B A

- ORACLE

Oracle Real Application Clusters (RAC)
Cache Fusion Performance
Optimizations on Exadata

May, 2021
Copyright © 2021, Oracle and/or its affiliates
Public

1 Technical Brief / Oracle Real Application Clusters (RAC) Cache Fusion Performance Optimizations on Exadata ORACLE
Copyright © 2021, Oracle and/or its affiliates / Public




A o A ¢

Disclaimer

This document in any form, software or printed matter, contains proprietary
information that is the exclusive property of Oracle. Your access to and use of
this confidential material is subject to the terms and conditions of your Oracle
software license and service agreement, which has been executed and with
which you agree to comply. This document and information contained herein
may not be disclosed, copied, reproduced or distributed to anyone outside
Oracle without prior written consent of Oracle. This document is not part of your
license agreement nor can it be incorporated into any contractual agreement
with Oracle or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist
you in planning for the implementation and upgrade of the product features
described. It is not a commitment to deliver any material, code, or functionality,
and should not be relied upon in making purchasing decisions. The
development, release, and timing of any features or functionality described in
this document remains at the sole discretion of Oracle. Due to the nature of the
product architecture, it may not be possible to safely include all features
described in this document without risking significant destabilization of the code.

2 Technical Brief / Oracle Real Application Clusters (RAC) Cache Fusion Performance Optimizations on Exadata ORACLE
Copyright © 2021, Oracle and/or its affiliates / Public



A S R e T T

Table of contents

Disclaimer
Executive Summary
List of Performance Optimizations
Exafusion
Zero Copy Block Sends
Smart Fusion Block Transfer
Undo Block RDMA Reads
In-Memory Commit Cache
Fast Index Split
Persistent Memory Commit Accelerator
Shared Data Block and Undo Header RDMA Reads

Broadcast-on-Commit over RDMA

O 00 00 9 9 9 0000t in AN

Y
o

Conclusion

Y
o

References

3 Technical Brief / Oracle Real Application Clusters (RAC) Cache Fusion Performance Optimizations on Exadata

Copyright © 2021, Oracle and/or its affiliates / Public

ORACLE



| R e

Executive Summary

Oracle Real Application Clusters commonly referred to as Oracle RAC is an
option to the Oracle Database that provides linear horizontal scalability and high
availability. Oracle RAC Cache Fusion is a component of Oracle RAC responsible
for synchronizing the caches among Oracle RAC instances making it possible for
applications to seamlessly utilize the computing resources of all the Oracle RAC
instances without making any changes. Cache Fusion utilizes a dedicated
private network for cache synchronization. Application scalability therefore
relies on the latency and bandwidth provided by the underlying private network.

Exadata, with its adoption of advanced networking components like RDMA
over Converged Ethernet (RoCE) or InfiniBand, enables Oracle to further
improve performance and scalability. In addition to benefiting from the
improved wire speed of the underlying network, we re-engineered significant
portions of Oracle RAC Cache Fusion layer to leverage the advanced protocols
and RDMA capabilities available on Exadata. For example, on Exadata, Oracle
RAC instances directly transfers buffers to the wire and bypasses the Operating
System (OS) kernel. This results in block transfers that have ultra-low latency
and that incur dramatically lower CPU cost. Oracle RAC on Exadata also uses
new protocols that eliminate waits in the performance critical parts of transaction
commits. This paper will explain these Exadata-specific optimizations that have
been implemented since Oracle 12c.

4 Technical Brief / Oracle Real Application Clusters (RAC) Cache Fusion Performance Optimizations on Exadata ORACLE
Copyright © 2021, Oracle and/or its affiliates / Public



. - N W Ve T TR

List of Performance Optimizations

Exafusion

Traditionally, Oracle RAC messaging was implemented using the commonly
used networking model using network sockets. In this model, all
communications (sends and receives) would go through the OS kernel, thus
requiring context switches and memory copies between user space and OS
kernel for every RAC message being exchanged. Exafusion is the next
generation networking protocol available on Exadata since 12c (on both RoCE
and InfiniBand), which allows for direct-to-wire messaging from user space,
completely bypassing the OS kernel. By eliminating the context switches and
OS kernel overhead, Exafusion enables Oracle to process round trip messages in
less than 50 ps (micro-seconds), which is 3x faster than a traditional socket-
based implementation, and a further 33% improvement compared to the
first generation of Exadata which used the RDS protocol for messaging.
Additionally, the CPU cost associated with sending and receiving messages is
lower with Exafusion, allowing for higher block transfer throughput and
increased headroom in LMS processes before they could become saturated.
Faster messaging not only benefits runtime application performance, it also
makes every Oracle RAC operation faster - this includes dynamic lock
remastering (DRM), Oracle RAC reconfiguration (associated with instance or PDB
membership changes), and instance recovery.

Cache Fusion Transfer Latency Comparison
150 us

75 us

50 us

Non-Exadata (UDP) Exadata 11g (RDS) Exadata (Exafusion)

The adoption of Exafusion is the foundation of subsequent performance
optimizations for RAC on Exadata, including zero copy transfers and
adoption of RDMA.

Exafusion and the subsequent optimizations described in this document do not
require extra OS resources to operate. When Exafusion is enabled, one may
notice that the IPCO background process uses high RSS memory usage in “ps”,
however this is due to the fact that Oracle instance registers (pins) all IPC buffers
with the Host Channel Adaptor (HCA) on behalf of all processes running in the

5 Technical Brief / Oracle Real Application Clusters (RAC) Cache Fusion Performance Optimizations on Exadata ORACLE
Copyright © 2021, Oracle and/or its affiliates / Public



| R e

instance, and does not indicate excessive memory usage or memory leaks.
Further details can be found in MOS note 2407743.1.

Zero Copy Block Sends

RoCE and InfiniBand network adapters support Zero Copy messaging. User
space buffers are registered with the HCA and the HCA directly places the
contents of user space buffers on the wire, unlike traditional messaging
protocols where the OS kernel first makes a copy of the user space buffer and
then places them on the wire. Since Oracle RAC 12c, we use this feature on
Exadata for inter-instance communications. Elimination of the CPU cycles
required for copying buffers improved the transfer latencies by up to 5%
compared to Exafusion without Zero Copy sends.

Smart Fusion Block Transfer

Traditionally, Oracle RAC instance would have to wait for redo log flush to
complete before sending a dirty block to another instance. This is a common
access pattern in OLTP systems with frequent DML'’s. The redo flush is done to
ensure database consistency in the event of an instance failure. This means that
inter-instance transfer latency for frequently modified blocks which have redo
pending was always dependent on redo flush 1/0 latency, and was subject to
outliers caused by intermittent spikes in 1/0 performance.

Oracle RAC 12c utilizes Smart Fusion Block Transfer optimization, which allows
an Oracle RAC instance to send the block once the redo 1/0 is in-flight to the
Exadata storage server. Oracle RAC LMS process is permitted to initiate a block
transfer before receiving I/O completion acknowledgment, allowing sessions on
the requestor instance to start accessing that block while the redo 1/0 may still
be pending. The requestor instance checks for I/0O completion before it commits
further changes to the same block. The committing process is required to wait
for the “remote log force - commit” wait event if the /0 is yet to complete. This
is a rare occurrence, which is only seen when there are extreme 1/0 outliers.
Such I/0 outliers are mostly eliminated on Exadata with the Smart Flash Logging
feature. Smart Fusion Block Transfer optimization allows for improved
concurrency across Oracle RAC instances to improve overall application
performance. This optimization results in reducing the “gc current block busy”
wait times by 3x times for workloads that updates hot blocks concurrently.

2. Transfer block 2. Transfer block
mr—
o V-

W 2
S T f—

/D]spatch log write I/0 3. Check for I/O\ /Dispatch
and wait for completion completion before log write /O

committing

Original Protocol Smart Fusion Block Transfer

6 Technical Brief / Oracle Real Application Clusters (RAC) Cache Fusion Performance Optimizations on Exadata

Copyright © 2021, Oracle and/or its affiliates / Public

ORACLE


https://support.oracle.com/epmos/faces/ui/km/DocumentDisplay.jspx?id=2407743.1

A & e Y

Undo Block RDMA Reads

Undo blocks need to be fetched from other Oracle RAC instances when there are
transaction rollbacks etc. In Oracle RAC 18c, undo block transfers have been
optimized to use a RDMA-based transfer protocol, replacing the traditional
messaging-based protocol. By leveraging RDMA, foreground processes are
able to directly read the undo blocks from the remote instance’s SGA. The
undo block reads no longer invoke processes on the remote instance, removing
the server-side CPU and context switch overheads which were always part of
traditional Oracle RAC communications. Additionally, the transfer latencies are
no longer affected by OS process or overall system CPU load on the remote
instance, which helps sustain deterministic read latencies even in the case of
a load spike on the remote instance. RDMA read of a remote block would
typically complete in less than 10 ps, which is a 5x improvement over the best
latencies we would get with the traditional message-based protocol using
Exafusion.

In-Memory Commit Cache

Applications that have long running batch jobs and concurrent queries may
exhibit high volumes of “undo header” CR block transfers. In Oracle 18¢, an in-
memory commit cache has been added on Exadata. Each instance would
maintain a cache of local transactions and their respective states (committed or
not) in the SGA, and the cache can be looked up remotely. This is faster than
transferring the undo header blocks, each sized 8kb, to the remote instance. The
state of multiple transaction ID’s (XID’s) can be looked up in a single message,
which helps reduce the number of roundtrip messages in Oracle RAC, and also
the CPU overhead in LMS processes which is responsible for responding to
remote lookup requests. With the in-memory commit cache, we are able to
batch up to 30 XID lookups in a single roundtrip message which would have
been 30x 8k block transfers prior to this optimization.

With the commit cache optimization, we can expect a lot of the “gc cr block 2-
way” waits corresponding to “undo header” transfers to be replaced with a
smaller number of “gc transaction table 2-way” waits. A single “gc transaction
table 2-way” wait represents a remote lookup of multiple XID’s in one roundtrip.

Fast Index Split

When there is a B-tree index leaf block split (frequently seen in OLTP workloads
with right-growing indices), applications accessing the splitting leaf & branch
blocks on all Oracle RAC instances would need to wait for the split operation to
complete. This may cause intermittent hiccups (periods of almost zero activity)
in application performance. Traditionally, these waits were implemented under a
TX enqueue (“eng: TX-index contention” waits). These split waits have been
optimized on Exadata in Oracle 19¢, to use a less expensive Cache Fusion based
mechanism in lieu of global enqueues. The fast index split waits will be under
the new “gc index operation” wait event (“index split completion” in 21c
onwards), which replaces the traditional TX enqueue waits.

7 Technical Brief / Oracle Real Application Clusters (RAC) Cache Fusion Performance Optimizations on Exadata

Copyright © 2021, Oracle and/or its affiliates / Public

NOTE: The “gc transaction table
2-way” wait is used in releases
starting with Oracle 21c.

Earlier releases (Oracle 18c and
19¢) would use the “gc transaction
table” wait event instead.

ORACLE



A o A ¢

Persistent Memory Commit Accelerator

Exadata X8M introduces the Persistent Memory Commit Accelerator, which
implements redo log 1/0 with RDMA writes to persistent memory on the
storage servers. This optimization significantly improves redo flush I/0O
performance, which would further improve inter-instance concurrency on
systems experiencing high volumes of dirty buffer sharing (see Smart Fusion
Block Transfer).

Shared Data Block and Undo Header RDMA Reads

In Oracle 21c, RDMA support for Cache Fusion has been extended to support
reads for data blocks, space blocks and undo header blocks. Similar to the
Undo Block RDMA read optimization in 18c, this will contribute to faster reads of
data cached in remote instances, and further reduction in LMS CPU since LMS
will not be invoked when data is read via RDMA. Traditionally, a foreground
process would send a request to read a block to the master instance, then the
master instance would forward the request to the holder instance, and the
request is fulfilled by a 3-way Cache Fusion transfer (“gc current block 3-way”).
This is a common access pattern in read intensive OLTP workloads running on
large clusters of 3+ nodes. In large clusters, the size of each instance is typically
small, which means that it is less likely that data is cached on the local instance,
but chances are higher that it is cached on another instance. With data & space
block RDMA, the master instance will respond to the requestor with a lock grant
(permission to read the data), along with information about the holder instance
for the block requested. The requesting client can then RDMA-read the block
directly from the holder instance. This will remove the master-holder
messaging, which will help improve read latency and reduce LMS CPU on the
holder instance (who traditionally had to send back the block to the requestor).

Instance 1 Instance 1
(Requestor) (Requestor)
B = =
3. Block Transfe’ 1. Request 3. Direct Rey \\ Request
2. Grant
> +— D fasn un) LS ]
B ]| 2- Forward S T T -
B = EEEE R B
Instance 3 Instance 2 Instance 3 Instance 2
(Resource Holder) (Resource Master) (Resource Holder) (Resource Master)
Original Protocol RDMA-based Protocol

In this case, the foreground will see the following sequence of wait events
instead of the traditional “gc current block 3-way” wait:

e “gc current grant 2-way” wait, followed by,
* Ashort “gc current block direct read” wait event

The “gc current block direct read” waits are typically less than 10us, and the
combined wait time for the grant & read is usually shorter than the traditional 3-
way transfer latency.

8 Technical Brief / Oracle Real Application Clusters (RAC) Cache Fusion Performance Optimizations on Exadata

Copyright © 2021, Oracle and/or its affiliates / Public

ORACLE



| R e

If the requestor is also the master instance, the “gc current grant 2-way” in the
example above can be eliminated, because the instance can grant itself
permission to read data without involving any messaging. In this case, the
request can be quickly fulfilled by a single “gc current block direct read”. This
would replace some “gc current block 2-way” waits that were traditionally seen in
Oracle RAC, including 2 node clusters.

Additionally, if a remote master instance is also the holder instance, LMS would
respond with a grant message, then the requestor will RDMA-read the data from
the holder (who is also the master). This is similar to the 3-way scenario
described above, except that the master and holder instances are the same. In
this case, the traditional “gc current block 2-way" waits are replaced by a “gc
current grant 2-way” and “gc current block direct read”. While the read latencies
won'’t improve much in this case, the cost for LMS to grant a lock is cheaper
compared to sending back a data block, so the RDMA optimization will help
reduce LMS CPU usage.

Broadcast-on-Commit over RDMA

Before committing a transaction, the Broadcast-on-Commit protocol ensures
that the system change number (SCN) on all the instances in a cluster is at least
as high as the commit SCN. This is required to ensure the Consistent Read (CR)
property of Oracle transactions. Traditionally, the Broadcast-on-Commit
protocol used messages to broadcast the SCN to all the instances in a cluster.
The LGWR process sends the SCN in a message to the LMS process on all
instances. LMS process, upon receiving an SCN message, updates its instance’s
SCN and sends back an SCN ACK message to the LMS process on the initiating
instance. Once the redo I/0 completes, LGWR checks whether the redo SCN has
been acknowledged by all instances. If so, LGWR notifies the foreground
processes waiting for the transaction that the commit operation has completed.
If the redo SCN was not acknowledged by the time the redo 1I/0 completes, then
the commit won’t complete until all SCN ACKs have been received. Clients will
see high “log file sync” wait times in this case.

In Oracle 21c, Broadcast-on-Commit has been optimized to use RDMA for the
following reasons:

1. RDMA latency is lower than messaging:

As /0 latency improves on Exadata, broadcasting SCN using messaging could
potentially become a bottleneck.

2. Reducing load on LMS processes:

Running OLTP applications, we see that SCN messages account for a measurable
portion of messaging traffic, especially on clusters with large number of
instances. Although these messages are rarely in the critical path latency-wise
(because the actual 10 would typically take longer), reducing these messages will
have a benefit of reducing LMS load, giving us more headroom so that the
system can better tolerate load spikes.

9 Technical Brief / Oracle Real Application Clusters (RAC) Cache Fusion Performance Optimizations on Exadata

Copyright © 2021, Oracle and/or its affiliates / Public

ORACLE



A S W Yl T TER

For example, running a large CRM (OLTP) workload on a 3 instance cluster, we
saw that 12% of overall RAC messages were for SCN broadcasts. With RDMA,
these messages will no longer invoke the LMS process.

SCN Msgs (9%) )
L4
SCN ACK All SCN messaging
Messages replaced with RDMA
(3%)
OtherCache OtherCache
Fusion Fusion Messages
Messages(88%)
Message Traffic Distribution Message Traffic Distribution

in Earlier Releases in Oracle 21c

In the Broadcast-on-Commit over RDMA mode, the LGWR process directly
updates the SCN on each remote instance in the cluster using remote atomic
operations. This makes the commit protocol faster as it is not affected by the
remote LMS process’s context switch latency or the CPU load on the remote
instances.

Conclusion

These are some examples of how Oracle RAC leverages the advancements in
hardware on Exadata to further optimize Oracle RAC Cache Fusion performance
resulting in dramatic application scalability improvements without requiring any
application changes. Oracle continues to invest in further innovations, by
engineering the software to take advantage of the latest hardware technologies
available in the market.

References

e Oracle Real Application Clusters (RAC) White Paper

e Oracle RAC Internals — The Cache Fusion Edition

¢ Oracle RAC 12c Practical Performance Management and Tuning

¢ Oracle RAC features on Exadata

¢ Oracle RAC 12c Release 2 — New Availability Features

10 Technical Brief / Oracle Real Application Clusters (RAC) Cache Fusion Performance Optimizations on Exadata

Copyright © 2021, Oracle and/or its affiliates / Public

ORACLE


https://www.slideshare.net/AnilNair27/new-availability-features-in-oracle-rac-12c-release-2-anair-ss
https://www.slideshare.net/AnilNair27/oracle-rac-features-on-exadata
https://www.slideshare.net/MarkusMichalewicz/oracle-rac-12c-practical-performance-management-and-tuningoow13con8825?qid=4702a7d4-2533-4315-96b6-6467c03dfbb3&v=&b=&from_search=8
https://www.slideshare.net/MarkusMichalewicz/oracle-rac-internals-the-cache-fusion-edition?qid=63925db9-b8a1-4f2f-9b3f-d4fa52f433e4&v=&b=&from_search=2
https://www.oracle.com/technetwork/database/options/clustering/rac-twp-overview-5303704.pdf

R e T T

Connect with us

Call +1.800.0RACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

B blogs.oracle.com n facebook.com/oracle

g twitter.com/oracle

Copyright © 2021, Oracle and/or its affiliates. All rights reserved. This document is
provided for information purposes only, and the contents hereof are subject to
change without notice. This document is not warranted to be error-free, nor subject to
any other warranties or conditions, whether expressed orally or implied in law,
including implied warranties and conditions of merchantability or fitness for a
particular purpose. We specifically disclaim any liability with respect to this document,
and no contractual obligations are formed either directly or indirectly by this
document. This document may not be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose, without our prior written
permission.

Authors: Atsushi Morimura, Namrata Jampani, Anil Nair
Contributing Authors: Neil Macnaughton, Avneesh Pant, Michael Zoll

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The
Open Group. 0120

1 Technical Brief / Oracle Real Application Clusters (RAC) Cache Fusion Performance Optimizations on Exadata

Copyright © 2021, Oracle and/or its affiliates / Public

ORACLE



http:blogs.oracle.com
http:orvisitoracle.com

