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Introduction 

Fast insertion and retrieval of data into a NoSQL database is of critical importance to a modern 

organization. As large amounts of data are created (think Big Data or Internet of Things), a reliable and 

industry-leading database must be able to respond to the demands of both the users who consume the 

information as well as the mechanisms that are creating the data. 

In the following sections we discuss: 

 Oracle NoSQL Database Summary and Motivation for a new API 

 BulkPut API with example code 

 BulkGet API with example code 

Oracle NoSQL Database 

Oracle NoSQL Database is a highly scalable, highly available, fault tolerant, “Always On” distributed key-value 

database that you can deploy on low cost commodity hardware in a scale-out manner. Use cases of Oracle NoSQL 

Database include Distributed Web-scale Applications, Real Time Event Processing, Mobile Data Management, Time 

Series and Sensor Data Management, Online Gaming, etc. Oracle NoSQL Database offers all the features that are 

common to a typical NoSQL product like Elasticity, Eventually Consistent Transactions, Multiple Data Centers, 

Secondary Indexes, Security and Schema Flexibility. The key differentiators include ACID Transactions, Online 

Rolling Upgrade, Streaming Large Object Support, availability on Engineered Systems, and Oracle Technology 

integrated. 

Data can be modeled as relational-database-style tables, JSON documents, or key-value pairs. Oracle NoSQL 

Database is a sharded (shared-nothing) system that distributes the data uniformly across the multiple shards in the 

cluster, based on the hashed value of the primary key. Within each shard, storage nodes are replicated to ensure 

high availability, rapid failover in the event of a node failure, and optimal load balancing of queries. NoSQL Database 

provides Java, C, Python and node.js drivers and a REST API to simplify application development. NoSQL 

Database is integrated with a wide variety of related Oracle and open source applications in order to simplify and 

streamline the development and deployment of modern big data applications. NoSQL Database is dual-licensed and 

available as an open-source community edition as well as a commercially licensed Enterprise Edition. 

Motivation 

Our customers have often asked us “what’s the fastest and most efficient way to insert and retrieve large number of 

records in Oracle NoSQL database?” 

Recently, a shipping company reached out to us with the specific requirement of using Oracle NoSQL database for 

their ship management application, which is used to track the movements of their container ships that move the 

cargo from port to port. The cargo ships are all fitted with GPS and other tracking devices that relay a ship's location 

after a few seconds into the application. The application is then queried for: 

1) The location of all the ships displayed on the map  

2) A specific ship's trajectory over a given period of time.  
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As the volume of the location data started growing, the company started finding it hard to scale the application and is 

now looking at a back-end system that can ingest this large data-set very efficiently. 

Oracle NoSQL Database BulkPut 

Historically, we have supported the option to execute a batch of operations for records that share the same shard 

key, which is what our large airline customer (Airbus) has done. They pre-sort the data by the shard key and then 

perform a multi-record insert for a batch of records that share the same shard key. Basically, rather than sending 

and storing one record at a time, they can send a large number of records in a single operation. This certainly saved 

network trips, but they could only batch insert records that shared the same shard key. With Oracle NoSQL 

Database release 3.5.2, we have added the ability to do a bulk insert records across different shards in parallel, 

allowing application developers to work more effectively with very large data-sets. 

The BulkPut API is available for table as well as for the key/Value data model. The API provides significant 

performance gains over single row inserts by reducing the network traffic round trips as well as by doing ordered 

inserts in batch on internally sorted data across different shards in parallel. 

BulkPut API 

KV interface: Loads Key/Value pairs supplied by special purpose streams into the store. 

public void put(List<EntryStream<KeyValue>> streams, BulkWriteOptions 

bulkWriteOptions) 

Table interface: Loads rows supplied by special purpose streams into the store. 

public void put(List<EntryStream<Row>> streams, BulkWriteOptions bulkWriteOptions) 

streams the streams that supply the rows to be inserted. 

bulkWriteOptions non-default arguments controlling the behavior the bulk write operations 

Stream Interface: 

public interface EntryStream<E> { 

String name(); 

E getNext(); 

void completed(); 

void keyExists(E entry); 

void catch Exception (RuntimeException exception, E entry); 

} 

BulkPut Performance  

We ran Yahoo Cloud Server Benchmark (YCSB) benchmark internally to measure the performance of the new 

BulkPut API. For the performance test, we set up a 3x3 NoSQL cluster, - three shards each having three copies of 

data for scalability and high availability reasons. The cluster was set up to run on bare metal servers with uniform 

configuration – a total of nine servers (One NoSQL Storage Node per server) each configured with 250 GB RAM, 

1TB HDD running Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70GHz. The client machine also had similar hardware 

configuration. 

For the workload distribution we used Zipfian distribution of keys, which is intended to model “real” loads. We 

ingested a total of 150 M records (50 M records per shard) across the datastore, using a total of nine parallel 

https://www.cs.duke.edu/courses/fall13/compsci590.4/838-CloudPapers/ycsb.pdf
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threads (3 per shard) and a total of 54 input streams across nine storage nodes (6 per storage node). Parallel 

threads can be configured using perShardParallelism of BulkWriteOptions and InputStream can 

be configured using streamParallelism of BulkWriteOptions .The results for the benchmark run are 

shown in the graph below: 

 

 

Oracle NoSQL database allows a configurable acknowledgment-based durability policy that describes whether the 

master node will wait for these acknowledgments before considering the write operation to have completed 

successfully. You can require the master node to wait for no acknowledgments, acknowledgments from a simple 

majority of replica nodes in primary zones, or acknowledgments from all replica nodes in primary zones. The more 

acknowledgments the master requires, the slower its write performance will be. 

We ran the performance test with Durability settings for None (Ack-None) and Simple Majority (Ack-Simple Majority). 

The above graph compares the throughput (ops/sec) of BulkPut API and Simple Put API with NoSQL store having 

1000 partitions for different durability settings. As seen from the above charts, there is over a 100% increase in 

throughput with either of the durability settings. 

Sample Example on GitHub 

An example of the BulkPut API can be found at:  https://github.com/swatianand/NoSQL 

The sample demonstrates how to use the BulkPut API in your application code. There’s also a ReadMe file in the 

same repository. Refer to the readme file for details related to the program execution. 

Oracle NoSQL Database BulkGet API 

Customers continue to ask for fast and easy-to-use methods for retrieving data from a NoSQL database. An 

example of such a request would be on an eCommerce website, where potential customers want to retrieve all the 

phones in the price range of $ 200 to $ 500 from Apple, Samsung, Nokia, and Motorola (for example) and a host of 

other manufacturers to return all the details including the images of the products. 

With release 3.4.7, we have introduced a high performance Bulk Get API, to retrieve records matching multiple 

primary keys in a single operation. For those of you who are familiar with SQL syntax, you can think of this to be 

similar to the IN clause that you supply to the SQL query. The API takes a list of keys, can be a partial or complete 

shard key, does a parallel scan across the shards for all keys in the list, and provides an iterator API over the 

https://github.com/swatianand/NoSQL
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matching rows including those matched by the ancestor or descendant tables. The result is not transactional and the 

operation effectively provides read-committed isolation. The implementation batches the fetching of rows in the 

iterator, to minimize the number of network round trips, while not monopolizing the available bandwidth. Batches are 

fetched in parallel across multiple Replication Nodes, and the degree of parallelism is controlled by the 

TableIteratorOptions argument.  

There are a few constraints the user should be aware of: 1) A primary key must contain all the fields defined for the 

table's shard key 2) The primary key should belong to the same table.  

For more information, refer to the Java documentation for the API. We support both the key/value and table 

interfaces for the API.  

Performance 

In our internal Yahoo Server Scalability Benchmark (YCSB) runs we found that we could retrieve 30 M rows in 149 

sec with 72 executor threads, running on 3x3 NoSQL cluster (3 shards each having 3 copies of data), with 90 reader 

threads (client-side threads) and each record size is 100 bytes. The number of executor threads can be configured 

by the maxConcurrentRequests parameter of the TableIteratorOptions. The hardware configuration of the 

machine is similar to those described in the BulkPut performance section described above. Refer to the chart below 

for details of the benchmark runs: 

 

(a)                                                                               (b) 

As seen from the timing graph (a)  above, getting 30 M rows using simple get api  would have taken us 420 

seconds, which reduces to 149ms with 72 executor threads (Plotted on X-Axis) using the bulk get API. This is 

almost a 3X improvement! And as seen on the graph (b) the throughput went to 200K ops/s with 72 executor 

threads from 68k ops/sec using a simple get operation. That is again a 3X improvement! 

 

In the above charts, the bulk-X is the maximum number of concurrent request that specifies the maximum 

degree of parallelism (in effect the maximum number of NoSQL Client side threads) to be used when running 

an iteration. The optimal value for a parameter varies based on the nature of the application requirements -- 

some may want to be unobtrusive and use minimal resources (but efficiently) with elapsed time being a lower 

priority, e.g. running analytic on secondary zones, whereas some may want a strong real-time latency running 

multi-get on Primary Zones. 

 

Sample Example on GitHub 

https://www.cs.duke.edu/courses/fall13/compsci590.4/838-CloudPapers/ycsb.pdf
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An example of the BulkPut API can be found at: https://github.com/swatianand/OracleNoSQLBulkgGet. The sample 

example demonstrates how to use the new BulkGet API in the phone example that’s described above. The 

repository also contains a ReadMe file that describes the table and also the steps to run the example. The example 

returns an iterator over the keys matching the manufacturers within the price range [200-500] supplied by the 

iterator. If along with other details it also desired to retrieve the images of all the phones, then the images can be 

modeled as a child table (for efficiency reasons) and the same can be retrieved in the single API call. 

 
Summary 

Oracle NoSQL BulkGet API and BulkPut API provide the most effective and performant way to store and fetch the 

data in bulk from Oracle NoSQL database. As demonstrated by the YCSB runs, using this API you can expect 

between a 2 and 3 times performance improvement for retrieving data in bulk.  

https://github.com/swatianand/OracleNoSQLBulkgGet


 

 

 

7  NEW ORACLE NOSQL DATABASE API’S THAT SPEED INSERTION AND RETRIEVAL 

 

  

 

 

Oracle Corporation, World Headquarters  Worldwide Inquiries 

500 Oracle Parkway Phone: +1.650.506.7000 

Redwood Shores, CA 94065, USA Fax: +1.650.506.7200 

 

 

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the 

contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other 
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or 
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are 
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any 
means, electronic or mechanical, for any purpose, without our prior written permission.  
 
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. 
 
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and 
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are 
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0116 
 
February, 2016 
Authors: Anand Chandak, Jin Zhao, Michael Schulman 
 

 

 
 

 

C O N N E C T  W I T H  U S  

 
blogs.oracle.com/oracle 

 
facebook.com/oracle 

 
twitter.com/oracle 

 
oracle.com 


