
Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
1

Maximizing the Benefits of CMT with
Sun's Compilers and Tools

Partha Tirumalai
Distinguished Engineer

Scalable Systems Group, Sun Microsystems

Multicore Expo
Santa Clara, CA, USA

March 21-23, 2006

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
2

Introduction to CMT

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
3

What is CMT?

❑ Chip-MultiThreading (CMT) refers to a processor
design that allows a single silicon chip to
simultaneously execute more than one software
thread (instruction stream).

❑ CMT includes:
❑ Multi-core designs

❑ Multi-threaded designs
❑ Vertical, Horizontal, or other forms of threading in a core

❑ Combinations of the above
❑ I.e., multiple multi-threaded cores on one chip

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
4

Why CMT? - The “old” approach

❑ Microprocessors have focussed on improving
single thread performance for the last 25 years
❑ Pipelined functional units

❑ Multiple-instruction issue

❑ Out-of-order execution

❑ Hardware prefetching

❑ Large, complex cache hierarchies

❑ Technology trends have made this approach
increasingly difficult
❑ Complex designs, low efficiency (perf/$, perf/W, ...)

3-issue, 4-stage pipe
Up to 12 ops in flight
Very low efficiency
Rarely operates at peakSingle, serial thread

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
5

Modest CMT Designs
❑ Largely retain focus on extracting performance

from a single thread of execution
❑ Use Moore's law to put 2 cores on 1 die

❑ Add incremental features like Simultaneous Multi-
threading

❑ Benefits
❑ Leverages investment in old cores already designed

❑ Good single thread performance

❑ Some (but limited) gain on multi-threaded workloads
❑ Use large SMP's or clusters to handle more threads

❑ Examples: US IV, Dual-core Opteron

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
6

Aggressive CMT Designs
❑ Reduce focus on single thread performance
❑ Recognize memory accesses as the chief bottleneck and

tolerate these by exploiting thread level parallelism (TLP)

❑ Design from scratch for multiple parallel threads
❑ Zero or very low thread-switch overhead

❑ High associativity, high bandwidth on-chip cache

❑ Very high bandwidth to memory

❑ Benefits
❑ Excellent throughput and efficiency (perf/$, perf/W)

❑ Examples: US T1

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
7

CMT Outlook
❑ Every major vendor in the industry is working on

CMT designs

❑ CMT is expected to be ubiquitous in the near future
❑ Multiple threads even in laptops
❑ In Apple's MacBook Pro Now!

❑ Threads – cheap, everywhere, for everyone

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
8

CMT - Synergies Beyond the Chip
❑ Hardware
❑ Adequate cache/memory, I/O, and networking bandwidth,

plus RAS for large, parallel workloads

❑ Operating System
❑ Reliable and scalable OS for optimal management of

parallel threads

❑ Developer Tools
❑ Compilers and tools to make application development easy

and efficient

Focus of this talk: Sun Studio 11
C/C++/Fortran Compilers & Tools

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
9

Sun Studio 11 Compilers and Tools

Free
!

developers.sun.com/sunstudio

SPARC
Solar

is

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
10

Sun Studio 11 – From 50K Feet
❑ Reliable
❑ >100M lines of tests routinely run on compute farm
❑ Huge, complex, mission-critical applications are built with our

compilers

❑ Standards adherence
❑ At the forefront of industry standards
❑ C99, IEEE floating point, OpenMP ...

❑ Advanced optimizations, easy to use
❑ Deliver high performance on a wide spectrum of codes
❑ Tuned to the latest hardware

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
11

Compiler Components

Optimizing Code
Generator

Machine Independent
Optimizer

Front End

A
pp

lic
at

io
n

Memory Caches CPUs

Tools (Analyzer, Debugger, ...)

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
12

Optimization & Commentary

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
13

What did it do to my code?
❑ The compiler commentary explains how the source

code was optimized
❑ Build with “-g” added (does not disable optimizations)

❑ Get commentary with er_src command

❑ See documentation for details

❑ Improves understanding and helps user optimize
❑ User can derive hints on further options to use (or not use)
❑ User can derive hints on adding pragmas that might help
❑ User can derive hints on what reorganization might help

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
14

Example 1 – Loop Scheduling
for (j=1; j<n; j++)
 a[j] = a[j-1] + 4.0*b[j]*c[j] +
 b[j]*b[j] + c[j]*c[j] + 6.0;

L-unknown scheduled with steady-state cycle count = 4
L-unknown unrolled 4 times
L-unknown has 2 loads, 1 stores, 3 prefetches, \
 4 FPadds, 3 FPmuls, and 0 FPdivs per iteration
L-unknown has 0 int-loads, 0 int-stores, 5 alu-ops, \
 0 muls, 0 int-divs and 0 shifts per iteration
Source loop below has tag L1
 7. for (j=1; j<n; j++)
 8. a[j] = a[j-1] + 4.0*b[j]*c[j] +
 b[j]*b[j] + c[j]*c[j] + 6.0;

1 load eliminated
1 fpmul eliminated
unrolled 4 times
optimally scheduled

resource limit = 4
dependence limit = 4
achieved schedule = 4

3 prefetches inserted

cc -fast -g -c loop.c
er_src -source foo 1 loop.o

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
15

Example 2 – IPO, Pointers, IF's

void propagate(int *p, int *q, int *r) {
 int x;
...

 x = *p;
...
 if (x < 50) {
 ...r1...
 split(p,q);
 ...r2...
 if (x < 100) {
 merge(q,r);
 }
 }
...

Note x is a local variable
If it can be proved that:

cond1 => cond2
x is not modifiable in split
x is not modified in r1
x is not modified in r2

then:
the second if is eliminated

Involves
Pointer analysis
Inter-procedural analysis
Conditional relationships

Complexity and “code rot” can cause such scenarios

Second conditional optimized away by the compiler

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
16

Example 3 – Profile Feedback

switch (var) {
 case 1: ...; break;
 case 2: ...; break;
 ...
 case 47: ...; break;
 ...
 case 59: ...; break;
 ...
 case 250: ...; break;
}

Large switch statement (many cases)
Without profile feedback

Jump table generated
With profile feedback

Data shows a couple of hot cases
Other cases are cold
Test these two cases first
Then use a jump table
Results in

Faster dispatch of hot cases
Hot code uses I-cache better

$ cc -fast -xprofile=collect main.c process.c ...
$ a.out
$ cc -fast -xprofile=use main.c process.c ...
$ a.out

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
17

Example 4 – Whole Program Mode

Original source has 32 byte struct

Program malloc's for large vector

All hot segments touch one field

Ends up with poor cache behavior

32 byte stride, 25% utilization

With whole program analysis

Compiler splits the vector

Generates four vectors

Hot segments get 8 byte stride

100% cache block utilization

Performance is improved

setup(p);
for (i=0; i<STEPS; i++) {
 transform_x(p);
 transform_y(p);
 transform_z(p);
 transform_t(p);
}
report(p);

x

y

z

t

x

y

z

t

x

x

x

x

x

x

x

x

y

y

y

y

y

y

y

y

z

z

z

z

z

z

z

z

t

t

t

t

t

t

t

t

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
18

Automatic Parallelization

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
19

Automatic Parallelization: Key Points
❑ Compiler does the parallelization automatically
❑ Just use the -xautopar option

❑ No other user action required

❑ Automatic parallelization targets loop nests
❑ Works synergistically with loop transformations
❑ Steadily improving - handles many complex cases now

❑ Thread count controlled by environment variable

❑ Two versions generated (if profitability cannot be
statically determined)
❑ Run time selection between serial and parallel versions
❑ Serial version used if work/thread is too low (high overhead)

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
20

Example 1 – Matrix Addition
for (i=0; i<m; i++)
 for (j=0; j<n; j++)
 a[i][j] = b[i][j] + c[i][j];

$ cc -xO4 -xautopar -xloopinfo main.o loop.c
"loop.c", line 7: PARALLELIZED, and serial version generated
"loop.c", line 8: not parallelized, not profitable
$ time a.out // Default is 1 thread

real 0m37.96s
user 0m36.64s
sys 0m0.97s
$ PARALLEL=2 // For a two-way parallel run
$ time a.out

real 0m21.99s
user 0m41.07s
sys 0m2.23s

Turns on auto-parallelization
Prints parallelization information

The same binary can run with
different numbers of threads.

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
21

Example 2 – Multiple Transforms

...
first(m,n);
second(m,n);
...

for (j=0; j<n; j++)
 for (i=0; i<m; i++)
 a[i][j] = b[i][j] + c[i][j];

for (i=1; i<m-1; i++)
 for (j=1; j<n-1; j++)
 b[i][j] = 0.5*c[i][j];

Top level routine has two calls

Loop in first()

Loop in second()

Routines inlined
Loop nest in first() interchanged
Loop nest in first() peeled
Fused with loop nest in second()
Loops parallelized at outer level
Inner loop pipelined
Prefetches inserted

➔ Difficult to understand final code
➔ Use commentary, other options

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
22

OpenMP
www.openmp.org

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
23

OpenMP for Parallelization
❑ It is an industry standard (www.openmp.org)
❑ Supported by a large number of compilers

❑ OpenMP code is portable
❑ Directives can be ignored for serial or unsupported systems

❑ Requires little programming effort
❑ Can start with just a handful of directives

❑ Applications can be parallelized incrementally

❑ Good performance and scalability possible
❑ Depends ultimately on the code, compiler, and system
❑ Many excellent proof points on Sun's systems
❑ CMT-friendly shared-memory parallelism leveraged

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
24

The OpenMP Execution Model

Fork-Join ModelMaster Thread

Worker Threads

Worker Threads
Parallel Region}

Parallel Region}
Serial Region}

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
25

The OpenMP Memory Model

Shared Data
(accessed by all threads)

T

private
data

T

private
data

T

private
data

T

private
data

T
private

data

Programmer must decide
attributes of variables:
shared, private,
firstprivate, lastprivate, ...

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
26

Example 1 - Loop
for (i=0; i<n; i++)
 a[index[i]] = a[i] + 2;

$ cc -xO4 -xautopar -xloopinfo loop.c
"loop.c", line 8: not parallelized, unsafe dependence (a)

#pragma omp parallel for shared(n,a) private(i)
for (i=0; i<n; i++)
 a[index[i]] = a[i] + 2;

$ cc -xO4 -xopenmp -xloopinfo loop.c
"loop.c", line 9: PARALLELIZED, user pragma used
$ OMP_NUM_THREADS=4 // Controls number of threads
$ a.out

Pragma added
-xopenmp used
Parallelized

-xautopar used
Not parallelized

Unsafe

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
27

Example 2 - Sections

#pragma omp sections
 {
#pragma omp section
 foo1();
#pragma omp section
 foo2();
#pragma omp section
 foo3();
#pragma omp section
 foo4();
 }

It is not just for loops
Arbitrary pieces easily parallelized
Must be legal, of course
In this example:

foo1() - foo4() run in parallel

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
28

Sun Value-Added Features
❑ Version 2.5 fully supported
❑ Includes support for nested parallelism

❑ Performance tuned for Solaris and Sun systems

❑ Idle thread behavior can be controlled

❑ Static and runtime error checking

❑ OpenMP debugging using dbx

❑ OpenMP performance profiling

❑ Autoscoping
❑ The compiler can assist the user with scoping the variables

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
29

Original Code – CFD Application

...
!$omp & rusbpz, rusbmz, rustz, rusqz, rushz, ruzfz, rusbz
!$omp & rwsbpz, rwsbmz, rwstz, rwsqz, rwshz, rwzfz, rwsbz
!$omp & rxsbpz, rxsbmz, rxstz, rxsqz, rxshz, ryzfz, rysbz
!$omp & rysbpz, rysbmz, rystz, rysqz, ryshz, ryzfz, rysbz
!$omp & twsbpz, twsbmz, twstz, twsqz, twshz, twzfz, twsbz
!$omp & rusbpm, rusbm1, ruqtz, rpsqz, rsshz, pqzfz, rubsz
!$omp & rwsbpn, rwsbm2, rwrtz, r2sqz, wwshz, qpzfz, rwdqz
!$omp & rxsbpo, rxsbm3, rxetz, r7sqz, xxshz, ptzfz, ryfhz
!$omp & rysbpq, rysbm4, rydtz, r9sqz, ghshz, tpzfz, rylwz
!$omp & twsbpr, twsbm5, twgtz, tw4qz, flshz, rizfz, twkjz
!$omp & rysbps, rysbm6, ryctz, rys2z, koshz, irzfz, rrmwz
!$omp & twsbpt, twsbm7, twqtz, tws2qz, tw5shz, lqzfz, twqqz
...
!$omp do
 do i = is, ie
 [...] 1949 lines omitted
 end do
!$omp end do
!$omp end parallel

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
30

Code with Autoscoping

!$omp parallel DEFAULT(__AUTO)
!$omp do
 do i = is, ie
 [...] 1949 lines omitted
 end do
!$omp end do
!$omp end parallel

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
31

C Autoscoping Example

$ cc -fast -g -c -xopenmp -xloopinfo -xvpara loop.c
$ er_src -cc parallel -src loop.c loop.o
...
...
 Source OpenMP region below has tag R1
 Variables autoscoped as SHARED in R1: b, c, n, a
 Private variables in R1: i
 Shared variables in R1: a, b, c, n
 8. #pragma omp parallel for default(__auto)

 L1 parallelized by explicit user directive
 9. for (i=0; i<n; i++)
 10. a[i] = a[i] + 2*b[i] + c[i];
 11. }

Compiler commentary lists the autoscoping done

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
32

Libraries

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
33

The Basic Math Library
❑ Includes functions such as exp(), log(), sin(), ...

❑ Part of Solaris, but developed by the compiler team

❑ Adhere to IEEE 754

❑ If gradual underflow is not important
❑ Use -fns (implied by -fast)

❑ All C99 functions available in libm

❑ Vector versions of common functions included in
libmvec
❑ Can be recognized automatically by the compiler

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
34

Example 1 – Vector exp()
for (i=0; i<n; i++)
 a[i] = exp(b[i]);

$ cc -fast -S loop.c
$ grep call loop.s
/* 0x0030 */ call exp

Loops may be split to enable
calling vector functions.

$ cc -fast -xvector -S loop.c
$ grep call loop.s
/* 0x002c */ call __vexp_

Normal compile calls exp

With -xvector, calls __vexp
Vexp() runs in parallel

If idle processors available

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
35

The Sun Performance Library
❑ Collection of linear algebra routines
❑ LAPACK 3.0, BLAS 1-3

❑ Standard routines from www.netlib.org

❑ Enhanced collection in Sun Performance Library

❑ Highly optimized for Sun systems

❑ Parallelized versions of the most important functions

❑ Run time selection of best version for execution
platform
❑ Provides portable high-performance

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
36

Example 2 – Matrix Multiply
do jj = 1,n,nb
 call zip(b(1,jj),%val(nb))
 do ii = 1,n,na
 call zip(a(1,ii),%val(na))
 do jjj = jj,jj+nb-1,3
 do iii = ii,ii+na-1,3
 call getts()
 call foo(a,b,c,iii,jjj)
 call gette()
 end do
 end do
 call gettp()
 end do
end do

call dgemm('T','N',n,n,n,1.d0,a,num,b,num,0.d0,d,num)

$ f90 -fast main.f \
 hrtime.o -lsunperf
$ a.out
 Mflops: 2640
$ PARALLEL=8
$ a.out
 Mflops: 19736

+ There's more code behind!

No coding sweat
No debugging pains
No tuning headaches
Great performance!
Portable!
And parallel!

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
37

mediaLib
❑ Part of Solaris, but developed by the compiler team

❑ Makes it easy to use available SIMD instructions
❑ Collection of library routines provided for:

❑ Imaging
❑ Signal and Audio
❑ Video processing
❑ Graphics
❑ ... and more

❑ Portability across SPARC and x64
❑ Plain “C” versions exist for additional portability

❑ Performance tuned for Sun systems

❑ Parallelized versions available for many functions

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
38

Example 3 – FIR Filter
for (n = 0; n < dlen; n ++) {
 tmp = 0;
 for (k = 0; k < flen; k ++)
 tmp += fir[k] * src[n+k];
 dst[n] = (vis_s16) (tmp >> 16);
}

vis_write_gsr(0);
da = (vis_u8 *) dst;
dp = (vis_d64 *) ((vis_u32) da & (~7));
off = (vis_u32) dp - (vis_u32) da;
dend = da + 2 * dlen - 1;
emask = vis_edge16(da, dend);
sa = (vis_u8 *) src;
num = ((vis_u32)dend>>3) - ((vis_u32)da>>3) + 1;
for (n = 0; n < num; n ++) {
 ss = sa;
 rdh = vis_fzero(); rdl = vis_fzero();
 for (k = 0; k < flen; k ++) {
 sp = (vis_d64 *) vis_alignaddr(ss, off);
 s0 = sp[0]; s1 = sp[1];
 sd = vis_faligndata(s0, s1);
 ... + There's more code!

No need to write VIS
No need to write MMX
Just use mediaLib functions
Perf. gain of ~6X (avg.)
C version exists

Can be run on any system

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
39

The Sun Performance Analyzer

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
40

Features Overview

❑ Analyzer – an advanced performance analysis tool

❑ Intuitive GUI interface

❑ Clock based statistical profiling

❑ HW counter based statistical profiling

❑ Can relate data to function, source, assembly level

❑ Integrated with compiler commentary

❑ Dataspace and memoryspace profiling

❑ Enhanced OpenMP support

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
41

Example 1 – Where did the time go?
Excl. Incl. Name
User CPU User CPU
 sec. sec.
36.956 36.956 <Total>
36.956 36.956 loop
 0. 0. __collector
 0. 0. __open
 0. 0. _exithandle

Function view

...compiler commentary here...
 8.036 8.036 8. for (i=0; i<n; i++)
28.920 28.920 9. a[i] = b[i]/alpha;
...

 0.690 0.690 [9] 10ce0: ldd ...
5.174 5.174 [9] 10ce4: fdivd ...
 3.522 3.522 [9] 10ce8: std ...
 0.941 0.941 [9] 10cec: ldd ...
5.064 5.064 [9] 10cf0: fdivd ...

Source view,
with commentary

Assembly view,
with line numbers

One click

One click

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
42

Example 1 – Tuning
$ cc -xO4 -g main.c loop.c
main.c:
loop.c:
$ time a.out

real 0m36.81s
user 0m36.67s
sys 0m0.00s

First run,
simple compile

$ collect -p on a.out
$ analyzer

Analyze - “Aha,
it's the divide!”

Add -fsimple=2,
changes div->multiply,
nice speedup

$ cc -xO4 -fsimple=2 -g main.c loop.c
main.c:
loop.c:
$ time a.out

real 0m10.09s
user 0m10.00s
sys 0m0.00s

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
43

Example 2 – The memory bottleneck
Excl. Incl. Excl. Incl. Name
Instr_cnt Instr_cnt L3_miss L3_miss
Events Events Events Events
2452671487 2452671487 96803274 96803274 <Total>
2327052822 2327052822 93803181 93803181 loop
 125618665 2452671487 3000093 96803274 main
 0 2452671487 0 96803274 _start

Function view

...compiler commentary here...
 0 0 0 0
 11. for (i=0; i<n; i++)
2327052822 2327052822 93803181 93803181
 12. t += a[index[i]];

 9200436 9200436 0 0
 [13] 10908: ldd [%o0 + %l0], %f4
 0 0 0 0
 [13] 1090c: faddd %f2, %f10, %f14
1154977323 1154977323 93803181 93803181
 [13] 10910: sll %g5, 3, %g4

Source view,
with commentary

Assembly view,
with line numbers

One click

One click

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
44

Example 2 – Tuning
$ cc -fast -g main.c loop.c
main.c:
loop.c:
$ time a.out

real 0m17.49s
user 0m16.24s
sys 0m0.97s

First run,
simple compile

$ collect -h Instr_cnt,h,L3_miss,h a.out
$ analyzer

Analyze - “Aha, it's
the indirect ldd's
L3 miss”

Add -xprefetch_level=3,
prefetch emitted,
nice speedup

$ cc -fast -g -xprefetch_level=3 main.c loop.c
main.c:
loop.c:
$ time a.out

real 0m6.79s
user 0m5.54s
sys 0m0.97s

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
45

Example 3 – Database on US T1
❑ Symptom: Slower with 32 threads than 8

❑ Analysis:
❑ Most traffic to one memory bank

❑ All 32 processes: same VA, different PA, same cache line

❑ Solution:
❑ Shatter the hot page into smaller ones

❑ Changes mappings to go to different lines

❑ Result:
❑ ~6X improvement on US T1 with 32 processes

❑ Took 3 hours to get to the “Aha” point with Analyzer

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
46

Technology Previews

Some of the items in this section are available
from the Sun Download Center now. Please
stay tuned for updates regarding the others.

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
47

1. Embracing SPARC/gcc Users
❑ Many developers use gcc
❑ Want to use the same compiler for different platforms

❑ Use gcc language extensions

❑ Familiar with & feel comfortable with gcc

❑ Migration to Sun Studio is, or is viewed as being, difficult

Would be nice to bring the features of Sun Studio to these users.

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
48

How do we get there?

gcc
front-end

Sun IR
generator

IPO

Parallelizer

Optimizer

Code Generator

Link time optimizer

Binary optimizer

TOOLS

Studio
front-end

 GCC for
 SPARC
 Systems

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
49

Goals of the Project
❑ Transparent to gcc users
❑ Feature compatible with gcc

❑ Debuggable with gdb and dbx

❑ Improved performance
❑ Through advanced optimizations tuned to SPARC systems

❑ Extra optimizations such as -xipo, -xprefetch, -xprofile

❑ Higher reliability

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
50

2. Enhancing Parallel Debugging

for (i=0; i<n; i++)
 a[i] = a[i+1] + b[i];

Sequential execution: Results are deterministic
Parallel execution: Results non-deterministic

a[0] = a[1] + b[0]

a[1] = a[2] + b[1]

a[2] = a[3] + b[2]

a[3] = a[4] + b[3]

a[4] = a[5] + b[4]

Thread 1

a[5] = a[6] + b[5]

a[6] = a[7] + b[6]

a[7] = a[8] + b[7]

a[8] = a[9] + b[8]

a[9] = a[10] + b[9]

Thread 2

Example:
 Thread 1 executes i=0-4
 Thread 2 executes i=5-9
 Thread 2 might write a[5]
 before thread 1 reads it.
 Final value of a[4] wrong!

This is a data race.

What is a race condition?

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
51

Race Detection Tool
❑ On-the-fly data race detection

❑ Two phases
❑ Instrumentation phase
❑ Instruments the executable (if not already instrumented)

❑ Execution phase
❑ Runs the executable, monitors memory accesses and thread

synchronizations, and logs any data race condition detected

❑ Analysis phase
❑ Displays the results gathered

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
52

Goals of the Race Detection Project
❑ Handle a variety of multi-threaded applications

❑ Open MP

❑ Posix threads
❑ Solaris threads

❑ Sun/Cray directives

❑ Mixtures of the above

❑ Instrumentation at the IR or binary level

❑ Considering an open API
❑ To support user annotations

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
53

3. Automating Tuning & Troubleshooting

❑ Why automate these tasks?
❑ Performance tuning issues
❑ Time consuming
❑ Requires experienced staff
❑ Functionality takes all the time, leaving little room for tuning

❑ Debugging issues
❑ Time consuming, often more than writing the “first cut” code
❑ Requires expensive developer time
❑ Main cause of schedule slips

❑ With CMT, threads are cheap
❑ Use computers to ease above tasks

ATS (Automatic Tuning System)

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
54

The Backbone of ATS - PEC
❑ Store the intermediate representation (IR) with the

executable (object): Portable Executable Code (PEC)
❑ The IR can be extracted and reprocessed

Text and Data

Intermediate
Representation

for each Module

Binary

file1.ir file1.o

file2.ir file2.o

filen.ir filen.o

New
a.out

Extract and Rebuild

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
55

Previous Tuning Example with ATS
$ cc -fast -g <pecoption> main.c loop.c
main.c:
loop.c:
$ time a.out

real 0m17.49s
user 0m16.24s
sys 0m0.97s

First run,
simple compile
(with pec)

$ collect -h Instr_cnt,h,L3_miss,h a.out
$ analyzer

Analyze - “aha, it's
the indirect ldd's L3
miss”

$ cc -fast -g -xprefetch_level=3 main.c loop.c
main.c:
loop.c:
$ ats -i '-fast -g -xprefetch_level=3' \
> -keepbin a.out
$ time a.out.1

real 0m6.83s
user 0m5.59s
sys 0m0.96s

What if the source is
unavailable?
With ATS & PEC, we
can still tune the a.out!

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
56

Benefits of ATS+PEC
❑ Can operate on an a.out; source not required

❑ Faster recompilations because it starts with the IR

❑ Automatic tuning by searching for the best options

❑ Profile feedback can be applied by the user

❑ Can search for and find the offending module in the
event of a failure; build a binary with a workaround

❑ Put those computers to good use instead of drawing
circles on the screen!

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
57

4. Analyzing & Improving Binaries

❑ BIT - A tool that operates reliably on binaries

❑ Can instrument and collect information for analysis

❑ Can create a new binary with improved performance
❑ Focusses on rearranging code to better use the I-cache

❑ Works best on large, complex applications

❑ Build with
❑ Sun Studio 11

❑ Add -xbinopt=prepare

❑ Use -O1 or higher optimization level

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
58

Analysis with BIT
$ cc -fast -xbinopt=prepare *.c -lm // Build for BIT
...
and.c:
build-disjuncts.c:
extract-links.c:
...
$ bit instrument a.out // Instrument the a.out
$ a.out.instr 2.1.dict -batch < input // Run a.out.instr
$ bit analyze -a ifreq a.out | more // Analyze the run
Instruction frequencies for whole program
Instruction Executed (%)
 TOTAL 18586774239 (100.0)
 float ops 0 (0.0)
 float ld st 0 (0.0)
 load store 4879117593 (26.3)
 load 3794101701 (20.4)
 store 1085015892 (5.8)

Instruction Executed (%) Annulled In Delay Slot
 TOTAL 18586774239 (100.0)
 lduw 2889942469 (15.5) 83993915 629750312
 br 2797374496 (15.1) 0 0
 subcc 2222270229 (12.0) 0 329895247

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
59

Examining Code Coverage
$ cc -fast -xbinopt=prepare *.c -lm // Build for BIT
...
and.c:
build-disjuncts.c:
extract-links.c:
...
$ bit instrument a.out // Instrument the a.out
$ a.out.instr 2.1.dict -batch < input // Run a.out.instr
$ bit coverage a.out // Analyze coverage
Creating experiment database test.1.er ...
BIT Code Coverage
Total Functions: 350
Covered Functions: 216
Function Coverage: 61.7%
Total Basic Blocks: 6,041
Covered Basic Blocks: 3,969
Basic Block Coverage: 65.7%
Total Basic Block Executions: 3,955,536,194
Average Executions per Basic Block: 654,781.69
Total Instructions: 27,606
Covered Instructions: 17,680
Instruction Coverage: 64.0%
Total Instruction Executions: 18,866,478,764
Average Executions per Instruction: 683,419.50

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
60

5. Simplifying Performance Optimisation

❑ SPOT – A Simple Performance Optimisation Tool
❑ Produces a report on a code's execution

❑ Exposes common causes of performance loss

❑ Very easy to use

❑ SPOT reports contain hyperlinked profiles
❑ Makes it easy to navigate from performance issue to source

to assembly

❑ For maximum information
❑ Add -g (-g0 for C++)
❑ Use -O1 or higher

❑ Include -xbinopt=prepare

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
61

Using SPOT
$ cc -fast -xbinopt=prepare -g *.c -lm // Build the code
...
and.c:
build-disjuncts.c:
extract-links.c:
...
$ spot -X a.out 2.1.dict -batch < input > /dev/null // Run SPOT
Copying spot resources
Collect machine statistics
Collect application details
Collect ipc data using ripc
Collect data using BIT
Output ifreq data from bit
Collect bandwidth data
Collect traps data
Collect HW counter profile data
Collect data for Rstall_IU_use & Re_DC_miss
Collect data for Rstall_storeQ & Cycle_cnt
Collect data for Dispatch0_2nd_br & Cycle_cnt
Generating html output for HW counter profile data
Collect clock-based profiling data
Generating html output for time profile data
Done collecting, tidying up reports
$

SPOT runs the code many times
Approx. 20X longer (in this mode)
Invokes other tools to collect data
Generates comprehensive report

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
62

SPOT Report Example
Application stall information (using ripc)
--
NOTE: Time reported under D$ miss also includes

the time spent in L2 cache misses
==
 UltraSparc ticks sec %
==
Dispatch0_IC_miss 78503999 0.065 0.3%
Dispatch0_br_target 323039451 0.267 1.1%
...
DTLB_miss 11859795 0.010 0.0%
Re_DC_miss 6402197760 5.296 22.1%
Re_EC_miss 305913838 0.253 1.1%
Re_PC_miss 99 0.000 0.0%
Re_RAW_miss 56567038 0.047 0.2%
Re_FPU_bypass 0 0.000 0.0%
Rstall_storeQ 678244916 0.561 2.3%
...
Total Stalltime 11545566208 9.551 39.8%
--
Total CPU Time 29010841600 24.000 100.0%
Total Elapsed Time 24 Sec
Instr 18990794752
IPC 0.655 (instr/time)

See full report
Provides

HW info.
Build details
Stalls/IPC
Profiles
Traps data
Coverage
...

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
63

Summary
❑ Sun has industry leading compilers and tools for

CMT
❑ Components are thread-aware and work synergestically

❑ Reliable, with advanced optimizations and parallelization

❑ Excellent multi-threaded analysis and debugging tools
❑ Compiler commentary, automatic parallelization, OpenMP, tuned

libraries, performance analyzer, ...

❑ Exciting new tools and enhancements are under-way
❑ Embracing the SPARC/gcc community

❑ Race detection in multi-threaded programs

❑ Automation of the tuning and troubleshooting process

❑ ...

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
64

More Information & Resources
❑ OpenSPARC information & community

www.opensparc.net
❑ CoolTools site

cooltools.sunsource.net
❑ Sun Forums (including developer forum)

forum.sun.com
❑ Contacting Developer Tools Marketing

Developer911@sun.com
❑ Sun Studio Product site

sun.com/sunstudio11
❑ Sun Studio Developer site

developers.sun.com/sunstudio

Ride the CMT Wave with Sun's Compilers/Partha T. Multicore Expo, March 21-23. 2006
65

Thank You!

Partha .Tirumalai@Sun.Com

