor
transactions, ERP .

core; how am | going to use a
Worsening : l R Growing Complexity

billion transistors?

Memory Latency of Processor Design
It’s approaching 1000s Forcing a rethinking of
of CPU cycles! Friend or foe? processor architecture -

modularity, less is more,
time-to-market

45

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

\% /

Attributes of Commercial

Ol'k| od ‘ S Web Services Client Server ‘ Data
Warehouse

SAP 2T SAP 3T ‘ DSS

(DB) (TPC-H)

Attribute

Application
Category

Instruction-level
Parallelism

Thread-level
Parallelism

Instruction/Data
Working Set

Data Sharing

Server

Server
Java

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Memory Bottleneck

Relative Performance

10000
B CPU Frequency 2x Every 2 Years
B DRAM Speeds
1000
100
10
2x Every 6 Years
1
1980 1985 1990 1995 2000 2005

Source: Sun World Wide Analyst Conference Feb. 25, 2003 47

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Typical Complex High
Frequency Processor

Thread

Thread

B Time Saved

M M€

I Time
Memory Latency Compute
Y
M M M
[~ Time
Memory Latency Compute
Note: Up to 75% Cycles Waiting for
Memory

43

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Chip Multithreading (CMT)

Thread 4

Thread 3

Thread 2

Thread 1

— Time

Memory Latency Compute

49

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

CMT — Multiple Multithreaded Cores

Thread 4 _ . — — N I
Core 8 Thread 3 [| I 1

Thread 2 I I | — |
coeeereemmeiread 1 | — —— T T s NUTT PO

Thread 4 — B I |
Core 7 Thread 3 [| I 1

Thread 2 I I —— I
comemeeeiread 1| — —— T T,

Thread 4 = N [1
Core 6 Thread 3 . | | |

Thread 2 I N = I
ceemeemremmeread 1| M- T T

Thread 4 E— B I |
Core 5 Thread 3 [I I |

Thread 2 I I E_ |
RS |- K T — m— T —

Thread 4 — B I |
Core 4 Thread 3 [| I 1

Thread 2 I I —— I
ceeeereeeemeifread 1 — —— T T e VTR

Thread 4 = . I i
Core 3 Thread 3 [| I |

Thread 2 I I = I
ceeeeeevemmeiread 1 — T T e TT AN

Thread 4 = I I 1
Core 2 Thread 3 I B —_ |

Thread 2 I N — |
ceemvemmedfread 1 — e —_—_—_—,— T e e FT T

Thread 4 E— B I |
Core 1 Thread 3 [| I 1

Thread 2 I I | — |

Thread 1 | . [e | .

- Time

_1 Memory Latency B Compute
Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

Why CMT Works

10.0

s Multi-Thread, Mult-Core

&
2.0 - - Multi-Thread, Single-Core

1.0

Single-Thread, Single-Core

. SPARC: 4 threads per core

Relative Performance on thread-
rich memory bound workloads

* Increases core die area by ~20%
* Improves performance by ~50-100%

o] 1
20% Core Size Maximum 51
Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

UltraSPARC T1 Processor

SPARC V9 implementation

Up to eight 4-way multi-
threaded cores for up to
32 simultaneous threads

All cores connected through a
134.4GB/s crossbar switch

High-bandwidth 12-way associative
3MB Level-2 cache on chip

4 DDR2 channels (23GB/s)
Power : < 80W
~300M transistors
378 sq. mm die

_ﬂ: 1 of 8 Cores BUS

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

DDR-2 DDR-2 DDR-2

sDRAM |/l sbrRaM |l sDrRAM)Ml SDRAM |

— T

Xbar m

C1 C2 C3 C4 C5 C6 C7 C8

Sys I/F
Buffer Switch

Core

!

52

Faster Can Be Cooler

Single-Core Processor CMT Processor

107C C1C2C3 C4

102C
96C
91C

j 85C
..... 80C
74C
69C
63C

o C5 C6 C7 C8

(Not to Scale)

93

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

CMT: On-chip = High Bandwidth

T e ot o emamtpoan® Niagara: 32 Threads

One motherboard, no switch ASICs

P
Ld
dld
PP

PEPRPRP d Id Id 1

105 Switch Switch jl0ms
MEMEMEM MEMEMEM
PRPRPRP PRPRPRP
105 Switch Switch ;0=
MEMEMEM [MEMEMEM
PRPEPIPIN PRAPRPRP
105 Switch Switch }10=s
MEMEMEM MEMEMEM
PRPRPRP PIPRPRP

25 Mem Ctlr |
N\ Mem ctir |

| 1/0_|
L] L]
Direct crossbar interconnect
10§ Switch Switch i0=s Lower cost, better RAS, lower BTUs,

MEMEMEM MEMEMEM

lower and uniform latency,
greater and uniform bandwidth. . .

94

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

CMT Benefits

1 CE——

Cost

* Fewer servers
* Less floor space

* Reduced power consumption
e Less air conditioning
. Lower administration and

Al Reliability

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

95

OpenSPARC: New Frontier in Choice!

» Sun's OpenSPARC initiative intends to
open source UltraSPARC T1 design
point

> Announced Dec. 6, 2005
> RTL in Verilog released March 21, 2006

» Initial publications also include:

> A verification suite and simulation models

> |SA specification (UltraSPARC Architecture
2009)

> UltraSPARC T1-specific ISA supplement
> A Solaris port

56

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

About the Community: opensparc. net

CIustermaps for http://opensparc.net

Innovation Happens Everywhere"

Joel Storm 8" EMICRO, Porto Alegre, RS, Brazil

o7

F—:rﬁ

%E'-l
llbre
llvre
llel‘D

el

64 bit, 32 threads,

%ﬁﬁzﬂﬂ free

3;';(“ www.opensparc.net

it Get the code. Start

e innovating.

livre Multi-threaded algorithms and applications,
AVOLKTO Operating Systems, System Architecture, EDA
offen Tools/Methodology,

otevieny Circuit implementations, Compiler Tools, System
oppen Modeling, System on a Chip, Debug tools,
OTKPbITbIN Performance analysis and benchmarking

Qeuef LiLiemL

Random Test Generators for
Microprocessor Design Validation

