

Oracle GraalVM Enterprise
Edition

Faster. Smarter. Leaner.

August, 2020 | Version 1.01
Copyright © 2020, Oracle and/or its affiliates

1 WHITE PAPER | Oracle GraalVM Enterprise Edition | Version 1.01
 Copyright © 2020, Oracle and/or its affiliates

PURPOSE STATEMENT

This document provides an overview of features and enhancements included in release 20.1. It is intended solely
to help you assess the business benefits of upgrading to 20.1 and to plan your I.T. projects.

DISCLAIMER

This document in any form, software or printed matter, contains proprietary information that is the exclusive
property of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of
your Oracle software license and service agreement, which has been executed and with which you agree to
comply. This document and information contained herein may not be disclosed, copied, reproduced, or
distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your
license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or
affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for the
implementation and upgrade of the product features described. It is not a commitment to deliver any material,
code, or functionality, and should not be relied upon in making purchasing decisions. The development, release,
and timing of any features or functionality described in this document remains at the sole discretion of Oracle.

Due to the nature of the product architecture, it may not be possible to safely include all features described in
this document without risking significant destabilization of the code.

2 WHITE PAPER | Oracle GraalVM Enterprise Edition | Version 1.01
 Copyright © 2020, Oracle and/or its affiliates

TABLE OF CONTENTS

Purpose Statement 1

Disclaimer 1

Modern Application Challenges 3

GraalVM Enterprise 4
Built on Open Source 4
Built on Oracle Java SE 4

Accelerating Application Performance 5
The GraalVM Enterprise Compiler 5
What Makes GraalVM Enterprise Faster 7
Apache Spark on GraalVM Enterprise 7
Accelerating WebLogic Applications 8

The Ideal Microservices Runtime 9
Microservice Startup, CPU, and Memory Usage with GraalVM Enterprise 10

Improved Productivity with Multi-Language Support 10

GraalVM Enterprise Security 11

GraalVM Enterprise: At the Center of Innovation 12

Getting Started 12

Reference 13

3 WHITE PAPER | Oracle GraalVM Enterprise Edition | Version 1.01
 Copyright © 2020, Oracle and/or its affiliates

MODERN APPLICATION CHALLENGES

As Marc Andreessen famously observed, “Software is eating the world”1. Whether for
development of external customer-facing services, or for automating internal business
processes, the use of software continues to accelerate. In an endeavor to scale
applications with ever increasing demands, and keeping up with business SLA
guarantees, enterprises are incurring higher information technology bills. The situation
is exacerbated on public cloud platforms where the charges are based on both CPU
and memory usage. Hence there is a persistent need to find innovative ways to get
more out of existing investments.

This quest for higher efficiency has also led to a shift in the way the companies build
software systems. Whether managing their own data centers (on-premises) or running
their workloads on public cloud, they are migrating away from the N-tier enterprise
platforms that have dominated software architecture for the last two decades. They
are progressively moving towards horizontally-scalable, container-based platforms and
microservices—key elements of a cloud-native architecture.

Regardless of the deployment choice, to curtail IT expenses, applications must run
faster and consume fewer resources. Oracle GraalVM Enterprise Edition is an
application runtime that addresses these challenges. Built on trusted and secure
Oracle Java SE, GraalVM Enterprise accelerates application performance while
consuming fewer resources—improving application efficiency and reducing
compute costs.

Incorporating over a decade of research and development innovations into advanced
optimizing compiler technology, GraalVM Enterprise is the ideal platform for modern
application deployments.

Key Features

 Leverages new optimization

algorithms to improve

performance of enterprise

applications

 A high-performance

runtime for modern

microservices

 Compiles Java applications

ahead of time into native

images to improve startup

and memory footprint

 Extends applications with

libraries from other

supported languages

without performance

penalties

 Runs native languages like

C/C++ in a managed mode

on the JVM

https://oracle.com/graalvm
https://oracle.com/graalvm

4 WHITE PAPER | Oracle GraalVM Enterprise Edition | Version 1.01
 Copyright © 2020, Oracle and/or its affiliates

GRAALVM ENTERPRISE

GraalVM Enterprise offers features for accelerating the performance of existing Java
applications and for building microservices. It includes advanced optimizing compiler
technology to provide a high performance Just-In-Time (JIT) compiler that can be used
to accelerate the performance of any Java and JVM-based application—without any
code changes!

GraalVM Enterprise also incorporates its optimizing compiler technology into an
advanced Ahead-Of-Time (AOT) Native Image compiler that translates Java and JVM-
based applications into native platform executables. These native platform executables
are smaller, start nearly instantaneously, and consume a fraction of the resources of
the same Java application running on a JVM, making them ideal for cloud deployments
and microservices.

Built on Open Source

Oracle GraalVM Enterprise Edition is built on the Oracle-led GraalVM open source
project. The open source GraalVM community includes participants from many of the
leading companies and has an advisory board with members from industry and
academia including Shopify, VMWare, Red Hat, Microsoft, Twitter, Amazon, and more.

The purpose of the open source GraalVM project is to build and share a platform for
language runtime innovation. Its success can be seen by the stature of the companies
and universities who are participating, and by the number of projects that are using
GraalVM. GraalVM Enterprise includes all the features of the open source Community
Edition, along with additional performance and resource optimizations, as well as full
enterprise grade support from Oracle. For example, GraalVM Enterprise’s compiler
includes 27 additional patented optimizations that result in faster code and lower CPU
and memory requirements.

Companies looking for the fastest, smartest, and leanest runtime for their applications
choose GraalVM Enterprise.

Built on Oracle Java SE

Celebrating its 25th anniversary in 2020, Java continues to be the leading application
development language. Enterprises rely on Oracle Java SE for reliability, security, and
regular updates. While GraalVM Enterprise provides significant benefits for Java
applications, it is built on proven Oracle Java SE.

GraalVM Enterprise releases include all Oracle Java critical patch updates (CPUs) which
are released on a regular schedule to remedy defects and known vulnerabilities.
GraalVM Enterprise customers get 24/7 access to the experienced Oracle GraalVM
Enterprise Edition support team who work closely with the Oracle Java support team
so you can:

 Log and resolve GraalVM Enterprise issues quickly and efficiently
 Reduce time to resolution and minimize support costs
 Maximize application uptime

Java Facts

 98% of Fortune 100 run

Java

 45 billion JVMs globally

 #1 programming language

 #1 developer choice in the

cloud

5 WHITE PAPER | Oracle GraalVM Enterprise Edition | Version 1.01
 Copyright © 2020, Oracle and/or its affiliates

ACCELERATING APPLICATION PERFORMANCE

Without any code changes, GraalVM Enterprise can improve the performance of any
Java application and any application that runs on the Java Virtual Machine. Faster
application execution provides two benefits:

First, it reduces the response time for user requests, whether interactive or via RES.
Applications running on GraalVM Enterprise exhibit lower latency, which is crucial
when you remember that forty percent of consumers abandon web pages and
shopping carts if the response time is over three seconds.2

Second, applications that run faster free up CPU and memory sooner, allowing them to
handle other requests or other applications running on the same server. In data
centers with ever-increasing workloads, being able to service more requests with the
same computing infrastructure reduces the need to purchase additional hardware.
Thus, GraalVM Enterprise’s reduction of required compute resources can lower capital
cost expenditures on premise and lower operation costs on cloud.

The GraalVM Enterprise Compiler

The GraalVM Enterprise compiler includes 62 separate compiler optimization
algorithms (called “Phases”), of which 27 are patented, including new techniques for
vectorizing complex programs, large-scale escape analysis, and code specialization. In
general, JVM languages (e.g., Java, Scala, and Kotlin) will see around a 20%–30%
speedup using GraalVM Enterprise when compared with Java SE 8. Many large Scala
applications can show 30% to 40% performance improvements. Code using more
modern Java styles (like Streams and Lambdas introduced in JDK 8) and more
abstractions will see even greater speedups. Low level C-like code or code that is
bottlenecked on things like I/O, memory allocation, or garbage collection, will see less
improvement. Benchmarks are not necessarily a perfect indicator of the performance
of a typical application, but to date the most accurate performance predictions for the
JVM come from the “Renaissance”3 benchmark, which has been developed by Prague’s
Charles University in conjunction with Oracle Labs.

Faster Code—Advanced Compiler

Optimizations

 27 patented optimizations

 Aggressive inlining—

increases optimization

opportunities

 Polymorphic inlining—

faster virtual method

dispatch

 Partial Escape Analysis—

eliminate or delay object

allocations

 Lower memory and CPU

usage—reduced garbage

collection

 Less garbage means less

time collecting thanks to

advanced compiler

optimizations

 Less GC means more CPU

for application code—

higher throughput

Figure 1 shows the results for the Renaissance benchmarks for GraalVM Enterprise which shows an average
increase of 55% over JDK 8 with some benchmarks running over 4x faster.

Figure 1: GraalVM Enterprise Renaissance Benchmark Performance

1.
14 1.

52 1.
78

1.
22 1.

44

1.
35

1.
36

1.
14

1.
02

1.
08

1.
84

1.
03

2.
34

1.
18

4.
30

1.
40

1.
27

2.
33

1.
14 1.
31

1.
12

4.
31

2.
66

1.
09

2
.3

1

1.
55

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Sp
ee

d
u

p
 v

s
JD

K
8

6 WHITE PAPER | Oracle GraalVM Enterprise Edition | Version 1.01
 Copyright © 2020, Oracle and/or its affiliates

The paper motivating the Renaissance benchmark was recently accepted by PLDI4 (Programming Language
Design and Implementation), the world’s most prestigious programming language conference. One of the key
reasons the paper is considered new research is that the authors were able to show that Renaissance is more
representative of larger, real-world applications, and not just built from a majority of small, microbenchmarks
that are easy to hand-optimize in ways that render the benchmark results unrepresentative for larger
applications. To illustrate, Figure 2 and Figure 3 show that Renaissance benchmarks have more hot code and
many more hot methods than classical JVM benchmarks like SPECjvm2008.5 This shows that the Renaissance
benchmarks are more reflective of real-world applications where complex tasks are performed repetitively. In
addition, older benchmarks like SPECjvm and DaCapo don’t include features from more modern versions of Java
such as Streams and Lambdas, which were introduced in JDK 8.

Figure 2: GraalVM Enterprise Renaissance Benchmark Hot Method Count. Figure 3: GraalVM Enterprise Renaissance Benchmark Hot Code Size

The GraalVM Enterprise compiler shines even brighter for the Scala language, which typically has more
abstractions for the compiler to work with, allowing for more speedup. The Scalabench suite is a good predictor
of Scala performance across a wide range of Scala applications. Twitter, the most well-known Scala user, has
been using the GraalVM Community compiler for many years, gaining significant speedups that have saved the
company millions of dollars a year in annual infrastructure expenditures. The Scalabench run for GraalVM 20.1 is
shown in Figure 4. As you can see, GraalVM Enterprise 20.1 significantly outperforms the base JDK8 in the vast
majority of tests, averaging about 34% faster.

Figure 4: GraalVM Enterprise and Community Scalabench Performance relative to JDK8

1.
77

2
.7

5

1.
29

1.
22

1.
51

1.
16 1.

29

0.
68

1
.2

5

1.
03

1.
59

1.
34

0.00

0.50

1.00

1.50

2.00

2.50

3.00

apparat factorie kiama scalac scaladoc scalap scalaiform scalatest scalaxb specs tmt geomean

Sp
e

ed
u

p
 v

s
JD

K
8

Scalabench

GraalVM Enterprise 20.1

7 WHITE PAPER | Oracle GraalVM Enterprise Edition | Version 1.01
 Copyright © 2020, Oracle and/or its affiliates

What Makes GraalVM Enterprise Faster

Benefitting from over a decade of compiler research and development by Oracle Labs, as well as the experiences
of the industry-leading GraalVM community, GraalVM Enterprise runs applications faster because it generates
highly optimized machine code. Compiler phases including aggressive inlining, polymorphic inlining, and other
techniques, make code more efficient. Thanks to advanced memory-allocation optimizations, such as partial
escape analysis and scalar replacement6, GraalVM Enterprise is capable of optimizing away many object
allocations. Consequently, an application running on GraalVM Enterprise needs to spend less time doing
automatic memory management and garbage collection. From a production deployment perspective, this
means that an application running on GraalVM Enterprise can achieve better performance with less memory,
which is particularly important for cloud environments.

Apache Spark on GraalVM Enterprise

As companies that are deploying Apache Spark know well, when processing large amounts of data, performance
is absolutely critical. While there are many sophisticated performance tuning options and techniques available in
Apache Spark, one of the easiest ways to improve overall performance is to run it on GraalVM Enterprise. The
Renaissance benchmark suite’s Apache Spark benchmarks show an average workload execution time reduction
of 1.6x, with one benchmark running 4x faster!

Peak performance is the performance of an application after the Java Virtual Machine warms up, and the Just-
In-Time compiler-generated machine has been fully optimized. The following graphs compare the peak
performance of OpenJDK 8 and GraalVM Enterprise. We’ll take OpenJDK 8 as the baseline, with the y-axis
showing the normalized performance, so higher is better. Overall, GraalVM Enterprise achieves higher peak
performance than OpenJDK 8 on all Apache Spark benchmarks. The performance of Apache Spark on GraalVM
Enterprise improves by an astonishing mean of 60% (1.6x normalized). In Figure 5, the performance of GraalVM
Enterprise can be seen to exceed OpenJDK 8 on the naïve-bayes benchmark by about 4x.

GraalVM Enterprise allows your Apache Spark workloads to run faster and consume fewer resources without
any additional changes to your database configuration or application code.

Figure 5: Apache Spark Performance of GraalVM Enterprise Relative to OpenJDK8

1.
53

1.
83

1
.4

3

1.
79

1.
13 1.
19

4.
11

1.
21

1.
62

0.0

0.5

1.0

1.5

2.0

2.5

als chi-square dec-tree gauss-mix log-regression movie-lens naive-bayes page-rank geomean

P
er

fo
rm

an
ce

 R
at

io

Apache Spark Relative Performance on JDK 8 (higher is better)

OpenJDK 8 GraalVM Enterprise (JDK 8)

8 WHITE PAPER | Oracle GraalVM Enterprise Edition | Version 1.01
 Copyright © 2020, Oracle and/or its affiliates

Accelerating WebLogic Applications

With the certification of WebLogic Server versions 12.2.1.4 and 14.1.1 on GraalVM Enterprise, Java Enterprise
Edition users can take advantage of the performance benefits GraalVM Enterprise provides. In Figure 6,
performance is up to 30% faster on some benchmarks with typical applications seeing up to 10% improvement.
Each column in Figure 6, below, represents a benchmark in the suite and shows the range of performance of
each benchmark from the minimum performance improvement to the highest performance improvement.

Figure 6: WebLogic Server Performance on GraalVM Enterprise

Running WebLogic Server on GraalVM Enterprise is as simple as changing its Java Home, as seen in Figure 7. No
changes to application code or configuration are necessary. Once running, GraalVM Enterprise’s optimizing
compiler will produce faster Just-In-Time compiled machine code and eliminate unnecessary object allocations,
thus reducing garbage collection costs.

Figure 7: Running Oracle WebLogic Server on GraalVM Enterprise

-5

5

15

25

35

IIOP Muxer T35 JSP T3 JAXWS HTTPSession JDBC JAZZCAT

P
er

fo
rm

an
ce

 Im
p

ro
ve

m
en

t
(%

)

Oracle WebLogic 14.1.1 performance
GraalVM Enterprise vs. Java 11

Min Max

9 WHITE PAPER | Oracle GraalVM Enterprise Edition | Version 1.01
 Copyright © 2020, Oracle and/or its affiliates

THE IDEAL MICROSERVICES RUNTIME

Microservices are increasingly being used to build modern applications. This shift from
large applications with multiple services to a collection of smaller single service
applications imposes new requirements on applications. Microservices applications are
highly distributed, which allows for significant redundancy and reliability. They are
designed to execute effectively in today’s modern cloud environments. To handle peak
demand, it’s also necessary to able to scale up and down rapidly. However, many
microservice deployments are unable to scale up or down quickly and it can take
seconds or even minutes to add additional capacity to meet demand spikes.

GraalVM Enterprise’s Native Image utility can compile Java applications into native
binary executables that have incredibly fast start times since program initialization can
be done at build time and the application is already compiled. They will likewise have
much smaller footprints since the JVM and JIT compiler don’t have to be distributed.

These qualities have led to GraalVM Native Image being the preferred way to run
applications built by all the major microservice frameworks including Helidon,
Micronaut, Quarkus, and Spring Boot.

On a popular framework benchmark, GraalVM Enterprise Native Image provides
instant and consistent throughput, as seen in Figure 8. This results in an initial
transactions-per-second rate that is 1500% higher than a JIT compiled application,
allowing microservices to perform at their peak, immediately. This eliminates the need
to keep services running for peak-time only demands.

If the application is run for some time and the JIT compiler has time to warm up, it will
achieve higher peak performance, e.g., 16% in the benchmark. So, while Native Image
is ideal for fast starting and relatively short-lived microservices, JIT is a better option
for traditional long-running Java workloads.

GraalVM Enterprise Native Image

Advantages

 Minimized Attack Surface

as the Native Image

compiler removes unused

classes, methods, and

fields.

 Profile Guided Optimization

allows you to profile your

application to achieve

maximum performance

even when compiled

Ahead-Of-Time.

 Compressed Pointers

reduce application memory

footprint by using 32-bit

references to Java objects

on 64-bit architectures.

 G1-based Garbage Collector

supports large heaps and

pause time goals while

achieving high throughput.

 Isolates support separate

heaps for independent

processes to improve

isolation and reduce

garbage collection.

Figure 8: Throughput over time of GraalVM Enterprise using JIT compilation and Native Image (AOT) compilation vs JDK12.

0

5000

10000

15000

20000

1,000 10,000 100,000 1,000,000 10,000,000

R
eq

u
es

ts
 p

er
 S

ec
o

n
d

Cumulative number of requests sent by ApacheBench

Popular Framework Benchmark

GraalVM Enterprise
Native Image

GraalVM Enterprise JIT

JDK12, HotSpot

16% higher

1500% higher

10 WHITE PAPER | Oracle GraalVM Enterprise Edition | Version 1.01
 Copyright © 2020, Oracle and/or its affiliates

Microservice Startup, CPU, and Memory Usage with GraalVM Enterprise

Let’s take a look at a simple microservice to see the impact of native image compilation on application resource
consumption. We’ll use the Micronaut Framework for our application that calculates prime numbers. We’ll start
up the service and then ask it to give us back all prime numbers between 2 and 100. We’ll do this three times.

To ensure the service is ready, we query it approximately every 0.02 seconds until we get a valid response.
We then loop three times sleeping for one second before making each request for primes.

We do this first using Just-In-Time compilation with JDK8, the results of which are the chart on the left in
Figure 9. Then, we repeat the process, but this time we use the GraalVM Enterprise Native Image (JDK8)
compiled version of the same Micronaut application. The results of this run are depicted in the chart on the
right in Figure 9.

The JIT version of the application takes approximately two seconds (2044ms) to start and return a valid
response. That first request is the one we use to confirm the application is ready. Then there is one second or
more to compile additional code being executed on the server side in preparation to accept the second request.
During those three seconds, the process takes up as much as 15,000% of the CPU in spikes and averages about
3000%. It also climbs in memory usage until it plateaus at about 200MB.

Conversely, the Native Image compiled version of the application takes less than 1 second to startup (744ms)
and return the first request that we use to confirm the process is ready. During this time, the service consumes
approximately 50% CPU and plateaus at about 40MB of memory.

Figure 9: JIT vs. Native Image (AOT) starting up and serving two requests in the first ten seconds

IMPROVED PRODUCTIVITY WITH MULTI-LANGUAGE SUPPORT

Java is the most popular language for building enterprise applications, but JavaScript, Python, Ruby, and other
programming languages are also frequently used. Many of these languages have been either designed for or
have carved out a niche in specific areas, e.g., machine learning, and have libraries that provide unique and
valuable features. Hence, developers often use different languages for specialized applications.

Ideally, a developer should be able to incorporate libraries from any language into their Java application,
allowing them to take advantage of the unique capabilities of that language or library. Or, if their primary
language is not Java, developers should be able to incorporate Java libraries into their non-Java applications.
Traditionally this has been difficult to do. It has typically introduced significant performance penalties that have
made it impractical—until now.

11 WHITE PAPER | Oracle GraalVM Enterprise Edition | Version 1.01
 Copyright © 2020, Oracle and/or its affiliates

GraalVM Enterprise provides high performance runtime support for a number of languages beyond Java, along
with the ability to have different languages and libraries interoperate with no performance penalty. This support
improves developer productivity by letting them use the right language or library for a given task.

Key to GraalVM Enterprise’s polyglot support is language compliance. For each of the supported languages,
GraalVM Enterprise strictly adheres to the specification for each language and runs their compliance test suites
to ensure compatibility. For example, as seen in Figure 10, GraalVM Enterprise’s JavaScript support is
ECMAScript 2019 compliant and continues to implement the new features being added to the language in the
ECMAScript 2020 specification.7

Figure 10: GraalVM ECMAScript Compliance

GraalVM Enterprise’s Ruby support is unique in being the only runtime other than the standard MRI (CRuby) to
pass all 2180 of the RubyGems test with no exclusion. Compatibility along with excellent performance is the
reason companies with huge Ruby estates like Shopify are investing in GraalVM Ruby.8

GraalVM continues to add support for new languages and technologies including Python, LLVM bit code, and
WebAssembly.

GRAALVM ENTERPRISE SECURITY

When GraalVM Enterprise’s Native Image Utility Ahead-of-Time compiles Java code into a native executable, it
only includes the code required to execute the application, greatly reducing the application attack surface. It
does this by statically analysing the application code under a “closed world” assumption, which means the
application code, its dependencies, dependent JDK libraries, and VM components, are analyzed to determine
which classes and methods are actually reachable and used during execution. The output of this analysis is that

12 WHITE PAPER | Oracle GraalVM Enterprise Edition | Version 1.01
 Copyright © 2020, Oracle and/or its affiliates

only the “reachable bytecode" is passed as input to the GraalVM compiler. This process can eliminate as much
as 96% of the Java code from the JDK and other libraries in the resultant native executable.

Since there’s less code, there’s less for an attacker to exploit. Additionally, with Ahead-Of-Time compiled native
executables, there’s no dynamic class loading that can be exploited in a de-serialization attack. A native
executable won’t be impacted by a vulnerability in a class that might have been part of a Java library that the
application included but never actually used. This means the application will not need to be patched as
frequently to address vulnerabilities in third party dependencies.

GRAALVM ENTERPRISE: AT THE CENTER OF INNOVATION

GraalVM started with an idea to build a Java complier in Java that would be easy to maintain and offer improved
performance. As GraalVM advanced it took on visionary ideas and capabilities such as Ahead-Of-Time
compilation for Java and multilingual support. But the core goal has always been, and will continue to be,
accelerating the performance of mission critical applications. It is this relentless focus on performance that has
made every release of GraalVM faster than the last.

GraalVM also continues to provide excellent language specification compliance for all supported languages, and
tracks changes through Oracle’s participation in a number of standards bodies like Ecma International.9 GraalVM
innovations are in turn influencing specifications, like the recent announcement of the OpenJDK’s Project
Leyden, which seeks to provide a standard specification for Java binary executables pioneered by the Native
Image feature.

GraalVM Enterprise is a foundation for innovation for both large enterprise applications and microservices. The
unique set of capabilities that GraalVM Enterprise provides has led to it being integrated into Oracle NetSuite for
user scripting, and into Oracle Coherence to bring advanced data grid and in-memory caching technology to
JavaScript and Node.js, and other languages. It’s also being integrated into the Oracle Database to provide
multilingual support for stored procedures to improve its usability for modern full stack developers. GraalVM
Native Image has also become the de facto standard platform for microservices with support from all leading
frameworks including Micronaut, Helidon, Spring Boot, Quarkus, and Tomcat.

GETTING STARTED

GraalVM Enterprise is easy to try out. Built on Oracle Java SE, GraalVM Enterprise is a drop-in replacement for
your current JDK. Just download from the Oracle Technology Network, unzip, set your JAVA_HOME variable, and
go. GraalVM Enterprise is free for development and evaluation usage and can be downloaded from the Oracle
Technology Network. GraalVM Enterprise is free for production applications (including support) in Oracle Cloud
and is built into the Oracle Cloud Developer Image, which includes the latest tools, OCI SDKs, database
connectors, and more.

The full documentation is available on the Oracle Help Center

Figure 11: Oracle Cloud Developer Image with GraalVM Enterprise

https://www.oracle.com/downloads/graalvm-downloads.html
https://www.oracle.com/downloads/graalvm-downloads.html
https://www.oracle.com/downloads/graalvm-downloads.html
https://blogs.oracle.com/linux/announcing-the-oracle-cloud-developer-image-for-oracle-cloud-infrastructure
https://docs.oracle.com/graalvm

CONNECT WITH US

Call +1.800.ORACLE1 or visit oracle.com.
Outside North America, find your local office at oracle.com/contact.

 blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2020, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the contents hereof are subject to change without notice. This
document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of

merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this
document. This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International,
Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0120

Oracle GraalVM Enterprise Edition
August, 2020

REFERENCE
1 Andreessen, Marc. “Why Software is Eating the World.” a16z.com. https://a16z.com/2011/08/20/why-software-is-eating-the-world

2 Patel, Neil. “How Loading Time Affects Your Bottom Line.” neilpatel.com. https://neilpatel.com/blog/loading-time

3 Renaissance Suite. “A Modern Benchmark Suite for the JVM.” https://renaissance.dev

4 SIGPLAN. “Program Language Design and Implementation Conference, 2019.” https://pldi19.sigplan.org/home

5 Prokopec, Aleksandar, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tůma, Martin Studener, Lubomír Bulej, Yudi Zheng, Alex Villazón, Doug Simon,
Thomas Wuerthinger, Walter Binder. “On Evaluating the Renaissance Benchmarking Suite: Variety, Performance, and Complexity.” arXiv.org.
https://arxiv.org/pdf/1903.10267.pdf

6 Stadler, Lukas, and Thomas Würthinger, Hanspeter Mössenböck. “Partial Escape Analysis and Scalar Replacement for Java.”
CGO '14: Proceedings of Annual IEEE/ACM International Symposium on Code Generation and Optimization (February 2014):165-174. http://www.ssw.uni-
linz.ac.at/Research/Papers/Stadler14/Stadler2014-CGO-PEA.pdf

7 “ECMAScript Compatibility Table.” https://kangax.github.io/compat-table/es2016plus

8 Chen, Carol. “Optimizing Ruby Lazy Initialization in TruffleRuby with Deoptimization.” Shopify. https://engineering.shopify.com/blogs/engineering/optimizing-
ruby-lazy-initialization-in-truffleruby-with-deoptimization

9 Yurenko, Alina. “Oracle Becomes an Ecma TC39 Member.” Oracle. https://blogs.oracle.com/graalvm/oracle-becomes-an-ecma-tc39-member

https://www.oracle.com/
https://www.oracle.com/corporate/contact/
https://blogs.oracle.com/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://a16z.com/2011/08/20/why-software-is-eating-the-world/
https://neilpatel.com/blog/loading-time/
https://renaissance.dev/
https://pldi19.sigplan.org/home
https://arxiv.org/pdf/1903.10267.pdf
CGO%20'14:%20Proceedings%20of%20Annual%20IEEE/ACM%20International%20Symposium%20on%20Code%20Generation%20and%20Optimization
http://www.ssw.uni-linz.ac.at/Research/Papers/Stadler14/Stadler2014-CGO-PEA.pdf
http://www.ssw.uni-linz.ac.at/Research/Papers/Stadler14/Stadler2014-CGO-PEA.pdf
https://kangax.github.io/compat-table/es2016plus
https://engineering.shopify.com/blogs/engineering/optimizing-ruby-lazy-initialization-in-truffleruby-with-deoptimization
https://engineering.shopify.com/blogs/engineering/optimizing-ruby-lazy-initialization-in-truffleruby-with-deoptimization
https://blogs.oracle.com/graalvm/oracle-becomes-an-ecma-tc39-member

	Purpose Statement
	Disclaimer
	Table of Contents
	Reference

