
1 Oracle Database 21cで提供されているJava開発者向け機能
Copyright © 2021, Oracle and/or its affiliates.

ビジネス/技術概要

Oracle Database 21cで
提供されているJava開発者向け機能

ミッション・クリティカルでクラウド・ネイティブな
Javaアプリケーションを設計しデプロイするための
JDBC、UCP、OJVMの新しい機能拡張

更新：2021年8月
Copyright © 2021, Oracle and/or its affiliates
公開

2 Oracle Database 21cで提供されているJava開発者向け機能
Copyright © 2021, Oracle and/or its affiliates.

免責事項

本文書には、ソフトウェアや印刷物など、いかなる形式のものも含め、オラクルの
独占的な所有物である占有情報が含まれます。この機密文書へのアクセスと使用は、
締結および遵守に同意したOracle Software License and Service Agreementの諸条件
に従うものとします。本文書と本文書に含まれる情報は、オラクルの事前の書面によ
る同意なしに、公開、複製、再作成、またはオラクルの外部に配布することはできま
せん。本文書は、ライセンス契約の一部ではありません。また、オラクル、オラクル
の子会社または関連会社との契約に組み込むことはできません。

本書は情報提供のみを目的としており、記載した製品機能の実装およびアップグレード
の計画を支援することのみを意図しています。マテリアルやコード、機能の提供を
コミットメント（確約）するものではなく、購買を決定する際の判断材料になさらない
でください。本書に記載されている機能の開発、リリース、および時期については、
弊社の裁量により決定されます。製品アーキテクチャの性質上、コードが大幅に不安
定化するリスクなしに、本書に記載されているすべての機能を安全に含めることがで
きない場合があります。

3 Oracle Database 21cで提供されているJava開発者向け機能
Copyright © 2021, Oracle and/or its affiliates.

目次
免責事項 2

はじめに 4

よく使用されるJavaフレームワークおよびIDEのサポート 4

EclipseプラグインとIntelliJ*プラグイン 4

よく使用されるフレームワークおよびJava EEアプリケーション・サーバーのサポート 5

SpringデータソースとしてのUCP 5

JBossデータソースとしてのUCP 6

クラウド・ネイティブのアプリケーションをサポートするための機能拡張 9

マイクロサービス・フレームワークでのJDBCとUCPの構成 9

非ファイル・ベース・システムからのウォレットのロード 9

前リリースでのセキュリティの機能拡張 10

JDBCでのネイティブJSONデータタイプのサポート 10

診断とトレースに関する機能拡張 11

診断の精度向上のための接続識別子 11

DMSメトリックとクライアント情報 12

ミッション・クリティカルなデプロイメントに対応したパフォーマンスとスケーラビリティ 12

ドライバでの仮想スレッドのサポート 12

Reactive Streams Ingestionライブラリ 13

JDBCリアクティブ拡張 13

GraalVMネイティブ・イメージ向けのドライバ構成 14

シャーディング・データソース 15

停止時間ゼロのミッション・クリティカルなデプロイメント 16

アプリケーション・コンティニュイティ（AC）と透過的AC 16

データベース内のJVM - 高可用性とセキュリティ機能拡張 16

OJVMのRACローリング・パッチ 17

セキュリティの機能拡張 17

ロックダウン・プロファイル 17

Native Network Encryption（NNE） 17

結論 17

参考資料 17

注：目次（TOC）は、10ページ超のドキュメントにお勧めします。10ページ以下の場合は、TOCページを削除してもかまい
ません。TOCとTOCが表示されるページの両方を削除するには、まず、Homeツールバーの「Paragraph」シンボルをクリ
ックして、非表示にされている文字を表示します。Quick Style Galleryの左側に小さい四角いアイコンがあります。この
ページの下部に、線で示したページ区切りがあることに留意してください。次に、このページのすべてのテキストを選択し、
[Delete]キーを押して全テキストを削除します。次に、ページ区切りを選択し、ページが削除されてカーソルが本文の最初
のページの位置に来るまで[Delete]キーを押し続けます。1）TOCを右クリックし、2）コンテキストメニューの「Update
Field」をクリックすると、TOCはHeading 1とHeading 2のスタイルで半自動的に更新されます。TOCは、カーソルをテキ
スト内に置くと手動で編集することもできます。発行前にこの注記を削除してください。

4 Oracle Database 21cで提供されているJava開発者向け機能
Copyright © 2021, Oracle and/or its affiliates.

はじめに

Java開発者またはアーキテクトがOracle Database 21cリリースを検討すべき理由は何でしょうか。

RDBMS、組込みJVM（別名OJVM）、JDBCドライバ、Java Connection Pool、Oracle Cloud Infrastructureの新しい
機能拡張は、Oracleデータベースを初めて扱う開発者のオンボーディングを容易にすること、Oracleデータベースに
詳しい開発者のエクスペリエンスを改善すること、およびミッション・クリティカルでクラウド・ネイティブなJavaアプ
リケーションの開発とデプロイを容易にすることを目的としています。

この技術概要では、新機能によってこれらの目的がどのように達成されるかを、特に以下の点に重点を置いて説明します。

1. クラウド・データベースへの接続性に関する機能拡張

2. Java開発者のOracleデータベースに関するエクスペリエンスやオンボーディングを容易にするための、よく使用される
JavaフレームワークおよびIDEのサポート

3. クラウド・ネイティブなアプリケーション（データ駆動型マイクロサービスおよびサーバーレス機能）のサポート

4. 開発者のエクスペリエンスとミッション・クリティカルなデプロイメントを強化するための診断とトレースの機能拡張

5. ミッション・クリティカルなデプロイメント向けのパフォーマンスとスケーラビリティの機能拡張：非同期または
リアクティブの機能拡張、仮想スレッド（Project Loom）のサポート、Reactive Streams Ingestionライブラリ、
GraalVMネイティブ・イメージのサポート、新機能のシャーディング・データソースなど

6. ミッション・クリティカルなデプロイメント向けの停止時間ゼロに関連する機能拡張：透過的アプリケーション・
コンティニュイティ、一時停止ゼロのOJVMローリング・パッチなど

図1 JavaおよびOracleデータベースの全体像

よく使用されるJavaフレームワークおよびIDEのサポート

Javaフレームワークは多数存在しますが、オラクルは特によく使用されるものについて、Oracle JDBCドライバおよび
Universal Connection Pool（UCP）と効率的に連携させるための構成方法に着目しました。

EclipseプラグインとIntelliJ*プラグイン

Eclipseプラグインはhttps://github.com/oracle/oci-toolkit-eclipseで入手できます。詳しくは、関連するブログ記事を参照
してください。

* IntelliJプラグインは本書の執筆時点でリリースに向けて作業中です。

https://github.com/oracle/oci-toolkit-eclipse

5 Oracle Database 21cで提供されているJava開発者向け機能
Copyright © 2021, Oracle and/or its affiliates.

図2 Oracle Cloud InfrastructureのEclipse用ツールキット

これらのプラグインの機能セットには、新しい自律型データベースのプロビジョニング、開始/停止/クローン作成、
OCPUおよびストレージのスケールアップまたはスケールダウン、管理者パスワードの変更、クラウドの資格証明のダウン
ロード、クラウド・データベースへの接続テスト、データベース・スキーマの参照、その他のデータベース操作の実行が
含まれます。

よく使用されるフレームワークおよびJava EEアプリケーション・サーバーのサポート

1. MavenとGradleは、Java開発者によく使用されているビルド自動化フレームワークです。Oracle JDBCがMaven
Central（https://bit.ly/33bpLVJ）に配置されるようになりました。詳しくは、https://bit.ly/2IBDXjJの開発者向けガ
イドを参照してください。また、19.8リリースより、Springプロジェクト（Spring Initializr）で取得できるように、確
立済みの依存関係（“フレーバーPOM”）がBOMファイルに追加されました。

2. Apache Tomcatサーブレット・エンジンの自律型データベースATPへの接続については、こちらのビデオをご覧くだ
さい。

3. Apache Hadoop：Oracle Datasource for Hadoopによって、Oracleデータベースの表をHadoop外部表に変換できます。

4. Hibernate：Hibernateの構成とUCPとの連携の方法については、https://bit.ly/32WrYUNを参照してください。

5. MyBatis：MyBatisの構成と連携の方法については、https://bit.ly/2IRgpGYを参照してください。

6. R2DBC：オープンソースのOracle-R2DBCドライバv0.3.0は、
Github（https://github.com/oracle/oracle-r2dbc/releases/tag/0.3.0）、およびこちらのCentral Mavenで入手でき
ます。

7. GraalVM：JDBCドライバがGraalVMネイティブ・イメージに対応するようになりました。詳細については後述します。

SpringデータソースとしてのUCP

コードを追加せずに、Java Connection Pool（UCP）をSpringデータソースとして構成できるようになりました。

Springがアプリケーションのプロパティ・ファイル（application.properties）から構成を取得し、それらの値をデータソ
ースに自動的に関連付け（注入）します。

https://bit.ly/33bpLVJ
https://bit.ly/2IBDXjJ
https://bit.ly/32WrYUN
https://bit.ly/2IRgpGY
https://github.com/oracle/oracle-r2dbc/releases/tag/0.3.0

6 Oracle Database 21cで提供されているJava開発者向け機能
Copyright © 2021, Oracle and/or its affiliates.

spring.datasource.url=jdbc:oracle:thin:@host:1521/myservice
spring.datasource.driver-class-name=oracle.jdbc.OracleDriver
spring.datasource.type=oracle.ucp.jdbc.UCPDataSource
spring.datasource.ucp.connection-factory-class-
name=oracle.jdbc.replay.OracleDataSourceImpl
spring.datasource.ucp.sql-for-validate-connection=select * from dual
spring.datasource.ucp.connection-pool-name=connectionPoolName1
spring.datasource.ucp.initial-pool-size=15
spring.datasource.ucp.min-pool-size=10
spring.datasource.ucp.max-pool-size=30

SpringBootによるUCP構成方法のサンプル・コードについては、https://bit.ly/SpringBootAppを参照してください。

JBossデータソースとしてのUCP

このリリースでは、Java Universal Connection Pool（UCP）で、Java EEコンポーネント（サーブレット、JSP、JMS、EJB
など）が使用するためのJBossとの統合用クラスが提供されます。

 このクラスはServletContextListenerインタフェースを実装し、メソッドのオーバーライド
@Override public void contextInitialized(ServletContextEvent contextEvent)をサポートします。
@Override

public void contextDestroyed(ServletContextEvent servletContextEvent)

 このクラスは、以下に示すように<listener>タグおよび<listener-class>タグを使用し、web.xmlで指定することによ
りロードされます。

<!--UCPServletContextListenerを明示的に登録 -->
<listener>
<listener-class>oracle.ucp.jdbc.UCPServletContextListener</listener-class>
</listener>

 このクラスは、web.xmlのロード時に起動されます。オブジェクトが構成/記述ファイルを読み取り、読み取った値を
使用してデータソースを作成し、そのデータソースをJNDIアドレスにバインドするか、CDIによって注入されたアプ
リケーション・オブジェクトにバインドします。このJNDIアドレスとアプリケーション・オブジェクトは、コンポー
ネントがデータソースおよび接続を取得するために使用できます。パラメータはWeb記述子（web.xml）の
<context-param>の値から、またはUCP XML構成ファイルを使用して取得されます。

サポートされているUCPプロパティのリストについては、oracle.ucp.jdbc.UCPServletContextListenerクラスを参照
してください。

以下は、ServletContextListener実装、Web記述子の一部、およびサーブレットからの使用部分に関する開発者向けサン
プルです。

https://bit.ly/SpringBootApp

7 Oracle Database 21cで提供されているJava開発者向け機能
Copyright © 2021, Oracle and/or its affiliates.

Web記述子（web.xml）の使用

<!--参照のアプリケーション・サーブレットで使用されるJNDIデータソース名-->

<context-param>
<param-name>ucp.jndiName</param-name>
<param-value>java:/datasources/mypool_usingwl</param-value>

</context-param>

<!-- UCP接続プールのプロパティをここで設定。サポートされているUCPプロパティのリストについては
UCPServletContextListenerのJavadocを参照 -->

<context-param>
<param-name>ucp.URL</param-name>
<param-value>jdbc:oracle:thin:@myhost:5521/myservice</param-value>

</context-param>
<context-param>

<param-name>ucp.connectionFactoryClassName</param-name>
<param-value>oracle.jdbc.replay.OracleDataSourceImpl</param-value>

</context-param>
<context-param>

<param-name>ucp.dataSourceName</param-name>
<param-value>myDataSource</param-value>

</context-param>
<context-param>

<param-name>ucp.user</param-name>
<param-value>scott</param-value>

</context-param>
<context-param>

<param-name>ucp.password</param-name>
<param-value>*****</param-value>

</context-param>
. . .

</web-app>

UCP XML構成の使用

UCP XML構成ファイルを使用するには、JVMシステム・プロパティのoracle.ucp.jdbc.xmlConfigFileを以下のように
設定します。

-Doracle.ucp.jdbc.xmlConfigFile=file:/Users/scott/conf/ucp_config.xml
次に、Web記述子（web.xml）内のucp.dataSourceNameFromXMLConfigパラメータを設定します。
このパラメータは、/ucp-properties/connection-pool/data-source/data-source-name内のdata-source-attributeと一致し
ている必要があります。

Web.xml

<!-- ucp_config.xmlで使用されているデータソース名を指定 -->
<context-param>

<param-name>ucp.dataSourceNameFromXMLConfig</param-name>
<param-value>myDataSource</param-value>

</context-param>

<!--参照のアプリケーション・サーブレットで使用されるJNDIデータソース名-->
<context-param>

<param-name>ucp.jndiName</param-name>
<param-value>java:/datasources/mypool_usingwl</param-value>

</context-param>

8 Oracle Database 21cで提供されているJava開発者向け機能
Copyright © 2021, Oracle and/or its affiliates.

ucp_config.xml
<ucp-properties>

<connection-pool
connection-factory-class-name="oracle.jdbc.replay.OracleDataSourceImpl"
connection-pool-name="pool1"
initial-pool-size="10"
max-connections-per-service="15"
max-pool-size="30"
min-pool-size="2"
password="*****"
url="jdbc:oracle:thin:@myhost:5521/myservice” user="scott">
<connection-property name="autoCommit" value="false"></connection-property>
<connection-property name="oracle.net.OUTBOUND_CONNECT_TIMEOUT" value="2000">
</connection-property>
<data-source data-source-name="myDataSource" description="pdb1" service="ac">
</data-source>
</connection-pool>

</ucp-properties>

CDI経由でデータソースを取得するサーブレットのサンプル

@Inject
@UCPResource
private DataSource ds;

JNDI経由でデータソースを取得するサーブレットのサンプル

@WebServlet("/OracleUcp")
public class OracleUcp extends HttpServlet {

private DataSource ds = null;

// JNDIを使用してデータソースの参照を取得する
@Override
public void init() throws ServletException {

Context initContext;
try {

initContext = new InitialContext();
ds = (DataSource)

initContext.lookup("java:/datasources/mypool_usingwl");

データソースを使用するサーブレットのサンプル

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

// プールから接続を取得する
try (Connection conn = ds.getConnection();

Statement st = conn.createStatement()) {
ResultSet rs = null;
rs = st.executeQuery("select empno, ename, job from emp");

既知の制約事項：コンテナから提供される管理ツールおよび監視ツールをプールに適用することはできません

9 Oracle Database 21cで提供されているJava開発者向け機能
Copyright © 2021, Oracle and/or its affiliates.

クラウド・ネイティブのアプリケーションをサポートするための機能拡張

マイクロサービス・フレームワークでのJDBCとUCPの構成

 SpringBoot：SpringBootプロジェクトでのOracle JDBCドライバおよびUCPの構成方法については、
https://bit.ly/SpringBootAppを参照してください。

 Helidon：Helidon MPとSEの両方がOracle UCPデータソースをサポートしており、提供されるすべての機能を継承
しています。Helidonは、UCPデータソースのマイクロサービスへの自動注入、Kubernetes環境およびATP環境にお
けるOracle DB機能（マイクロサービス・アーキテクチャに直接関連する機能を含む）の使用の簡素化など、さまざま
な統合機能と便利な機能を提供しています。
HelidonプロジェクトでのOracle JDBCドライバの構成方法については、https://bit.ly/2IP18a5を参照してください。

 Micronaut：MicronautプロジェクトでのOracle JDBCドライバの構成方法については、https://bit.ly/2KEw4KXを参
照してください。

 Quarkus：QuarkusプロジェクトでのOracle JDBCドライバの構成方法については、https://bit.ly/2J6dYR9を参照し
てください。

非ファイル・ベース・システムからのウォレットのロード

このリリースでは、OracleDataSource上でSSLContextを設定するための新規APIによって、メモリや非ファイル・ベース・
システムからウォレットをロードする方法を開発者が完全に制御できるようになりました。
以下のコードは、このAPIの使用方法を示しています。

static SSLContext createSSLContext()

throws GeneralSecurityException, IOException {
TrustManagerFactory trustManagerFactory =

TrustManagerFactory.getInstance("PKIX");
KeyManagerFactory keyManagerFactory =

KeyManagerFactory.getInstance("PKIX");

trustManagerFactory.init(loadKeyStore());
keyManagerFactory.init(loadKeyStore(), null);

SSLContext sslContext = SSLContext.getInstance("SSL");
sslContext.init(

keyManagerFactory.getKeyManagers(),
trustManagerFactory.getTrustManagers(),
null);

return sslContext;
}

static KeyStore loadKeyStore()

throws IOException, GeneralSecurityException {

// このサンプルでは標準のファイル・ベースのソースを使用していますが、
// 非ファイル・ベースのソースからInputStreamを使用してキーストアをロードする際にも再利用で
きます。
try (InputStream keyStoreStream =

Files.newInputStream(Paths.get("cwallet.sso"))) {
KeyStore keyStore = KeyStore.getInstance("SSO", new OraclePKIProvider());
keyStore.load(keyStoreStream, null);
// ここでは、keyStore.load(KeyStore.LoadStoreParameter)も使用できます。
return keyStore;

}
}

https://bit.ly/SpringBootApp
https://bit.ly/2IP18a5
https://bit.ly/2KEw4KX
https://bit.ly/2J6dYR9

10 Oracle Database 21cで提供されているJava開発者向け機能
Copyright © 2021, Oracle and/or its affiliates.

前リリースでのセキュリティの機能拡張

前リリースでは以下のセキュリティの機能拡張がありました。

 HTTPSプロキシ構成のサポート

 自動プロバイダ解決（OraclePKIProvider）

 URL内でのサーバーのドメイン名（oracle.net.ssl_server_cert_dn）の設定

 URL内での新規ウォレット・プロパティ（my_wallet_directory）のサポート

 Key Store Service（KSS）のサポート

JDBCでのネイティブJSONデータ型のサポート

Oracle Database 21cリリースでは、ネイティブJSONデータタイプと自律型JSONクラウド・サービスが提供されます。
oracle.sql.jsonパッケージのJava APIは、ネイティブJSONタイプ値とそのバイナリ形式の記憶域にアクセスする、
JSONタイプ値の作成、変更、問合せを実行する、JSONタイプ値をデータベースで使用されるものと同じJSONバイナリ
形式にエンコーディングまたはデコーディングする、JSONタイプ値とJSONテキストを相互に変換する、JSON-Pインタ
フェース（javax.json.*など）を使用してJSONタイプ値をバインディングしアクセスするといった目的で使用できます。

以下のJDBCサンプル・コードは、ネイティブJSONデータタイプの使用方法を示しています。
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

import oracle.jdbc.OracleConnection;
import oracle.jdbc.pool.OracleDataSource;
import oracle.sql.json.OracleJsonFactory;
import oracle.sql.json.OracleJsonObject;

public class JsonExample {

public static void main(String[] args) throws SQLException {
OracleDataSource ds = new OracleDataSource();
ds.setURL("jdbc:oracle:thin:@myhost:1521:orcl");
ds.setUser(<user>);
ds.setPassword(<password>);
OracleConnection con = (OracleConnection) ds.getConnection();

// JSON列を含む表を作成し、値を1つ挿入する
Statement stmt = con.createStatement();
stmt.executeUpdate("CREATE TABLE fruit (data JSON)");
stmt.executeUpdate("INSERT INTO fruit VALUES ('{"name":"pear","count":10}')");

// 別のJSONオブジェクトを作成する
OracleJsonFactory factory = new OracleJsonFactory();
OracleJsonObject orange = factory.createObject();
orange.put("name", "orange");
orange.put("count", 12);

11 Oracle Database 21cで提供されているJava開発者向け機能
Copyright © 2021, Oracle and/or its affiliates.

// orangeオブジェクトを挿入する
PreparedStatement pstmt = con.prepareStatement("INSERT INTO fruit VALUES (:1)");
pstmt.setObject(1, orange, OracleType.JSON);
pstmt.executeUpdate();
pstmt.close();

'");

// pearオブジェクトを取得する
ResultSet rs = stmt.executeQuery("SELECT data FROM fruit f WHERE f.data.name = 'pear

rs.next();
OracleJsonObject pear = rs.getObject(1, OracleJsonObject.class);
int count = pear.getInt("count");

// pearオブジェクトの編集可能なコピーを作成する
pear = factory.createObject(pear);
pear.put("count", count + 1);
pear.put("color", "green");

');

// pearオブジェクトを更新する
pstmt = con.prepareStatement("UPDATE fruit f SET data = :1 WHERE f.data.name = 'pear

pstmt.setObject(1, pear, OracleType.JSON);
pstmt.executeUpdate();
pstmt.close();

rs.close();
stmt.close();
con.close();

}
}

診断とトレースに関する機能拡張
21cリリースでは、診断に関する新たな機能拡張として接続識別子が導入されました。

診断の精度向上のための接続識別子

Oracle JDBC Thinドライバは、Oracle Database Serverへの接続それぞれに一意のCONNECTION_IDを生成します。
CONNECTION_ID_PREFIXは、構成された後、システムが生成したCONNECTION_ID値に内部で追加されます。
CONNECTION_ID_PREFIXは 8バイトの英数字で構成される識別子で、 [a...z]、 [A...Z]、 [0...9]、および_からなる
キャラクタ・セットのみ使用できます。

CONNECTION_ID_PREFIXの構成は任意です。

RDBMSで個々の接続または接続グループに対して接続IDを割り当てることができます。

1. 接続IDは、JDBC接続文字列内で、名前と値のペアとして接続文字列（CONNECTION_ID_PREFIX =<値>）の一部として
構成できます。また、“oracle.net.connectionIdPrefix”を使用する接続プロパティから構成することもできます。

例：

(DESCRIPTION= (ADDRESS_LIST= (ADDRESS=...) (ADDRESS=...)) (CONNECT_DATA=

(SERVICE_NAME=sales.us.example.com) ((CONNECTION_ID_PREFIX=SALES_PR)))

12 Oracle Database 21cで提供されているJava開発者向け機能
Copyright © 2021, Oracle and/or its affiliates.

2. 接続識別子（CONNECTION_ID_PREFIX）は、ログには以下のように示されます。

“Exception in thread "main" java.sql.SQLRecoverableException:ORA-
12506, TNS:listener rejected connection based on service ACL filtering
(CONNECTION_ID=SALES_PRovDT/bCGfJngU602xAph8g==)”

DMSメトリックとクライアント情報

classpath内に含まれるDynamic Monitoring System（DMS）関連のjar（ojdbc8dms.jar、ojdbc11dms.jar）に診断メトリ
ックとjava.util.loggingの限定的サポートが追加されました。

JDBCでは、setClientInfo()メソッドとgetClientInfo()メソッドで、Actions、ClientId、ExecutionContextId、Module、
Stateを含むエンド・ツー・エンド・メトリックによるアプリケーションのタグ付けが可能になりました。

ミッション・クリティカルなデプロイメントに対応したパフォーマンスとスケーラビリティ

新機能のJDBCリアクティブ拡張、ドライバでの仮想スレッドのサポート、Reactive Streams Ingestionライブラリ、
GraalVMネイティブ・イメージ用のドライバ構成、シャーディング・データソースによって、ミッション・クリティカル
なJavaアプリケーションのパフォーマンスとスケーラビリティが大幅に向上します。

ドライバでの仮想スレッドのサポート

Project Loomは、コストの低い「仮想スレッド」、限定継続、および末尾呼出しの除去を使用して「高スループットの同
時実行アプリケーションの作成と維持における複雑さを軽減する」ことを目指しています。仮想スレッドは、同期呼出し
が非同期呼出しと同様のパフォーマンスを発揮できるようにするものです。

Oracle Database 21cのJDBCでは、低コストのスレッドによる同期データベース・アクセス、つまり仮想スレッドを使用
した標準JDBC呼出しがサポートされるようになりました（ネイティブ・メソッド呼出し、synchronizedによるイントリンシ
ック・ロック）。言い換えれば、単純なブロッキングJDBC呼出しを複雑なリアクティブ・ストリーム呼出しにリファクタ
リングする必要がありません。

以下は、JDBCでの仮想スレッドの使用方法を示したサンプル・コードです。

// 仮想スレッドを使用する、またはカーネル・スレッドを使用するようタスク・エグゼキュータを設定する
final Executor taskExecutor =
useVirtualThreads

? newVirtualThreadExecutor(kernelThreadExecutor)
: kernelThreadExecutor;

…

// このエグゼキュータを使用して複数のJDBC呼出しを実行する
for (int i = 0; i < taskCount; i++) { taskExecutor.execute(() -> {

executeSql("SELECT * FROM emp");
completionLatch.countDown();

});
}
…

// すべてのタスクが完了するまで、定期的にメッセージを出力する
awaitCompletion(useVirtualThreads, taskCount, completionLatch);

13 Oracle Database 21cで提供されているJava開発者向け機能
Copyright © 2021, Oracle and/or its affiliates.

Reactive Streams Ingestionライブラリ

Oracle Database 21cのJDBCドライバには、多数の同時実行ソースから得られる大量のデータ（センサー、通話詳細記録、
ログ）をOracle Databaseに高速に取り込むための新規Javaライブラリが導入されました。

このライブラリは、着信データ・ストリームをグループに分けてバッファリングし、その後コントロールをクライアント・
スレッドに戻します。一方で、別のスレッド・プールを使用して、データベース・ブロック内へのダイレクト・パス挿入
によって（つまり、SQLレイヤーを迂回して）データベースI/Oを実行します。

図3 Reactive Streams Ingestion

このライブラリ（rsi.jar）は次のシンプルなAPIを提供します。

 Push Publisher：もっとも単純な使用方法、バックエンドへのプレッシャーなし。

 Flow Publisher：Java Flow API（パブリッシャ、サブスクライバ、サブスクリプション）を実装。

 オブジェクト・リレーショナル・マッピング用のRecord API

以下のショート・ビデオでReactive Streams Ingestionの実例をご覧いただけます。詳細とサンプル・コードについては
Oracle JDBCのドキュメントを参照してください。

JDBCリアクティブ拡張

DB21cのJDBCドライバは、ノンブロッキング・ネットワークI/Oによる非同期データベース・アクセスをサポートするよ
うに拡張されました。この機能拡張では、Java Flow標準のサブスクライバ型とパブリッシャ型が公開されます。また、
R2DBC API、および演算子（map、reduce、filters）、同時実行性モデリング、監視、トレースが提供されているリアク
ティブ・ストリーム・ライブラリ（Reactor、RxJava、Akka、Vert.x、Spring、jOOQ、Querydsl、Kotysaなど）との相互
運用が可能なAPIが公開されます。

14 Oracle Database 21cで提供されているJava開発者向け機能
Copyright © 2021, Oracle and/or its affiliates.

図4 Oracle JDBC 21cによるデータベース・アクセス

以下のサンプル・コードは、接続を非同期式でオープンする方法を示しています。

/**
* 新しい接続を非同期式でオープンする
* @param dataSource URL、ユーザー、パスワードを構成したデータソース
* @return A 1つの接続を発生させるパブリッシャ
* @throws SQLException 接続をオープンする前にデータベース・
* アクセス・エラーが発生した場合
*/

Flow.Publisher<OracleConnection> openConnection(DataSource dataSource) throws
SQLException {
return dataSource.unwrap(OracleDataSource.class)

.createConnectionBuilder()

.buildConnectionPublisherOracle();

詳しくは、Oracle JDBCのドキュメントを参照してください。

GraalVMネイティブ・イメージ向けのドライバ構成

GraalVMはミッション・クリティカルなアプリケーションの実行を高速化します（起動速度が向上する、実行時のメモリ
使用量が少ないなど）。Oracle Database 21cのJDBCドライバでは、META- INF/native-image内でGraalVMを
構成できるようになりました。ドライバに追加されたコードは、orai18nとxmlparserv2の関連jarに関する
ものであり、前者はNLSまたは国際化のサポート、後者はXML解析に使用されます。

次の手順によって、プレーンなJDBCコードのDataSourceSample.javaをネイティブ・イメージとして実行できます。

1) GraalVM Updaterツールを使用してネイティブ・イメージをインストールします。

 gu install native-image

15 Oracle Database 21cで提供されているJava開発者向け機能
Copyright © 2021, Oracle and/or its affiliates.

2) 40行目のDB_URLをデータベースを指定するように変更し、適切なクラスパスを指定してこのJavaファイルをコンパ
イルします。

javac -cp .:./ojdbc11.jar DataSourceSample.java

3) ネイティブ・イメージ・ビルダーを実行します。

native-image -cp .:./ojdbc11.jar DataSourceSample

4) イメージを実行します（この段階でJVMは不要になります）。

./datasourcesample

ドライバの機能拡張に加えて、JDBC開発チームはこのドライバと関連jarをGraalVMネイティブ・イメージに統合するた
めに、Helidon、Micronaut、Quarkusのチームと積極的に連携してきました。

シャーディング・データソース

Java SE 9 JDBC 4.3では、ShardingKeyを作成するためのShardingKeyインタフェースとShardingKeyBuilderインタフェースが
導入されましたが、これらの新規APIを使用するためには既存のアプリケーションを変更する必要がありました。

この点は多くのJava開発者にとって問題でした。

Oracle Databases 21cのJDBCドライバでは、シャード・データベースへのJavaでの接続を容易にするための新規JDBC
データソースが導入されました。

これにより、接続を要求する前にシャーディング・キーを明示的に設定する必要がなくなりました。単一のシャード向けの
SQL文では、WHERE句にシャーディング・キーを含める必要があります。

例：select id, name from customer where id = ?

図5 シャーディング・データソース

シャーディング・データソースを使用するための要件とベスト・プラクティスを次に示します。

1) Java開発者はoracle.jdbc.useShardingDriverConnectionシステム・プロパティをtrueに設定する必要があります（コ
ード内またはJDKレベルで）。

Properties prop = new Properties();
prop.setProperty("oracle.jdbc.useShardingDriverConnection", "true");

16 Oracle Database 21cで提供されているJava開発者向け機能
Copyright © 2021, Oracle and/or its affiliates.

2) Java開発者はシャード・ディレクタ（別名GSM）接続文字列を使用する必要があります。これによって接続が適切な
シャードにルーティングされます。

final static String gsmURL = "jdbc:oracle:thin:@(DESCRIPTION = (ADDRESS = (HOST =
...)(PORT = ...)(PROTOCOL = tcp))(CONNECT_DATA = (SERVICE_NAME = ...)))";

3) シャーディング・データソースでは、自動コミットがオフの場合に、単一のシャードへのローカル・トランザクション
がサポートされます。ただし、Java開発者はローカル・トランザクションが常に単一のシャード上で開始し終了する
ことを指示するために、データソース・プロパティallowSingleShardTxnをTRUEに設定する必要があります。

Oracle Database 21c時点の既知の制限事項を次に示します。

• シャーディング・データソースではJDBC TYPE 4シン・ドライバのみがサポートされます。JDBC TYPE 2 OCIドライ
バまたはRDBMSサーバーサイドTYPE 2ドライバ（別名KPRBドライバ）はサポートされていません。

• 現時点で、シャーディング・データソースでは複数のシャードにまたがるトランザクションはサポートされていません。

• シャーディング・データソースでは、ダイレクト・パス・ロード、JDBC Dynamic Monitoring Service（DMS）メト
リックなどの一部のOracle JDBC機能拡張はサポートされていません。

次のビデオで、シャーディング・データソースの実例をご覧いただけます。

停止時間ゼロのミッション・クリティカルなデプロイメント

停止時間ゼロは、ミッション・クリティカルなアプリケーションでは不可欠となるサービス品質です。アプリケーション・
コンティニュイティ（AC）、透過的AC（TAC）、およびトランザクション・ガードが、Javaクライアント・アプリケーシ
ョンのためのおもな停止時間ゼロ・メカニズムとなります。データベース内で実行されるJavaコードも、一時停止ゼロの
パッチ適用とセキュリティ機能拡張の恩恵を受けられます。

アプリケーション・コンティニュイティ（AC）と透過的AC

アプリケーション・コンティニュイティ（AC）は、ドライバ・メモリ内で、アプリケーションの処理単位（通常はトラン
ザクション）の実行中に発生したすべてのデータベース呼出しを記録し、インスタンス、ホスト、またはネットワークの
障害が発生したときに、例外を隠した後、同じデータベースの別のインスタンスに対して、それらの呼出しを再実行する
ことです。再実行時、結果（すなわち、結果セットのチェックサム）が同一の場合は、ACが正常に機能しており、問題が
起きていないかのように、コントロールがアプリケーションに戻されて続行されます。同一でない場合は、例外が再キャ
ストされ、Javaコードが表示されます。Java開発者の観点によるACおよびTACについては、こちらのブログ記事の停止時
間ゼロに関するセクションで説明しています。

このリリースでは、データベース・サービスにRESET_STATEという新しい属性が追加されました。この属性は、処理単
位（つまりトランザクション）の完了時にアプリケーションによって設定されたか使用された状態をクリアするものであ
り、Javaコードに対しては透過的です。具体的には、カーソルがキャンセルされ、PL/SQLグローバルがクリアされ、セ
ッション一時表が切り捨てられ、セッション一時LOBがクリアされます。

データベース内のJVM - 高可用性とセキュリティの機能拡張

データベース内のJVM（別名OJVM）は、インプレース・データ処理のため、Webサービス、Hadoopサーバー、サード・パ
ーティのデータベースおよびレガシー・システムを呼び出すため、サード・パーティJavaライブラリを実行するため、およ
びJavaベース言語（Jython、Groovy Kotlin、Clojure、Scala、JRuby）を実行するために使用されます。また、OJVMは、AQ –
JMS、XDB、Spatial、Scheduler、Java XA、OLAPなどのデータベース・コンポーネントに使用されます。

このリリースでは、長らく待ち望まれたクラスタ化データベース（RAC）環境での一時停止ゼロとローリング・パッチ機
能、およびその他のセキュリティ機能拡張が提供されます。

17 Oracle Database 21cで提供されているJava開発者向け機能
Copyright © 2021, Oracle and/or its affiliates.

OJVMのRACローリング・パッチ

このリリースでは、一時停止ゼロとOJVMのRACローリング・パッチ機能が提供されます。OJVMのRACローリング・パ
ッチは以前のリリース（18cおよび19c）でも可能でしたが、数秒の一時停止期間があり、その間はクラスタ全体でJavaが
利用不可になりました。

セキュリティの機能拡張

ロックダウン・プロファイル

ロックダウン・プロファイルは、プラガブル・データベース（PDB）とコンテナ・データベース（CDB）での特定の操作
や機能を制限するメカニズムです。以前のリリースでは、次のロックダウン・プロファイルが実装されました。Javaへの
OSファイル・アクセスおよびネットワーキングを無効化するもの（DB 19c）、java.lang.RuntimePermissionおよび
java.io.FilePermissionの付与を無効化するものです。

このリリースでは、次のロックダウン・プロファイルが実装されています。OSファイル・アクセスをPATH_PREFIXの
パス内に限定するもの、およびOSプロセスをフォークする際のOSユーザー識別子を指定するものです。

Native Network Encryption（NNE）

オラクルは、2021年7月版Critical Patch Update（CPU）の中で、脆弱性CVE-2021-2351に対策を講じるとともに弱い暗
号の使用を回避するため、いくつかの変更をNNEに加えました。Oracle JDBC Thinドライバv 21.3.0.0、v 19.12.0.0および
v 18.15.0.0には、NNEの変更が含まれています。NNEの変更はサーバー側にも必要です。クライアントとサーバーの両方
で、NNEが修正済みで弱い暗号アルゴリズムを許可しないものを使用することが推奨されます。

NNEの修正が含まれない古いバージョンのドライバを使用している場合は、ドライバにパッチを適用し、新しいプロパティ
である“oracle.net.allow_weak_crypto”を“true”に設定して、NNE接続を許可するようにします。このプロパティは、
oracle.jdbc.OracleConnectionクラスで確認してください。

詳しくは、MOS Note 2791571.1を参照してください。

結論

この技術概要では、Java開発者およびアーキテクトのオンボーディングやエクスペリエンスを容易にする、Oracle
Database 21cの最新の機能拡張について説明しました。これらの機能拡張により、ミッション・クリティカルでクラウド・
ネイティブなJavaアプリケーションの開発とデプロイも容易になります。

以下の「参考資料」セクションに、開発者向けガイドとJavadocへのリンクを記載しています。最新のリソースについては、ラ
ンディング・ページであるhttps://www.oracle.com/jdbc/ をご覧ください。

参考資料

JDBC開発者ガイド

Java開発者ガイド

Universal Connection Pool開発者ガイド

JDBC Java APIリファレンス

Universal Connection Pool APIリファレンス

RAC FAN Events Java APIリファレンス

https://www.oracle.com/jdbc

18 Oracle Database 21cで提供されているJava開発者向け機能
Copyright © 2021, Oracle and/or its affiliates.

Connect with us

+1.800.ORACLE1までご連絡いただくか、oracle.comをご覧ください。
北米以外の地域では、oracle.com/contactで最寄りの営業所をご確認いただけます。

blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2021, Oracle and/or its affiliates.All rights reserved.本文書は情報提供
のみを目的として提供されており、ここに記載されている内容は予告なく変更される
ことがあります。本文書は、その内容に誤りがないことを保証するものではなく、
また、口頭による明示的保証や法律による黙示的保証を含め、商品性ないし特定目的
適合性に関する黙示的保証および条件などのいかなる保証および条件も提供するもの
ではありません。オラクルは本文書に関するいかなる法的責任も明確に否認し、本文
書によって直接的または間接的に確立される契約義務はないものとします。本文書
はオラクルの書面による許可を前もって得ることなく、いかなる目的のためにも、
電子または印刷を含むいかなる形式や手段によっても再作成または送信することは
できません。

本デバイスは、連邦通信委員会のルールに基づいた認可を未取得です。認可を受ける
までは、このデバイスの販売またはリースを提案することも、このデバイスを販売
またはリースすることもありません。

OracleおよびJavaはOracleおよびその子会社、関連会社の登録商標です。その他の名称はそ
れぞれの会社の商標です。

IntelおよびIntel XeonはIntel Corporationの商標または登録商標です。すべてのSPARC商標
はライセンスに基づいて使用されるSPARC International, Inc.の商標または登録商標です。
AMD、Opteron、AMDロゴおよびAMD Opteronロゴは、Advanced Micro Devicesの商標
または登録商標です。UNIXは、The Open Groupの登録商標です。0120

免責事項：データシートにこの免責事項の記載が必要かどうかが分からない場合は、収益
認識方針を参照してください。ホワイト・ペーパーの内容と免責事項の要件についてさらに
質問がある場合は、REVREC_US@oracle.com宛てに電子メールでご連絡ください。

https://oracle.com/
https://oracle.com/contact
https://blogs.oracle.com/
https://facebook.com/oracle
https://twitter.com/oracle
mailto:REVREC_US@oracle.com

	免責事項
	はじめに
	よく使用されるJavaフレームワークおよびIDEのサポート
	EclipseプラグインとIntelliJ*プラグイン
	よく使用されるフレームワークおよびJava EEアプリケーション・サーバーのサポート
	SpringデータソースとしてのUCP
	JBossデータソースとしてのUCP

	クラウド・ネイティブのアプリケーションをサポートするための機能拡張
	マイクロサービス・フレームワークでのJDBCとUCPの構成
	非ファイル・ベース・システムからのウォレットのロード
	前リリースでのセキュリティの機能拡張
	JDBCでのネイティブJSONデータ型のサポート
	診断の精度向上のための接続識別子
	DMSメトリックとクライアント情報

	ミッション・クリティカルなデプロイメントに対応したパフォーマンスとスケーラビリティ
	ドライバでの仮想スレッドのサポート
	Reactive Streams Ingestionライブラリ
	JDBCリアクティブ拡張
	GraalVMネイティブ・イメージ向けのドライバ構成
	シャーディング・データソース
	アプリケーション・コンティニュイティ（AC）と透過的AC
	データベース内のJVM - 高可用性とセキュリティの機能拡張

	OJVMのRACローリング・パッチ
	セキュリティの機能拡張
	ロックダウン・プロファイル
	Native Network Encryption（NNE）

	結論
	参考資料
	Connect with us

