

Automate Infrastructure Lifecycle Management
on PCA using Ansible

O R A C L E W H I T E P A P E R | S E P T E M B E R 2 0 1 8

0 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Contents

Introduction 1

Prerequisites 2

How Ansible Works 2

Architecture 3

Custom Module Arguments 5

Executing the Module 6

Ansible Ad-Hoc Command Method 7

Playbook Execution 7

Create a VM 8

The execution of the code for creating a VM is shown in Appendix I. 8

Case 1: Specified VM doesnôt on PCA, Desired State: present 8

Case 2: Specified VM exists on PCA, Desired State: present 10

Delete a VM 11

Case 1: Specified VM is running on PCA, Desired State: absent 11

Case 2: Specified VM doesnôt exist on PCA, Desired State: absent 13

Start a VM 14

Case: Specified VM exists on PCA and is in stopped condition, Desired State:

start 14

Stop a VM 16

Case: Specified VM exists on PCA and is in stopped condition, Desired State:

stop 16

1 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Idempotency 17

Appendix I: Code execution 19

Authentication 19

Creating a Virtual Machine 24

Conclusion 28

Resources 28

1 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Introduction

Oracle Private Cloud Appliance is an Engineered System designed for rapid and turn-key deployment

of private cloud at an industry-leading price point. The agile and intelligent infrastructure allows for

scaling compute capacity on demand, zero downtime upgrades and supports your choice of external

storage. Whether running Linux, Microsoft Windows or Oracle Solaris applications, Oracle Private

Cloud Appliance supports a wide range of mixed workloads in medium-to-large sized data centers.

High-performance, low-latency Oracle Fabric Interconnect and Oracle SDN allow automated

configuration of the server and storage networks. The embedded controller software automates the

installation, configuration, and management of all infrastructure components.

Automation is a key requirement for achieving cloud-like agility. Ansible is an IT automation engine that

automates cloud provisioning, configuration management, application deployment and orchestration.

Ansible uses no agents and can be used to automate repetitive IT tasks in multi-node deployments. A

machine that has Ansible installed (óControl Machineô) pushes code blocks (óAnsible modulesô) to the

remote machines (óManaged nodesô) and executes them over SSH. This paper describes the process

to use the custom Ansible module óovmm_vm.pyô to automate creation, deletion, halting and starting a

Virtual Machine in Oracle PCA.

The module interfaces with the REST APIs for Oracle VM and hence, can be even used in an Oracle

VM environment outside of a PCA.

Sample code is provided for educational purposes or to assist your development or administration efforts. Your use rights
and restrictions for each sample code item are described in the applicable license agreement. Except as may be expressly
stated in the applicable license agreement or product documentation, sample code is provided "as is" and is not supported
by Oracle.

2 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Prerequisites

The versions of major software components used in this setup are:

» Version of Oracle PCA software. 2.3.1+ (The module works with Oracle VM 3.3+)

» Version of Ansible. 2.1.0.0 or newer

» Download and install the Ansible RPM from OTN. The files contained in the RPM are as follows:

[root@dhcp - 10- 211 - 54- 119] # rpm - qpl pca_ansible_examples - 1.0 -
1.el7.noar ch.rpm

/usr/lib/python2.7/site - packages/pca/plugins/ ovmm_vm.py
/usr/lib/python2.7/site - packages/pca/plugins/ovmm_vm.pyc
/usr/lib/python2.7/si te - packages/pca/plugins/ovmm_vm.pyo
/usr/share/doc/pca_ansible_examples - 1.0
/usr/share/doc/pca_ansible_examples - 1.0/COPYING
/usr/share/doc/pca_ansible_examples - 1.0/Copyright
/usr/share/pca_ansible_examples/examples
/usr/share/pca_ansible_examples/examples/ deletevm.yml
/usr/share/pca_ansible_examples/examples/ play.yml
/usr/share/pca_ansible_examples/examples/ startvm.yml
/usr/share/pca_ansible_examples/examples/ stopvm.yml

Ansible checks for the custom module in the /library subdirectory of the directory where your playbook is

stored. Thus, in the above directory structure, you can place the ovmm_vm.py file in directory
/usr/share/ pca_ansible_examples/examples/library/

Note: For the purpose of simplifying the directory paths in this paper, we will place the playbooks in the

Ansible directory (/etc/ansible) and the module in the library subdirectory of the Ansible directory (here

etc/ansible/library) on Control Machine.

Control Machine

/etc/ansible

 Play.yml , deletevm.yml, startvm.yml, stopvm.yml

 Library

 ovmm_vm.py

How Ansible Works

Ansible works by pushing code blocks (ómodulesô) to remote hosts (ómanaged nodesô), executing them then

removing them after the remote host is in the ódesiredô state.

The automation jobs are described in YAML language. Playbooks, written in YAML, are used to manage

configurations and deployment to remote systems.

Playbooks contain plays which map remote hosts to tasks. A task is nothing more than a call to a Module. Modules

are task plugins that do the actual work on a remote host.

http://www.oracle.com/technetwork/server-storage/vm/downloads/ovm-tools-3604795.html

3 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Figure 1: Sample Ansible Playbook

Figure 1 shows a sample playbook that has only one play to be executed on remote host óbastionô as remote user

root. The task is to make sure httpd service is started on bastion host. This task calls the óserviceô module and

declares the desired state as óstartedô for service httpd.

Handlers are special tasks that are carried out if the preceding task was successful i.e. it made a change in state of

the remote host. Thus, in this case the handler ñrestart httpdò would only be called if httpd service had to be started

on bastion host by the task ómake sure httpd is statrtedô. In other words, if httpd was already running on bastion (i.e

task ómake sure httpd is runningô didnôt make any change to the remote host bastion), the handler would not have

been executed.

Architecture

Figure 2 shows an Ansible Control Machine components and also the architecture of Oracle VM Manager located

on the Management node of PCA. Ansible manages the PCA by connecting to the REST APIs for Oracle VM

Manager (accessible by HTTPS over port 7002 as shown in figure). The detailed architecture for Oracle VM can be

found here.

https://docs.oracle.com/cd/E64076_01/E64081/html/vmcon-ovm-arch.html

4 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Figure 2. Architecture diagram for Ansible based deployments

This lab setup has the following components:

ü Control Machine: An Oracle Linux 7 system external to the PCA on which Ansible is installed serves as the

Control Machine. Ansible package is available via the ol7_developer_EPEL Channel.

ü Managed Nodes: The remote systems that Ansible manages remotely. In our case, the managed nodes would

be the PCA management nodes. The location of managed nodes (Host names or IP address) is defined in

Inventory File. The default inventory file is etc/ansible/hosts on the control machine.

Figure 3. A sample inventory file located at /etc/ansible/hosts

5 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Custom Module Arguments

The custom module ovmm_vm.py takes the following arguments as inputs from the user.

¶ state=dict(required=True, choices=['present', 'absent', 'start', 'stop']),

¶ name=dict(required=True),

¶ description=dict(required=False),

¶ ovm_user=dict(required=True),

¶ ovm_pass=dict(required=True),

¶ ovm_host=dict(required=True),

¶ ovm_port=dict(required=True),

¶ server_pool=dict(required=False),

¶ repository=dict(required=False),

¶ vm_domain_type=dict(default='XEN_HVM',

choices=["XEN_HVM","XEN_HVM_PV_DRIVERS","XEN_PVM","LDOMS_PVM","UNKNOWN"]),

¶ memory=dict(required=False, default=4096, type='int'),

¶ max_memory=dict(required=False, default=None, type='int'),

¶ vcpu_cores=dict(required=False, default=2, type='int'),

¶ max_vcpu_cores=dict(required=False, default=None, type='int'),

¶ operating_system=dict(required=False),

¶ networks=dict(required=False, type='list'),

¶ disks=dict(required=False, type='list'),

¶ boot_order=dict(required=False, type='list')

Note: The arguments with required=True have to be supplied while making a call to this module, else the module

execution fails and Ansible throws a message ñmissing required arguments: <argument_name>ò.

Note: The ovm_user and ovm_pass are required for basic HTTP Authentication. They are not required if you

set up SSL Certificate verification for Oracle VM as discussed in Appendix I. In this case, (required=False)

needs to be set for both ovm_user and ovm_pass in order to not supply

The óovmm_vmô module can be used for automating the following operations on a PCA.

» Creating a Virtual Machine

» Deleting a Virtual Machine

» Starting a Virtual Machine

» Stopping a Virtual Machine

Argument óstateô can take 4 values: Present, absent, start, stop. Each value represents the desired final state of

the VM. The value of argument óstateô determines the desired action.

» State=present means that the specified VM should exist on the PCA after execution of the module.

Thus, if it is already present, Ansible returns the ID of the existing VM without making any change to the

remote system. If the specified VM doesnôt exist, it is created with the specified configuration

» State=absent means the VM will be deleted if it exists on the PCA. This deletes the VM disk mapping,

VM disk and VNICs along with the Virtual Machine.

» State=start would start the specified VM, would do nothing if the VM doesnôt exist or is already running

6 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

» State=stop will stop the specified VM if it is in órunningô state and do nothing otherwise

Executing the Module

The custom module and the Ansible playbook that uses the module need to be placed on the Ansible control
machine. For custom modules, Ansible will look in the library directory relative to the playbook, for

example: playbooks/library/your - module.

Figure 4 shows the relative location of playbook play.yml and Ansible module ovmm_vm.py on the Control
Machine.

Figure 4. Playbooks are located at /etc/ansible and custom modules are in /etc/ansible/library

Each of the tasks described in module ovmm_vm.py can be carried out by either making a call to the module from

Ansible command line (Ad-hoc command) or using Ansible Playbook. Both methods are discussed in the

following sections.

Figure 5 shows the Oracle VM Manager GUI for PCA. We have 2 VMs on Server Pool SP1, named óST_vm1ô in

Stopped state and ótestvmô in the Running state. Letôs automate the lifecycle management tasks that can be

performed using the custom Ansible module ovmm_vm.py

7 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Figure 5. Oracle VM Manager GUI showing 2 VMs ï ST_vm1 in stopped state and testvm in Running state

Ansible Ad-Hoc Command Method

An ad-hoc command is something that you might type in to do something really quick, but donôt want to save for

later. The syntax for ad-hoc commands is

$ ansible <hostname> -m <module_name> -a <arguments_to_module>

Playbook Execution

Playbooks are Ansibleôs configuration, deployment, and orchestration language. They can describe a policy you

want your remote systems to enforce, or a set of steps in a general IT process. Playbooks are written in YAML

format. The syntax for running a playbook is:

$ ansible-playbook ïi<inventory file> <playbook_name.yml>

Note: Ansible uses the default inventory file located at /etc/ansible/hosts if flag ïi is not specified while executing the

playbook.

Examples of executing the module ovmm_vm.py using playbook are shown in the following section.

8 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Create a VM

To create a VM with Virtual Disks and Virtual NICs, the following arguments need to be specified while executing the

module ovmm_vm.py

¶ state=present

¶ name

¶ ovm_user

¶ ovm_pass

¶ ovm_host

¶ ovm_port

¶ repository

¶ server_pool

¶ networks ï provide a list of all the networks corresponding to the Virtual NICs that the VM should have.

For two VNics on same network, type the network name twice as shown in Figure 6.

¶ disks ï provide a list of virtual disks in the form of a tuple [Virtual Disks name, size in bytes, Repository] as

shown in Fig 6.

The playbook used for creating the VM is shown on Figure 6.

Figure 6. Playbook play.yml showing the task óCreate a VMô on remote host ovm

The execution of the code for creating a VM is shown i n Appendix I.

Case 1:

Specif ied VM doesnôt exist on PCA, Desired State: present

In this case, as the specified VM doesnôt exist on PCA, we expect the module to create it on the specified server

pool and repository on PCA and display a changed=True message. Figure 7 shows this execution on the VM

óST_vm33ô and Ansible returns a message saying ñVM createdò and ñchanged=Trueò.

9 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Figure 7. Execution of Playbook play.yml when the VM doesnôt exist on the remote host

The fact that the VM óST_vm33ô is created on the remote host can be seen in Figure .

Figure 8. The VM óST_vm33ô is successfully created in the Oracle VM Manager GUI

10 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Case 2:

Specif ied VM exists on PCA, Desired State: present

In this case, as the specified VM exists on PCA, we expect the module to not make any changes on PCA and

display a changed=False message. Figure 9 shows the playbook play.yml used for this case. Figure 10 shows this

execution on the VM óST_vm1ô and Ansible returns a message saying ñVM existsò and ñchanged=Falseò.

Figure 9. Playbook play.yml with state=present when the VM already exists on the remote host

If the specified VM already exists on PCA, Ansible makes no change to the remote system and returns the ID of the

already existing VM with same name. In this case, the specified VM óST_vm1ô exists and has ID

ó0004fb0000060000c16ea2401e5b80f4ô

Figure 10. Execution of Playbook play.yml with state=present when the VM already exists on the remote host

11 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Delete a VM

To delete a VM along with the VM disk mapping and Virtual Disk, the following arguments need to be specified while

executing the module ovmm_vm.py

¶ state=absent

¶ name

¶ ovm_user

¶ ovm_pass

¶ ovm_host

¶ ovm_port

The playbook used for deleting the VM is shown on Figure 11.

Figure 11. Playbook deletevm.yml showing the task óDelete a VMô on remote host ovm

Note: The module ovmm_vm.py carried out the deletion of a VM by calling the deleteVM function (defined in

ovmm_vm.py). This function deletes the VM disk mapping, virtual disk and the Virtual machine from the PCA as

shown in Figure 13.

Case 1:

Specif ied VM is running on PCA, Desired State: absent

In this case, the VM ótestvmô exists and is running on the PCA, so Ansible should kill it and then delete it on the

remote system and show a changed=True message to show that VM is deleted.

Figure 11 shows the playbook deletevm.yml used for this case. The VM ñtestvmò is present on the remote host

ñovmò and should be deleted after execution of this playbook. The state=absent

When this playbook is executed, we expect Ansible to change the state of remote host óovmô by deleting the

specified VM ótestvmô.

Figure 12 shows the result of execution of this playbook. The output of the execution clearly shows that task óDelete

a Virtual Machineô changed the state of remote host ovm. The test output shows ñchanged=Trueò and has a

message ñVM deletedò.

12 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Figure 12. Execution of Playbook deletevm.yml when the remote host is not in desired state

The fact that the VM ótestvmô has actually been deleted can be verified by looking at the Oracle VM Manager GUI as

shown in Figure 13.

Figure 13. The VM ótestvmô is deleted as seen in the Oracle VM Manager GUI

13 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Case 2:

Specif ied VM doesnôt exist on PCA , Desired State: absent

In this case, the VM ómyvmô doesnôt exist on the PCA, so Ansible should not make any change to the remote system

and should exit gracefully.

Figure 14 shows the playbook deletevm.yml used for this case. This playbook contains one play called ñtest my

moduleò to be executed on the remote host ovm (specified in the /etc/ansible/hosts file). The playbook has 2 tasks ï

Delete a VM and dump test output.

Figure 14. Playbook play.yml showing two tasks to be executed on remote host óovmô

When this playbook is executed, we expect Ansible to not make any change on the remote system óovmô as the

specified VM ómyvmô doesnôt exist. In other words, the remote host óovmô is already in the desired state.

Figure 15 shows the result of execution of this playbook. The output of the execution clearly shows that nothing was

changed on the remote host and our module returns a message ñVM doesnôt existò

Figure 15. Execution of Playbook play.yml when the remote host is already in desired state

14 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Start a VM

To start a VM, the following arguments need to be specified while executing the module ovmm_vm.py

¶ state=start

¶ name

¶ ovm_user

¶ ovm_pass

¶ ovm_host

¶ ovm_port

The playbook used for starting a VM on PCA is shown in Figure 16.

Figure 16. Playbook startvm.yml showing the task óStart a VMô on remote host ovm

Case:

Specif ied VM exists on PCA and is in stopped conditi on, Desired State: st art

In this case, as the specified VM is stopped, we expect the module to start it on the PCA and display a

changed=True message. Figure 17 shows this execution on the VM óST_vm33ô and Ansible returns a message

saying ñVM startedò and ñchanged=Trueò.

15 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Figure 17. Ansible changes the state of remote system to start the specified VM on remote host

The fact that the VM óST_vm33ô has actually been started can be verified by looking at the Oracle VM Manager GUI

as shown in Figure 18.

Figure 18. The VM óST_vm33ô can be seen running in the Oracle VM Manager GUI

16 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Stop a VM

To stop a VM, the following arguments need to be specified while executing the module ovmm_vm.py

¶ state=stop

¶ name

¶ ovm_user

¶ ovm_pass

¶ ovm_host

¶ ovm_port

The playbook used for this task óstopvm.ymlô is shown in Figure 19.

Figure 19. Playbook stopvm.yml showing task ñStop a VMô to be executed on host ovm

Case:

Specif ied VM exists on PCA and is in stopped condition , Desired State: stop

In this case, as the specified VM is already stopped, we expect the module to not change anything on the PCA. This

property of Ansible is referred to as Idempotency. Figure 20 shows this execution on the VM óST_vm1ô and Ansible

returns a message saying ñVM is already stoppedò as expected.

17 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Figure 20. Ansible makes no change when the remote system is already in desired state

In this case, if the VM óST_vm1ô was in the Running state prior to execution of the playbook, Ansible would have

stopped the VM and displayed ñchanged: True and VM stoppedò message.

Idempotency

The custom module óovmm_vm.pyô is Idempotent i.e. running the module multiple times has no side effects. In other

words, an operation is idempotent if the result of performing it once is exactly the same as the result of performing it

repeatedly without any intervening actions.

To illustrate this concept, we can use the same playbook as shown in Figure 10. The playbook specifies that the VM

ótestvmô should be absent from the target host ovm. Running the playbook once, deleted the specified VM from the

target host. This means that the VM ótestvmô doesnôt exist anymore and running this playbook now should not make

any change to the remote host óovmô.

Figure 21 shows that when we run the playbook play.yml again, the task ñDelete a Virtual Machineò doesnôt change

anything on the remote host. We can also see from the test output that Ansible returns ñchanged=Falseò and the

message says ñVM doesnôt existò as expected.

This playbook can now be run any number of times without making any change to the remote host. This is an

important property of Ansible, which allows the user to only specify the desired state of the remote host without

having to worry about the current state.

18 | AUTOMATE INFRASTRUCTURE LIFECYCLE MANAGEMENT ON PCA USING ANSIBLE

Figure 21. Ansible module óovmm_vm.pyô is Idempotent

