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Disclaimer 

The following is intended to outline our general product direction. It is intended for information 

purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any 

material, code, or functionality, and should not be relied upon in making purchasing decisions. The 

development, release, and timing of any features or functionality described for Oracleôs products 

remains at the sole discretion of Oracle. 
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Introduction 

The expected credit loss (ECL) or impairment calculation rules imposed by the IFRS9 standard require 

the financial institutions to calculate expected loss for banking book facilities over the entire life of the 

exposures, conditional on macroeconomic factors, on a point-in-time basis. The new ECL calculation 

rules will apply from January 2018, by which time the banks will need to have them implemented in 

production IT systems. The IFRS9 methodology for ECL calculation requires models for probability of 

default (PD), loss given default (LGD) and exposure at default (EAD). In this paper we describe a PD 

term structure model based on multi-state Markov (MSM) methodology. The inputs to the model are 

discrete rating grades that come from either bankôs internal rating system or from the rating agencies, 

and macroeconomic time series. The model produces cumulative PDs over multiple tenor points, 

conditional on specific values of the macroeconomic factors (macro scenarios). We then show how the 

estimated model can be implemented in Oracleôs OFSAA, namely its IFRS9 module. We estimate and 

deploy the models in Oracle using the R programming language.  

IFRS9 standards for PD modeling 

The expected credit loss (ECL) or impairment calculation rules set by the IFRS9 standard require the financial 

institutions to calculate expected loss for banking book facilities over the entire life of the exposures, conditional on 

macroeconomic factors on a point-in-time basis. The new ECL calculation rules will apply from January 2018, by 

which time the banks will need to have the ECL calculations implemented in production IT systems. 

In this section we briefly outline the main requirements for the estimation of default probabilities from the IFRS9 

Standard point of view. 

» PD estimates should be unbiased ("best estimate PD"), i.e. PD should accurately predict number of defaults and 

does not include optimism or conservatism. Where regulatory capital models are used as a starting point to 

calculate ECL, appropriate adjustments need to be made to remove inherent conservatism. 

» Estimated PDs should be point-in-time, i.e., adjusted, where necessary, to reflect the effects of the current 

economic conditions. 

» The PD estimates should be recalibrated on a regular basis, or monitoring should be provided to show why 

recalibration was not necessary. The (re)calibration sample should representative of the current population. 

» PD should be calculated using sufficient sample size, i.e. estimates should be based on a sufficiently large 

sample size to allow for a meaningful quantification and validation of the loss characteristics. Historical loss data 

should cover at least one full credit cycle. 

» The PDs should be calculated with appropriate segmentation - the bank should consider risk drivers in respect of 

borrower risk, transaction risk and delinquency status in assigning exposures to PD model segments. 

» The data used for calibration should be consistent with the IFRS 9 default definition, i.e. all components of the PD 

calculation (including 12m PDs and default curves for extrapolation to lifetime) should use the same definition of 

default. 

» Lifetime PDs should be calculated using appropriate extrapolation methodologies. Where extrapolation 

techniques are used to determine lifetime PD measures, these should not introduce bias into the calculation of 

ECL. 

» The estimated PDs should be inclusive of forward looking information, including macroeconomic factors in the 

computation of lifetime PD's, to ensure that loss recognition is not delayed. 
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» For instruments that have comparable credit risk, the risk of a default must be higher the longer the expected life 

of the instrument (this requires that cumulative lifetime PD curves are monotonically increasing) 

» Internal data should be used in building the PD models, where possible, and data should be representative of the 

portfolio going forward. 

» Where external data or vendor models are used, the external calibration sample should be representative of the 

internal risk profile of the current population. 

The practical implications of these requirements is that PD term structure models need to be quite sophisticated and 

should fit the data very well to provide credibility in estimating long tenor PDs over the life of the exposures that can 

often be in excess of 20 years.  

The AIRB requirements for PD models used for capital calculations differ from IFRS9 in two main respects. First, 

The AIRB PDs can be TTC, PIT, or hybrid with an additional requirement (in CRD4) that capital should not be pro-

cyclical, hence acceptable PD models and rating systems that produce PD parameters for capital calculations tend 

to be TTC or hybrid. The exception is PIT PD models that have an additional adjustment mechanism (e.g. variable 

scalar approach) that converts PIT to TTC PDs for capital calculation purposes. In such case the Basel and IFRS9 

1-year PDs will be equivalent and there is no need for further adjustment, however this case is not common in 

practice and there is only one major bank using PIT PD estimation for sanctioning purposes and an auxiliary 

adjustment framework that results in TTC PDs for capital calculations. Most banks will need to adjust their rating 

system from a TTC/hybrid to PIT to make their internal (1-year) PDs compatible with IFRS9.  

The second difference between AIRB/Basel and IFRS9 requirements is the IFRS9 requirement for PDs to be 

unbiased, or ñbest estimateò, which contrasts to the Basel requirement for PDs to be ñconservativeò. This poses 

challenges for the development of IFRS9 impairment models. Namely, the development of AIRB/IRB PD models 

typically made use of the conservative regulatory guidance to cover for any data or model deficiency by simply 

increasing PD estimates, adding floors or modifying any other model parameters that will have the end results of 

increasing risk weighted assets and hence capital. This means that many AIRB models already approved by the 

regulators will not be suitable for IFRS9 without further modifications. Specifically, any conservative overlay needs to 

be removed in order to use the PDs in impairment calculation under IFRS9. This can be tricky as conservativism is 

likely to have been introduced to remedy model deficiencies, e.g. poor rank ordering or imprecisely estimated model 

coefficients, hence once removed these deficiencies will become a model weakness thereby calling for a complete 

model rebuild. 

Overall, the biggest challenge for PD modeling coming from IFRS9 is to link the defaults (or more broadly rating 

migrations) to macroeconomic variables and to do so over a very long time horizon. The AIRB/Basel PD models 

aimed to forecast defaults over one year horizon, which was typically done on the long-term average, through-the-

cycle, basis. Performance of TTC PD models is assessed over a long time period, ñon averageò; hence under/over-

prediction in particular years is not a sign of model under-performance. On the other hand, the PD forecasts for 

IFRS9 impairment calculation are point-in-time, conditional on macroeconomic variables, and are forecasted over 

multiple years. Such models thus need to have good empirical performance in each year, at different points in the 

cycle, and they should be accurate rather than conservative.  

In this paper we estimate a panel multi-state Markov model using discrete credit ratings data combined with 

macroeconomic time series. Section 2 describes the data set and section 3 outlines how TTC ratings are adjusted to 

PIT ratings before model is estimated. Section 4 describes the MSM methodology while model estimates are 

reported in section 5. In section 6 we show how conditional lifetime PD curves can be calculated from an MSM 

model. Section 7 shows how the model estimated in R language can be deployed to production from Oracleôs 

OFSAA IFRS9 core banking software solution. 
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Data 

The data for modeling the term structure of conditional default probabilities consists of obligor rating histories and 

macroeconomic time series. An appropriate data format is a panel (cross-sectional time series) where the cross 

section is across obligors and time series is over time. It would be assembled with obligor ratings (internal or form a 

rating agency) for each date (time point) when the rating was changed along with the associated value of 

macroeconomic variables at the same time point. For example, suppose an obligor rating was downgraded from 

BBB to BB- in December 2009, at the same time the change in employment in the United Kingdom compared to one 

year earlier was approximately -2%, hence this information forms one single observation point in the panel data set. 

Other macroeconomic variables would enter in the same way, i.e. annual change as of December 2009 (or level if a 

variable is not differenced).  

For the purpose of illustrating the MSM modeling for IFRS9 we use UK macroeconomic time series spanning from 

2007 to 2014, which resembles data span most British banks, would be using for such purposes. We consider GDP, 

employment, consumption, and FTSR100 (see Figure 1). Except for employment, all variables are in annual 

differences (changes) as their levels are non-stationary. 

In practice, the choice of macro factors will depend on the nature of the portfolio and different factors would 

generally be needed for different types of portfolios and industry sectors. The ratings data source can be external 

(Moodyôs, S&P, Fitch) or bankôs internal ratings history. For the purpose of illustrating the modeling process we 

make use of simulated ratings history data on a simplified rating scale with 5 performing grades (G1-G5) and a 

default grade (G6). 

 

Figure 1. Macroeconomic time series ï monthly changes 
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Point-in-Time Adjustment of Through-the-Cycle Ratings 

Consider an example of S&P ratings, which are largely through-the-cycle (TTC). S&P reports an empirical default 

rate for BBB grade calculated as an annual average from 1981 to 2014 as 0.32. This is clearly a TTC default 

probability as it was calculated over a 33 year period. In each of these years the observed BBB default rate was 

generally either below or above the long run of 0.32. This annual default rate calculated for each individual year is 

the point-in-time (PIT) default rate of the BBB grade. This means that implied PIT rating for a company that has TTC 

BBB long-term rating can be e.g. 0.12 in any given year. The 0.12 default rate in the long-run corresponds to A 

grade hence in a good year a long-run BBB can be represented by an A grade if its observed default rate is, say, 

0.12 in that year. In this case, the TTC rating would be BBB and PIT rating would be A. Such conversion mapping 

can be used across all grades and years to produce PIT ratings.  

Mathematically, the cohort estimate of the TTC default rate for a generic rating grade j over all time periods t can be 

expressed as a simple ratio 
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Using our sample data set we calculate TTC transition matrix over the 2007-14 period based on equation (1), which 

gives results shown in Table 1. 

 

TABLE 1. THROUGH-THE-CYCLE TRANSITION MAT RIX 

 

 

Applying equation (2), i.e. calculating specific year default rate for each rating grade and then mapping the observed 

default frequency to TTC grades for 2008 gives the results shown in Table 2. The resulting grades G1-G5 are now 

PIT.  

G1 G2 G3 G4 G5 D

G1 0.812 0.162 0.018 0.001 0.004 0.004

G2 0.158 0.761 0.058 0.011 0.004 0.008

G3 0.020 0.234 0.542 0.103 0.050 0.050

G4 0.010 0.160 0.144 0.433 0.144 0.108

G5 0.007 0.109 0.036 0.109 0.467 0.270
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TABLE 2. 2008 POINT -IN-TIME TRANSITION MATRIX 

 
 
For comparison, we do the same calculation for year 2014, to give us a balance of bad and good years, which is 

shown in Table 3.  

 

TABLE 3. 2014 POINT-IN-TIME TRANSITION MATRIX 

 
 
We can observe that the dynamics in the transition matrices above are quite different specially the default rates. 

Note the default rate associated with G4 in 2008 is 0.385, which corresponds to G5 in the long-run; hence a G5 

obligor through-the-cycle is actually a G5 point-in-time in 2008. This means that PIT credit quality (grade) in 2008 is 

lower than the TTC grade, for the same obligor. The opposite holds in good years, as in our 2014 example in Table 

3 above shows a G3 obligor in 2014 has credit quality that is better than the long-run (TTC) default rate for G3, and 

hence maps into G2 or G1 (is nearly half way in between in this case). We thus follow this logic and map yearly 

default rates into the TTC-defined grades, which gives us PIT grades as illustrated in the above example. The PIT 

grades data will be used in our modeling as this will give us correct transition matrix dynamics and correlations with 

the macro factors. 

Methodology 

We use a multi-state Markov model (MSM) to model transition probabilities between rating grades (see Cziráky and 

Sadleir, 2013). A multi-state Markov model captures movements between n states where the probability of moving 

away from the current state depends on the previous state. We consider transitions between states in continuous 

time, measured by an n x n   intensity matrix Q(t) given by 

G1 G2 G3 G4 G5 D

G1 0.807 0.114 0.068 0.000 0.011 0.000

G2 0.082 0.776 0.102 0.031 0.000 0.010

G3 0.023 0.205 0.545 0.114 0.068 0.045

G4 0.077 0.077 0.000 0.462 0.000 0.385

G5 0.000 0.000 0.000 0.000 0.500 0.500

G1 G2 G3 G4 G5 D

G1 0.851 0.142 0.000 0.000 0.000 0.007

G2 0.085 0.858 0.019 0.028 0.009 0.000

G3 0.000 0.188 0.688 0.000 0.063 0.063

G4 0.000 0.333 0.167 0.333 0.000 0.167

G5 0.000 0.200 0.000 0.000 0.400 0.400
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where the instantaneous risk of going from state r to state s is represented by the intensity 
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which can be written as ()( ),rs rsq t z t q=  for time-homogeneous models, 

 

( )( ) ( )(0)

,

1

ln ln
K

rs ij rs rs k k

k

q z q xb
=

= +ä ,                                        (3) 

or equivalently 

( ) (0)

,

1

exp
K

rs ij rs rs k k

k

q z q xb
=

å õ
= æ ö

ç ÷
ä ,                                         (4) 

 
Where xk, k = 1, 2,é,k  denotes a set of exogenous variables affecting the instantaneous risk of going from state r to 

state s. In this case we have the same set of K covariates affecting different transitions, while the intercept ln (qrs) is 

specific to the transition intensity from state s to state r. 

When panel data are considered we have n x n states, m obligors observed over T time periods (see Kalbfleisch 

and Lawless (1985) for more details on Markov models for panel data). If panel is balanced, each of the m obligors 

will be observed in all T time periods, otherwise, in the case of an unbalanced panel design some of the m obligors 

will be observed for a period shorted than T. Starting times might generally differ as well.  

The likelihood of the MSM model for panel data can be written in terms of transition probabilities prs (denoting 

probability of transition from state r to state s) by multiplying across all states, obligors, and time periods 

 ()( )( ) , , ,
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The likelihood is parameterized in terms of transition probabilities, which form an n x n transition probability matrix  

P (t,z(t)) corresponding to the intensity matrix Q(t,z(t)) that can be written as   
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where the relationship between P(t,z(t)) corresponding to the intensity matrix Q(t,z(t)) matrices is given by the 

following equation 
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The estimation of the model coefficients is done by maximum likelihood, which is available in the analytical form for 

simple models with small number of states (Kalbfleisch and Lawless, 1985). In general, for models with larger 

number of states (n > 3), optimization methods using numerical derivatives and derivatives-free techniques need to 

be used (see Jackson, 2011). 

Model Specification and Estimation 

We model the transition probabilities between pairs of states represented by 5 letter grades (G1-G5), where G6 

denotes default. For the estimation purposes we allow all possible transitions, i.e. we do not impose any zero 

constraints on the Q(t,z(t)) matrix.  

We model the dependence of the transition probabilities (or equivalently intensities) to macroeconomic variables 

shown in Table 4. 

 

TABLE 4. VARIABLES A ND NOTATION 

Macroeconomic variable Notation 

GDP (annual change) 
tGDPD   

Employment rate 
temp   

Consumption (annual change) 

tconsD   

FTSE100 (annual change) 

tSD   

 
In the estimation we consider four model specifications where the link function (4) will be parameterized as 
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We estimate the model parameters by maximum likelihood using BFGS quasi-Newton algorithm. In particular, we 

estimate nested models with an increasing number of exogenous variables (Models 1-4) and a base-case model 

without any exogenous variables (Model 0). In each of the estimated models we allow transition probabilities to 

depend on all included macroeconomic variables, which can be relaxed by imposing parameter constraints in the 

estimated model.  

Significance of sequential inclusion of individual exogenous variables is tested by the likelihood-ratio test with the 

results reported in Table 5. We find that the inclusion of tGDPD  significantly improves the model over the base 

case with no covariates. Further inclusion of 
tempand 

tconsD  did not lead to improvement while adding 
tSD  

leads to significant improvement of the previous models.  

 

TABLE 5. MODEL SPECI FICATION TESTING 

 
 
Table 6 reports full set of parameter estimates along with their 95% confidence bounds. 

 

To evaluate the model performance we compare the Model 4ôs predicted survival curves to a nonparametric 

(Kaplan-Meier) curve, which is shown in Figure 2. We find that the model fits well between 1 and 3 years and it then 

over-predicts the empirical survival rate beyond 3rd year. Given the short time series for most obligors in the panel 

data set we cannot expect good forecasting performance at the longer-horizons due to scarcity of data, which holds 

for both MSM model and empirical Kaplan-Meier estimates. However, for typical wholesale products
1
 the maturity is 

mostly under 5 years hence this need not be a model weakness. 

                                                             
1 E.g. revolving loans, bullet loans, letters of credit, etc. 

Model testing LR value d.f. p-value

Model 1 vs. Model 0 63.25801 25 0.000

Model 2 vs. Model 1 26.27585 25 0.393

Model 3 vs. Model 2 29.0173 25 0.263

Model 4 vs. Model 3 61.91031 25 0.000

Model 4 vs. Model 1 117.2035 75 0.001
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In addition to comparing empirical to model-predicted survival rates, we can also compare predicted and observed 

prevalence of states over time. Prevalence measures the proportion of obligors rated by each of the 5 rating grades 

among obligors in all grades, hence such comparison looks at how well the model predicts the proportion of obligors 

in each rating bucket, which is shown in Figure 3.  

TABLE 6. MLE PARAMETER ESTIMA TES 

 

 

Figure 2. Survival from 1 to 4 years 

Transition Base Lower Upper GDP Lower Upper Employment Lower Upper ConsumptionLower Upper FTSE100LowerUpper

1 - 1 -0.238 -0.265 -0.213 -- -- -- -- -- -- -- -- -- -- -- --

1 - 2 0.220 0.196 0.246 0.826 0.730 0.936 1.121 0.940 1.336 1.078 0.942 1.233 1.013 1.002 1.025

1 - 3 0.011 0.006 0.020 1.092 0.647 1.844 0.344 0.155 0.763 1.648 0.967 2.807 0.912 0.868 0.959

1 - 4 0.000 0.000 19.378 0.106 0.001 17.574 0.308 0.003 34.342 83.307 0.032 >100.0 0.655 0.293 1.466

1 - 5 0.003 0.001 0.009 1.248 0.459 3.397 0.695 0.141 3.430 1.101 0.400 3.029 0.931 0.844 1.026

1 - 6 0.004 0.002 0.010 0.828 0.332 2.069 0.628 0.153 2.583 1.609 0.585 4.424 0.974 0.899 1.055

2 - 1 0.222 0.197 0.249 1.013 0.895 1.147 1.216 1.024 1.443 0.929 0.813 1.061 1.007 0.996 1.018

2 - 2 -0.321 -0.354 -0.290 -- -- -- -- -- -- -- -- -- -- -- --

2 - 3 0.072 0.058 0.090 1.012 0.805 1.272 0.651 0.445 0.952 1.172 0.917 1.498 0.974 0.953 0.995

2 - 4 0.011 0.006 0.020 0.744 0.439 1.262 0.579 0.258 1.300 2.197 1.199 4.025 0.981 0.939 1.024

2 - 5 0.005 0.002 0.012 1.036 0.432 2.487 0.555 0.123 2.511 1.050 0.414 2.663 0.985 0.905 1.071

2 - 6 0.011 0.006 0.018 0.982 0.547 1.761 1.090 0.444 2.678 0.902 0.476 1.711 0.996 0.942 1.054

3 - 1 0.023 0.009 0.054 1.162 0.485 2.785 0.895 0.232 3.459 0.786 0.310 1.995 0.977 0.900 1.060

3 - 2 0.405 0.339 0.484 0.994 0.817 1.209 1.425 1.141 1.779 0.869 0.700 1.080 1.017 1.000 1.033

3 - 3 -0.710 -0.818 -0.617 -- -- -- -- -- -- -- -- -- -- -- --

3 - 4 0.131 0.092 0.188 1.066 0.732 1.555 0.658 0.361 1.201 0.942 0.646 1.375 0.998 0.965 1.031

3 - 5 0.070 0.044 0.112 1.232 0.739 2.053 0.836 0.389 1.798 0.840 0.501 1.409 0.980 0.937 1.025

3 - 6 0.081 0.054 0.122 0.856 0.541 1.354 1.130 0.627 2.038 1.133 0.690 1.861 0.998 0.960 1.036

4 - 1 0.004 0.000 0.228 0.719 0.063 8.157 1.851 0.258 13.293 3.713 0.365 37.816 0.921 0.746 1.137

4 - 2 0.317 0.219 0.460 0.818 0.551 1.215 1.557 0.950 2.554 1.034 0.673 1.589 1.018 0.984 1.054

4 - 3 0.240 0.150 0.385 1.225 0.754 1.990 0.884 0.426 1.834 0.917 0.578 1.457 0.987 0.946 1.030

4 - 4 -0.933 -1.179 -0.739 -- -- -- -- -- -- -- -- -- -- -- --

4 - 5 0.251 0.162 0.389 0.778 0.514 1.176 2.076 1.268 3.398 0.793 0.487 1.291 1.048 1.011 1.086

4 - 6 0.121 0.057 0.257 1.568 0.773 3.182 0.334 0.114 0.981 1.316 0.749 2.312 0.914 0.857 0.974

5 - 1 0.000 0.000 >100.0 0.110 0.000 >100.0 0.557 0.000 >100.0 5.038 0.000 >100.0 1.167 0.248 5.477

5 - 2 0.198 0.114 0.347 1.028 0.597 1.771 1.066 0.449 2.531 0.917 0.506 1.661 1.001 0.945 1.061

5 - 3 0.025 0.003 0.212 0.559 0.192 1.631 0.802 0.169 3.810 3.227 0.851 12.242 1.054 0.930 1.195

5 - 4 0.154 0.075 0.316 1.001 0.558 1.795 1.444 0.541 3.853 0.606 0.283 1.300 1.021 0.955 1.092

5 - 5 -0.877 -1.153 -0.667 -- -- -- -- -- -- -- -- -- -- -- --

5 - 6 0.499 0.352 0.707 1.052 0.752 1.473 1.198 0.730 1.965 0.893 0.616 1.295 0.999 0.964 1.036
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Figure 3. Prevalence years 1 to 3: Model 4 

Calculation of Lifetime PDs Conditional on Macro Factors 

The IFRS9 calculation of expected credit loss (ECL) requires marginal PD curves over the life of the exposures, 

conditional on the macroeconomic factors. In this section we outline calculation of cumulative conditional PD curves. 

We note that ECL calculation uses marginal PD curves, which are just one-period (e.g. annual) changes in the 

cumulative PD curves.  

The one year-ahead cumulative PDs are in the last column of the conditional transition matrix that is calculated by 

entering specific values of the macroeconomic factors  (scenarios or forecast) in the transition intensity formula for 

each transition state, i.e. each element of the intensity matrix. The matrix is then exponentiated which yields the 

transition probability matrix. The second year cumulative conditional PDs are obtained by doing the same thing with 

two years-ahead macro forecasts and then pre-multiplying the resulting transition matrix with the year-one matrix 

obtained in the previous step. This then repeats to h years, which can be expressed in general by the following 

formula 

 ()( ) ( )( )
1

, ,
h

j

t t t t j
=

= =ÔCP z P s                                              (8) 
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To demonstrate how the calculation works, we produce a hypothetical macro scenario for each of the four macro 

factors in the model over the next 21 years, as shown in Figure 4. 

 
Figure 4. Hypothetical 21 year scenario  

 
This hypothetical example results in cumulative PD curves shown in Figure 5. We note that default probabilities for 

the middle grades (G3 and G4) have notably increased, which is in line with a negative outlook for most of the 

variables in scenario above.  

  
Figure 5. Base case (left) and conditional (right) cumulative PD curves (from 1 to 50 years) 
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At this point, what is important to note is that PD curves need to be responsive to macroeconomic scenarios as this 

is the ultimate aim of the PD term structure model, hence it should be carefully assessed how the conditional curves 

behave under different macroeconomic scenarios. 

Production System Implementation of MSM PD Model in Oracle 

In this section we describe how the estimated MSM PD model can be implemented in the Oracle Financial Services 

Analytical Applicationsô (OFSAA) IFRS9 solution. OFSAA is a unified suite of products that offer a framework for 

integrated risk and performance management. The OFSAA framework shares a common financial services data 

model, analytical infrastructure and business intelligence layer as depicted in Figure 6. This infrastructure delivers 

unified metadata across the stack and provides a single set of computational engines, stochastic modeling methods 

and business rules to feed overlapping, but independent, analytical business functions. 

 

Figure 6. Building Blocks: Shared Components across Applications 

 
These common ñbuilding blocksò are leveraged from application to application to ensure data consistency, 
traceability and availability throughout the enterprise. 

As part of the OFSAA framework, the OFSAA IFRS9 solution includes the core IFRS9 functionalities for stage 

allocation and ECL calculation. It also manages the IFRS9 process workflow from data sourcing through to 

reporting, and comes with pre-configured methods for estimating loan loss provisions that enable compliance with 

IFRS 9 regulations, covering:  

(i) Data management 

(ii) Amortized cost and Effective Interest Rate (EIR) calculations  

(iii) Impairment allowance & provisioning  

(iv) Accounting generation  

(v) Reporting 

In addition, in order to provide full customization and more advanced modeling capabilities, the solution includes the 

Oracle Financial Services Enterprise Modeling module which allows statistical models written in various 

programming languages to be deployed straight into the OFSAA production environment.  

OFSAA Enterprise Modeling suite comes with a selection of prebuilt ECL models; however, it also allows fast 

implementation of internally developed specific models regardless of their complexity. Oracle provides a toolkit for 

developing end-to-end analytical applications with data lineage and traceability enabled at every step along the 

analytical workflow, supporting techniques developed using R, C++ or Java or Python programming languages.  
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In this paper we make use of the R programming language
2
 to develop and deploy the model within Oracle R 

Enterprise (ORE), an in-database implementation of the R platform. ORE is a component of the Oracle Advanced 

Analytics Option of Oracle Database Enterprise Edition. ORE enables running R models within the Oracle Database 

Environment. OFSAA supports ORE based models, that is, models defined and registered within the platform may 

be executed on an ORE instance. R models can be coded up within the platform or may be imported into the 

platform from the existing R scripts.  

The deployment of R script that was either developed externally (e.g. in R Studio code editor) or within OFSAA 

application is carried out in three simple steps: 

(i) Importing the script from the prototyping environment (R-studio) into OFSAA 

(ii) Mapping the input variable with the corresponding elements of the data model in the database 

(iii) Mapping the output variable with the corresponding elements of the data model in the database 

The R code shown in OFSAA model script window in Figures 7 is created using the MSM R package (Jackson, 

2011) and prototyped in R Studio running R engine version 3.3.2 on 64-bit. To run the code in OFSAA using ORE 

Engine we write a declaration that defines variables, model input and output. Note the "##" is not commenting the 

code out within the declaration section, it is a command that tells the underlying machine code to parse the R 

commands that follow. In the reaming of the text the "#" symbol serves the usual purpose of a comment marker.  

At this point we do not go into details on how the R code is written, we just note once the declaration is written 

linking inputs and outputs to named R objects the rest of the code is exactly the same as the code we would write 

for desktop execution in standard R language. 

The purpose of linking R objects with generic input/output declarations is to establish the link with the data base. 

Once the objects are declared, the model script will read the relevant fields from the data base (Figure 8), which 

requires filling in the model mapping dialog. Finally, as shown in Figure 9, the final dialog allows the user to store 

new tables in the data base containing model outputs such as the calculated ECL numbers, for each exposure, or 

intermediate model output as needed for audit or data retention purposes.  

 

                                                             
2 R is an open source statistical programming language and environment for computing and graphics. For more information 

about R, see the R Project for Statistical Computing at http://www.r-project.org. 
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Figure 7. Model Input Screen 
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Figure 8. Input variable Mapping 

 

 
Figure 9. Output Variable Mapping 
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Conclusion 

In this paper we show how a multi-state Markov model can be estimated and used for IFRS9 impartment purposes. 

This approach allows conditioning on macroeconomic factors, within the same model along with testing for model fit 

and significance of the estimated coefficients. We then show how the model estimated in R language can be 

implemented in Oracleôs IFRS9 solution, which is part of the OFSAA suite of software. We show that once the R 

code is written, very little further effort is needed to deploy it in the production (OFSAA) environment. This virtually 

removes the need to write business requirements and re-code the model, which drastically reduces the 

implementation timeline ï given the approaching 2018 deadline for IFRS9 implementation this is a rather appealing 

feature.  
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