Maximizing the Benefits of CMT with
Sun's Compilers and Tools

Partha Tirumalai
Distinguished Engineer
Scalable Systems Group, Sun Microsystems

Multicore Expo
Santa Clara, CA, USA
March 21-23, 2006

1
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Introduction to CMT

Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

What is CMT?

d Chip-MultiThreading (CMT) refers to a processor
design that allows a single silicon chip to
simultaneously execute more than one software
thread (instruction stream).

O CMT includes:

O Multi-core designs
3 Multi-threaded designs

Q Vertical, Horizontal, or other forms of threading in a core
Q Combinations of the above

Q I.e., multiple multi-threaded cores on one chip

Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Why CMT? - The “old” approach

d Microprocessors have focussed on improving
single thread performance for the last 25 years

Pipelined functional units o
Multiple-instruction 1ssue o
Out-of-order execution 3-issue, 4-stage pipe

Up to 12 opsin flight
Very low efficiency
Rarely operates at peak

Hardware prefetching Single, serial thread

Large, complex cache hierarchies

U O O O O

d Technology trends have made this approach
increasingly difficult

Q Complex designs, low efficiency (pert/$, pert/W, ...)

4
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Modest CMT Designs

d Largely retain focus on extracting performance
from a single thread of execution
Q Use Moore's law to put 2 cores on 1 die

O Add incremental features like Simultaneous Multi-
threading

3O Benetfits

O Leverages investment in old cores already designed
Q Good single thread performance

a Some (but limited) gain on multi-threaded workloads
a Use large SMP's or clusters to handle more threads

Q Examples: US IV, Dual-core Opteron

5
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Aggressive CMT Designs

3 Reduce focus on single thread performance

0 Recognize memory accesses as the chief bottleneck and
tolerate these by exploiting thread level parallelism (TLP)

d Design from scratch for multiple parallel threads

Q Zero or very low thread-switch overhead
Q High associativity, high bandwidth on-chip cache
d Very high bandwidth to memory

3 Benetfits

a Excellent throughput and efficiency (perf/$, pert/W)
0 Examples: US T1

Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

CMT Outlook

2 Every major vendor 1n the industry 1s working on
CMT designs

0 CMT 1s expected to be ubiquitous 1n the near future

O Multiple threads even 1n laptops
a In Apple's MacBook Pro Now!
O Threads — cheap, everywhere, for everyone

Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

CMT - Synergies Beyond the Chip

3d Hardware

a Adequate cache/memory, I/0, and networking bandwidth,
plus RAS for large, parallel workloads

Q Operating System

d Reliable and scalable OS for optimal management of
parallel threads

0 Developer Tools A
Q Compilers and tools to make application development easy

and efficient
_ Y,

\Focus of this talk: Sun Studio 11
C/C++/Fortran Compilers & Tools

8
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Sun Studio 11 Compilers and Tools
devel opers.sun.com/sunstudio

Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Sun Studio 11 — From 50K Feet
3 Reliable

a >100M lines of tests routinely run on compute farm

O Huge, complex, mission-critical applications are built with our
compilers

ad Standards adherence

Q At the forefront of industry standards
Q (C99, IEEE floating point, OpenMP ...
0 Advanced optimizations, easy to use

d Deliver high performance on a wide spectrum of codes
Q Tuned to the latest hardware

10
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Compiler Components

Machine | ndependent Optimizing Code
Optimizer Generator

.—-

Application

< Tools (Analyzer, Debugger, ...) >

11
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Optimization & Commentary

12
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

What did it do to my code?

O The compiler commentary explains how the source
code was optimized

O Buld with *“-g”” added (does not disable optimizations)
a Get commentary with er src command

O See documentation for details

O Improves understanding and helps user optimize

a User can derive hints on further options to use (or not use)
Q User can derive hints on adding pragmas that might help
a User can derive hints on what reorganization might help

13
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Example 1 — Loop Scheduling

for (j=1; j<n; j++) + 1Ioade|imin_ated
aljl = a[j-1] + 4.0*b[j]l*c[j] + + 1 fpmul iminated
b[jl1*b[j] + c[jl*c[j] + 6.0; + unrolled 4 times

+ optimally scheduled

+ resourcelimit=4
cc -fast -g -c loop.c + dependencelimit=4
er_src -source foo 1 loop.o + achieved schedule= 4
+ 3 prefetches inserted

L-unknown scheduled with steady-state cycle count = 4
L-unknown unrolled 4 times
L-unknown has 2 loads, 1 stores, 3 prefetches, \
4 FPadds, 3 FPmuls, and 0 FPdivs per iteration
L-unknown has 0 int-loads, 0 int-stores, 5 alu-ops, \
0 muls, 0 int-divs and 0 shifts per iteration
Source loop below has tag L1l
7. for (j3=1; j<n; j++)
8. al[j] = a[j-1] + 4.0*b[j]*c[]] +
b[jl*b[j] + c[jl*c[j] + 6.0;

14
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Example 2 — IPO, Pointers, IF's

void propagate(int *p, int *q, int *r) {
int x;

x:*p;

if (x < 50) {
...rl. ..
split(p,q);
...xXr2...
if (x < 100) {
merge (q,r) ;

}

}

@ Note x isalocal variable
@ |f it can be proved that:
@ condl => cond2
@ x isnot modifiable in split
@ X Isnot modified inrl
@ X Isnot modified in r2
@ then:
@ the second if is e iminated

@ [nvolves
@ Pointer analysis
@ |nter-procedural analysis
@ Conditional relationships

+ Complexity and “coderot” can cause such scenarios

+ Second conditional optimized away by the compiler

15
Ridethe CMT Wavewith Sun's Compilers/ParthaT.

Multicor e Expo, March 21-23. 2006

Example 3 — Profile Feedback

* Large switch statement (many cases)
* Without profile feedback

switch (wvar) {
+
case 1: . break: Jump table generated
case 2: ; break; *+ With profile feedback
e .
case 47: ...: break: Data shows a couple of hot cases
e * Other cases are cold
case 59: ...; break; * Test these two cases first
case 250: ...; break; * Then use a jump table
) + Results in
* Faster dispatch of hot cases
* Hot code uses I-cache better
$ cc -fast -xprofile=collect main.c process.c
$ a.out
$ cc -fast -xprofile=use main.c process.c
$ a.out

Ridethe CMT Wavewith Sun's Compilers/ParthaT.

16
Multicor e Expo, March 21-23. 2006

Example 4 — Whole Program Mode

setup (p) ;
for (i=0; i<STEPS; i++) {
transform x(p); * Original source has 32 byte struct
transform y(p);
transform_z (p) ; * Program malloc's for large vector
transform t(p);
} - + All hot segments touch one field
e * Ends up with poor cache behavior
+ 32 byte stride, 25% utilization
x x| |y||z||¢t + With whole program analysis
Y XY LA LE * Compiler splits the vector
Lz LA *» Generates four vectors
t ---..» b4)4 z t .
— —] — * Hot segments get 8 byte stride
X b4 A z t
v | =y |[z]|[t] * 100% cache block utilization
z x| |yllz]||t * Performance is improved
t X Y b4 t

17
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Automatic Parallelization

18
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Automatic Parallelization: Key Points

3 Compiler does the parallelization automatically

a Just use the -xautopar option

Q No other user action required

0 Automatic parallelization targets loop nests

O Works synergistically with loop transformations

O Steadily improving - handles many complex cases now

d Thread count controlled by environment variable

0 Two versions generated (1f profitability cannot be
statically determined)

O Run time selection between serial and parallel versions

Q Serial version used if work/thread is too low (high overhead)

19
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Example 1 — Matrix Addition

for (i=0; i<m; i++)
for (3=0; j<n; j++)
a[i][j] = b[i]l[J] + c[i]1[3]:

Turnson auto-paralléelization

Prints parallelization infor mation

= &
$ cc -x04 -xautopar -xloopinfo main.o loop.c

"loop.c", line 7: PARALLELIZED, and serial version generated
"loop.c", line 8: not parallelized, not profitable

$ time a.out // Default is 1 thread

real Om37.96s

user Om36. 64s

sys Om0.97s

$ PARALLEL=2 // For a two-way parallel run

$ time a.out

real Om21.99s
user O0mdl.07s The same binary can run with

sys Om2.23s .
different numbers of threads.

20
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Example 2 — Multiple Transforms

first(m,n) ; <
second (m,n) ;

for (j=0; j<n; Jj++)
for (i=0; i<m; i++)
af[i][J] = b[i][]j] + c[i]1[3]1;

/

for (i=1; i<m-1; i++) ‘//
for (j=1; j<n-1; j++)
b[i][]J] = 0.5*c[i][]]~

Ridethe CMT Wavewith Sun's Compilers/ParthaT.

21

+ Top level routine has two calls

+ Loop infirst()

+ Loop in second()

Routines inlined

Loop nest in first() interchanged
Loop nest in first() peeled

Fused with loop nest in second()
Loops parallelized at outer level
Inner loop pipelined

Prefetches inserted

=> Difficult to understand final code
= Use commentary, other options

v ¢ ¢ ¢ ¢ ¢ ¢

Multicor e Expo, March 21-23. 2006

OpenMP

WWW.0penmp.org

22
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

OpenMP for Parallelization

A It 1s an industry standard (www.openmp.org)

O Supported by a large number of compilers
3 OpenMP code is portable

O Directives can be ignored for serial or unsupported systems

d Requires little programming effort

O Can start with just a handful of directives

O Applications can be parallelized incrementally
0 Good performance and scalability possible

3 Depends ultimately on the code, compiler, and system

O Many excellent proof points on Sun's systems

O CMT-friendly shared-memory parallelism leveraged
23

Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

The OpenMP Execution Model

Master Thread Fork-Join Model

Worker Threads } Parallel Region

} Serial Region

Worker Threads } Parallel Region

24
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

The OpenMP Memory Model

private
data private

Shared Data deta
(accessed by all threads)

rivate :
Programmer must decide
private attributes of variables:
data shared, private,

firstprivate, lastprivate, ...

25
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Example 1 - Loop

for (i=0; i<n; i++) + -xautopar used
af[index[i]] = a[i] + 2; + Not pardlelized
‘ + Unsafe

$ cc -x04 -xautopar -xloopinfo loop.c
"loop.c", line 8: not parallelized, unsafe dependence (a)

#pragma omp parallel for shared(n,a) private (i)
for (i=0; i<n; i++) + Pragma added
alindex[i]] = al[i] + 2; + -xopenmp used
‘ + Parallelized

$ cc -x04 -xopenmp -xloopinfo loop.c

"loop.c", line 9: PARALLELIZED, user pragma used

$ OMP NUM THREADS=4 // Controls number of threads
$ a.out

26
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Example 2 - Sections

#pragma omp sections

{

#pragma omp section * |tisnot just for loops
fool() ; * Arbitrary pieces easily paralelized
##ipragma omp section * Must belegal, of course
foo2(); * Inthis example:
EEETE GNP ECEEEH *» fool() - food() runin paralel
foo3() ;
#pragma omp section
foo4d () ;

}

27
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Sun Value-Added Features
Q Version 2.5 fully supported

Q Includes support for nested parallelism

d Performance tuned for Solaris and Sun systems
3 Idle thread behavior can be controlled

Q Static and runtime error checking

d OpenMP debugging using dbx

3 OpenMP performance profiling

O Autoscoping

O The compiler can assist the user with scoping the variables

28
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Original Code — CFD Application

!Somp & rusbpz, rusbmz, rustz, rusqz, rushz, ruzfz, rusbz
ISomp & rwsbpz, rwsbmz, rwstz, rwsqz, rwshz, rwzfz, rwsbz
ISomp & rxsbpz, rxsbmz, rxstz, rxsqz, rxshz, ryzfz, rysbz
'Somp & rysbpz, rysbmz, rystz, rysqz, ryshz, ryzfz, rysbz
ISomp & twsbpz, twsbmz, twstz, twsqgz, twshz, twzfz, twsbz
'Somp & rusbpm, rusbml, rugtz, rpsqgz, rsshz, pgzfz, rubsz
'Somp & rwsbpn, rwsbm2, rwrtz, r2sqz, wwshz, qgpzfz, rwdqgz
1Somp & rxsbpo, rxsbm3, rxetz, r7sqz, xxshz, ptzfz, ryfhz
'Somp & rysbpq, rysbmd4, rydtz, r9sqgz, ghshz, tpzfz, rylwz
'Somp & twsbpr, twsbm5, twgtz, twdqgz, flshz, rizfz, twkjz
'Somp & rysbps, rysbm6, ryctz, rys2z, koshz, irzfz, rrmwz
'Somp & twsbpt, twsbm7, twgtz, tws2qgz, twbshz, lqgzfz, twqqz
'Somp do

do i = 1is, 1ie

[...] 1949 lines omitted

end d
'Somp end do
ISomp end parallel

29
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Code with Autoscoping

!Somp parallel DEFAULT(__AUTO)
!Somp do
do i = 1is, 1ie
[...] 1949 lines omitted
end do
'Somp end do
'Somp end parallel

30

Ridethe CMT Wavewith Sun's Compilers/ParthaT.

Multicor e Expo, March 21-23. 2006

C Autoscoping Example

$ cc -fast -g -c -xopenmp -xloopinfo -xvpara loop.c
$ er src -cc parallel -src loop.c loop.o

Source OpenMP region below has tag R1
Variables autoscoped as SHARED in Rl: b, ¢, n, a
Private variables in R1l: 1i
Shared variables in R1l: a, b, ¢, n
8. #pragma omp parallel for default(_ auto)

Ll parallelized by explicit user directive

9. for (i=0; i<n; i++)
10. af[i] = a[i] + 2*b[i] + c[i]-
11. }

* Compiler commentary liststhe autoscoping done

31
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Libraries

32
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

The Basic Math Library

3 Includes functions such as exp(), log(), sin(), ...
3 Part of Solaris, but developed by the compiler team
3 Adhere to IEEE 754

A If gradual underflow 1s not important
Q Use -fns (implied by -fast)
2 All C99 functions available in libm

3 Vector versions of common functions included in
libmvec

O Can be recognized automatically by the compiler

33
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Example 1 — Vector exp()

for (i=0; i<n; i++)
a[i] = exp(b[i])

+ Normal compile calls exp
$ cc -fast -S loop.c

$ grep call loop.s

/* 0x0030 */ call exp

+ With -xvector, calls __ vexp
+ Vexp() runsin paralle
+ |f idle processors available

$ cc -fast -xvector -S loop.c
$ grep call loop.s
/* 0x002c */ call vVexp

L oops may be split to enable
calling vector functions.

34
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

T
A Colle

he Sun Performance Library

ction of linear algebra routines

O LAPACK 3.0, BLAS 1-3

Q Standard routines from www.netlib.org

3 Enhanced collection in Sun Performance Library

2 High

y optimized for Sun systems

3 Paral

elized versions of the most important functions

O Run time selection of best version for execution
platform

Q Provides portable high-performance

35

Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Example 2 — Matrix Multiply

do jj = 1,n,nb
call zip(b(1,3]j),6 %val (nb))
do ii = 1,n,na
call zip(a(l,ii) ,%val(na))
do jjj = jj,jj+nb-1,3
do iii = ii,ii+na-1,3
call getts()
call foo(a,b,c,iii,jjj)
call gette()
end do
end do
call gettp()
end do

end do + There' s more code behind!

$ £90 -fast main.f \
hrtime.o -lsunperf

$ a.out

Mflops: 2640

$ PARALLEL=8

$ a.out

Mflops: 19736

No coding sweat

No debugging pains
No tuning headaches
Great perfor mance!
Portablel

And parallel!

v ¢ ¢ ¢ ¢ ¢

call dgemm('T','N' ,n,n,n,1.d0,a,num,b,num,0.d0,d,num)

36
Ridethe CMT Wavewith Sun's Compilers/ParthaT.

Multicor e Expo, March 21-23. 2006

mediaLib
3 Part of Solaris, but developed by the compiler team

0 Makes it easy to use available SIMD instructions

Q Collection of library routines provided for:

Imaging
Signal and Audio
Video processing

o 0O 0 O

Graphics
ad ... and more

a Portability across SPARC and x64

a Plain “C” versions exist for additional portability

Q Performance tuned for Sun systems

O Parallelized versions available for many functions

37
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Example 3 — FIR Filter

for (n = 0; n < dlen; n ++) {
tmp = 0;

for (k = 0; k < flen; k ++)
tmp += fir[k] * src[n+k];
dst[n] = (vis_sl16) (tmp >> 16);

}
vis write gsr(0);
da (vis_u8 *) dst;

¥ & ¢ ¢ &

No need to write VIS
No need to write MM X
Just use medialib functions
Perf. gain of ~6X (avg.)
C version exists
+ Can berun on any system

dp (vis_d64 *) ((vis_u32) da & (~7));
off = (vis u32) dp - (vis_u32) da;
dend = da + 2 * dlen - 1;

emask = vis _edgel6(da, dend);

sa = (vis_u8 *) src;

num = ((vis_u32)dend>>3) - ((vis_u32)da>>3) + 1;

for (n = 0; n < num; n ++) {
sSs = sa;
rdh = vis fzero(); rdl = vis_fzero();
for (k = 0; k < flen; k ++) {

sp = (vis _d64 *) vis_ alignaddr(ss, off);
sO = sp[0]; sl = sp[l];
sd = vis faligndata(sO,

38
Ridethe CMT Wavewith Sun's Compilers/ParthaT.

+ There's more code!

Multicor e Expo, March 21-23. 2006

The Sun Performance Analyzer

39
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Features Overview

0 Analyzer — an advanced performance analysis tool
O Intuitive GUI interface

0 Clock based statistical profiling

0 HW counter based statistical profiling

d Can relate data to function, source, assembly level
d Integrated with compiler commentary

0 Dataspace and memoryspace profiling

d Enhanced OpenMP support

40
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Example 1 — Where did the time go?

Excl. Incl. Name
User CPU User CPU
sec. sec. - .
36.956 36.956 <Total> Function view
36.956 36.956 loop
0. 0. __collector
0. 0. __open)
0. 0. _exithandle Oneclick
..compiler commentary here. .. v i
8.036 8.036 8. for (i=0; i<n; i++) Sourceview,
28.920 28.920 9. a[i] = b[i]/alpha; W|th Commentary
Oneclick
0.690 0.690 [9] 10ce0: 1dd v
5.174 5.174 [9] 10ced4: £divd .
3.522 3.522 [9] 10ce8: std ... A_SSEmbly VIEW,
0.941 0.941 [9] 10cec: 1ldd with line numbers
5.064 5.064 [9] 10c£f0: £divd

41
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Example 1 — Tuning

$ cc -x04 -g main.c loop.c
main.c:

loop.c:

$ time a.out

real Om36.81s
user Om36.67s
sys OmO.00s

$ collect -p on a.out
$ analyzer

$ cc -x04 -fsimple=2 -g main.c loop.c
main.c:

loop.c:

S time a.out

real Oml10.09s
user Oml10.00s
sys Om0.00s

42

Ridethe CMT Wavewith Sun's Compilers/ParthaT.

First run,
simple compile

\J
Analyze - “ Aha,
it'sthedivide!”
\J
Add -fsmple=2,

changes div->multiply,
nice speedup

Multicor e Expo, March 21-23. 2006

Example 2 — The memory bottleneck

Excl. Incl. Excl. Incl. Name

Instr cnt Instr cnt L3 miss L3 miss
Events Events Events Events

2452671487 2452671487 96803274 96803274 <Total> | UNCLION View

2327052822 2327052822 93803181 93803181 loop
125618665 2452671487 3000093 96803274 main
0 2452671487 0 96803274 _start

Oneclick

...compiler commentary here...

0 0 0 0
11. for (i=0; i<n; i++)
2327052822 2327052822 93803181 93803181
12. t += a[index[i]];
9200436 9200436 0 0
[13] 10908: 1dd [$00 + %10], %f4
0 0 0 0
[13] 1090c: faddd $f2, %£10, %f1l4
1154977323 1154977323 93803181 93803181
[13] 10910: sl1 %g5, 3, %g4

43
Ridethe CMT Wavewith Sun's Compilers/ParthaT.

\/
Sourceview,

with commentary

Oneclick

\J
Assembly view,

with line numbers

Multicor e Expo, March 21-23. 2006

Example 2 — Tuning

$ cc -fast -g main.c loop.c
main.c:

loop.c:

$ time a.out

real Oml7.49s
user Oml6.24s
sys OmO0.97s

$ collect -h Instr cnt,h,L3 miss,h a.out
$ analyzer

$ cc -fast -g -xprefetch level=3 main.c loop.c
main.c:

loop.c:

S time a.out

real Om6.79s
user Om5.54s
sys Om0.97s

Ridethe CMT Wavewith Sun's Compilers/ParthaT.

First run,
simple compile

\J .
Analyze-“Aha, it's
theindirect |dd's
L3 miss”

Add -xprefetch_level=3,
prefetch emitted,
nice speedup

Multicor e Expo, March 21-23. 2006

Example 3 — Database on US T1

O Symptom: Slower with 32 threads than 8
3 Analysis:

O Most traffic to one memory bank

a All 32 processes: same VA, different PA,same cache line
d Solution:

O Shatter the hot page into smaller ones

O Changes mappings to go to different lines
0 Result:

O ~6X improvement on US T1 with 32 processes

0 Took 3 hours to get to the “Aha” point with Analyzer

45
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Technology Previews

Some of the items in this section are available
from the Sun Download Center now. Please
stay tuned for updates regarding the others.

46
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

1. Embracing SPARC/gcc Users

0 Many developers use gcc

O Want to use the same compiler for different platforms
Q Use gcc language extensions
O Familiar with & feel comfortable with gcc

O Migration to Sun Studio 1s, or 1s viewed as being, difficult

Would be niceto bring the features of Sun Studio to these users.

47
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

How do we get there?

gcc
front-end

Sun IR
generator

Studio
front-end

N

Parallelizer

|PO

Optimizer

Y

Code Generator

Y

Link time optimizer

Binary optimizer

Ridethe CMT Wavewith Sun's Compilers/ParthaT.

Multicor e Expo, March 21-23. 2006

Goals of the Project

d Transparent to gcc users

a Feature compatible with gcc
O Debuggable with gdb and dbx

d Improved performance

a Through advanced optimizations tuned to SPARC systems

O Extra optimizations such as -xipo, -xprefetch, -xprofile

a Higher reliability

49
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

2. Enhancing Parallel Debugging

What is arace condition?

for (i=0; i<n; i++)

a[i] = a[i+l] + b[i];

alo]
all]
al2]
al[3]

a[4]

= a[l]
= a[2]
= a[3]
= a[4]
= a[5]

Thread

4+

+

+

4+

+

1

b[0]

b[1]

b[2
[3]

b[4]

Sequential execution: Results are deterministic
Parallel execution:

7

al[5]
al[é6]
al7]
al[8]

a[9]

= a[6] + b[5]
= a[7] + b[6]
= a[8] + b[7]
= a[9] + b[8]
= a[l0] + b[9]

Thread 2

Ridethe CMT Wavewith Sun's Compilers/ParthaT.

50

Results non-deterministic

Example:
Thread 1 executes i=0-4
Thread 2 executes i=5-9
Thread 2 might write a[5]
before thread 1 readsiit.
Final value of a[4] wrong!

Thisisadatarace.

Multicor e Expo, March 21-23. 2006

Race Detection Tool

0 On-the-fly data race detection
0 Two phases

O Instrumentation phase
O Instruments the executable (if not already instrumented)
d Execution phase

O Runs the executable, monitors memory accesses and thread
synchronizations, and logs any data race condition detected

2 Analysis phase
a Displays the results gathered

51
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Goals of the Race Detection Project

0 Handle a variety of multi-threaded applications
Open MP

Posix threads
Solaris threads

o O O O

Sun/Cray directives
Q Mixtures of the above

d Instrumentation at the IR or binary level

0 Considering an open API

3 To support user annotations

52
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

3. Automating Tuning & Troubleshooting

2 Why automate these tasks?

O Performance tuning issues

O Time consuming
O Requires experienced staff
O Functionality takes all the time, leaving little room for tuning

O Debugging 1ssues
O Time consuming, often more than writing the “first cut” code

O Requires expensive developer time

O Main cause of schedule slips
3 With CMT, threads are cheap
a Use computers to ease above tasks
% ATS (Automatic Tuning System)

53
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

The Backbone of ATS - PEC

0 Store the intermediate representation (IR) with the
executable (object): Portable Executable Code (PEC)

a The IR can be extracted and reprocessed

Text and Data

Extract and Rebuild
—» filel.ir | filel.o (>

|ntermediate —» file2.ir | file2.0 New
Representation a.out
for each M odule

—» filen.ir | filen.o

Binary

Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Previous Tuning Example with ATS

$ cc -fast -g <pecoption> main.c loop.c
main.c:

loop.c:

$ time a.out

real Oml7.49s
user Oml6.24s
sys OmO0.97s

$ collect -h Instr cnt,h,L3 miss,h a.out
$ analyzer

$ ats -i '-fast -g -xprefetch level=3' \
> -keepbin a.out
$ time a.out.l

real Om6.83s
user Om5.59s
sys OmO . 96s

—

55
Ridethe CMT Wavewith Sun's Compilers/ParthaT.

First run,
simple compile
(with pec)

Analyze - “aha, Iit's
theindirect Idd'sL3
miss’

What if the sourceis
unavailable?

With ATS & PEC, we
can still tune the a.out!

Multicor e Expo, March 21-23. 2006

Benefits of ATS+PEC

0 Can operate on an a.out; source not required

0 Faster recompilations because 1t starts with the IR

0 Automatic tuning by searc]

ing for t]

ne best options

a Profile feedback can be ap

vlied by t]

1C USCT

d Can search for and find the offending module 1n the
event of a failure; build a binary with a workaround

0 Put those computers to good use instead of drawing

circles on the screen!

56
Ridethe CMT Wavewith Sun's Compilers/ParthaT.

Multicor e Expo, March 21-23. 2006

4. Analyzing & Improving Binaries

Q BIT - A tool that operates reliably on binaries
0 Can instrument and collect information for analysis

d Can create a new binary with improved performance

O Focusses on rearranging code to better use the I-cache

O Works best on large, complex applications
2 Build with

O Sun Studio 11
Q Add -xbinopt=prepare

d Use -O1 or higher optimization level

57
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Analysis with BIT

$ cc -fast -xbinopt=prepare *.c -1lm
and.c:
build-disjuncts.c:

extract-links.c:

S bit instrument a.out

$ a.out.instr 2.1.dict -batch < input

$ bit analyze -a ifreq a.out | more

Instruction frequencies for whole program

// Build for BIT

// Instrument the a.out
// Run a.out.instr
// Analyze the run

Instruction Executed (%)
TOTAL 18586774239 (100.0)
float ops O (0.0)
float 1d st O (0.0)
load store 4879117593 (26.3)
load 3794101701 (20.4)
store 1085015892 (5.8)
Instruction Executed (%) Annulled In Delay Slot
TOTAL 18586774239 (100.0)
lduw 2889942469 (15.5) 83993915 629750312
br 2797374496 (15.1) 0 0
subcc 2222270229 (12.0) 0 329895247
58

Ridethe CMT Wavewith Sun's Compilers/ParthaT.

Multicor e Expo, March 21-23. 2006

Examining Code Coverage

$ cc -fast -xbinopt=prepare *.c -1lm // Build for BIT

and.c:
build-disjuncts.c:
extract-links.c:

$ bit instrument a.out // Instrument the a.out
$ a.out.instr 2.1.dict -batch < input // Run a.out.instr
$ bit coverage a.out // Analyze coverage

Creating experiment database test.l.er

BIT Code Coverage

Total Functions: 350

Covered Functions: 216

Function Coverage: 61.7%

Total Basic Blocks: 6,041

Covered Basic Blocks: 3,969

Basic Block Coverage: 65.7%

Total Basic Block Executions: 3,955,536,194
Average Executions per Basic Block: 654,781.69
Total Instructions: 27,606

Covered Instructions: 17,680

Instruction Coverage: 64.0%

Total Instruction Executions: 18,866,478,764
Average Executions per Instruction: 683,419.50

59
Ridethe CMT Wavewith Sun's Compilers/ParthaT.

Multicor e Expo, March 21-23. 2006

5. Simplifying Performance Optimisation

a SPOT — A Simple Performance Optimisation Tool

a Produces a report on a code's execution
a Exposes common causes of performance loss

d Very easy to use
2 SPOT reports contain hyperlinked profiles

O Makes 1t easy to navigate from performance 1ssue to source
to assembly

3 For maximum information
a Add -g (-g0 for C++)
3 Use -O1 or higher
Q Include -xbinopt=prepare

60
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Using SPOT

$ cc -fast -xbinopt=prepare -g *.c -1m

and.c:

build-disjuncts.c:

extract-

$ spot -X a.out 2.1.dict -batch < input > /dev/null

Copying
Collect
Collect
Collect
Collect

Output ifreq data from bit

Collect
Collect
Collect
Collect
Collect
Collect

links.c:

spot resources

// Build the code

// Run SPOT

machine statistics
application details
ipc data using ripc
data using BIT

¥ ¢ ¢ +

SPOT runsthe code many times
Approx. 20X longer (in thismode)
|nvokes other toolsto collect data

bandwidth data Generates comprehensive report

traps data

HW counter profile data

data for Rstall IU use & Re DC miss
data for Rstall storeQ & Cycle cnt
data for DispatchO 2nd br & Cycle cnt

Generating html output for HW counter profile data

Collect

clock-based profiling data

Generating html output for time profile data
Done collecting, tidying up reports

S

61

Ridethe CMT Wavewith Sun's Compilers/ParthaT.

Multicor e Expo, March 21-23. 2006

SPOT Report Example

Application stall information (using ripc)

NOTE: Time reported under D$ miss also includes + Seefull report
the time spent in L2 cache misses + Provides
UltraSparc ticks sec % +* HW info.

+ Build details
DispatchO_IC miss 78503999 0.065 0.3% + Stallsg/| PC
DispatchO br target 323039451 0.267 1.1%) :
- - + Profiles
DTLB miss 11859795 0.010 0.0% | < Trapsdata
Re DC miss 6402197760 5.296 22.1% + Coverage
Re EC miss 305913838 0.253 1.1% °
Re PC miss 99 0.000 0.0% -
Re RAW miss 56567038 0.047 0.2%
Re FPU bypass 0 0.000 0.0%
Rstall storeQ 678244916 0.561 2.3%
Total Stalltime 11545566208 9.551 39.8%
Total CPU Time 29010841600 24.000 100.0%
Total Elapsed Time 24 Sec
Instr 18990794752

IPC

0.655 (instr/time)

62

Ridethe CMT Wavewith Sun's Compilers/ParthaT.

Multicor e Expo, March 21-23. 2006

Summary

3 Sun has industry leading compilers and tools for
CMT

O Components are thread-aware and work synergestically
a Reliable, with advanced optimizations and parallelization

O Excellent multi-threaded analysis and debugging tools

Q Compiler commentary, automatic parallelization, OpenMP, tuned
libraries, performance analyzer, ...

a Exciting new tools and enhancements are under-way

O Embracing the SPARC/gcc community
O Race detection in multi-threaded programs

3 Automation of the tuning and troubleshooting process
D cee 63

Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

More Information & Resources

O OpenSPARC information & community
www.opensparc.net

a CoolTools site
cooltools.sunsource.net

O Sun Forums (including developer forum)
forum.sun.com

O Contacting Developer Tools Marketing
Developer911(@sun.com

O Sun Studio Product site
sun.com/sunstudiol 1

O Sun Studio Developer site
developers.sun.com/sunstudio

Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

Thank You!

Partha .Tirumalai@Sun.Com

65
Ridethe CMT Wave with Sun's Compilers/ParthaT. Multicor e Expo, March 21-23. 2006

