
Mark Hornick
Marcos Arancibia
Oracle Machine Learning Product Management

Senior Director、Mark Hornick

Data Science and Machine

Learning Product Manager、

Marcos Arancibia

Oracle Machine Learning：
企業向けのRおよび
Pythonのスケーリング

Copyright © 2020, Oracle and/or its affiliates.

下記事項は、弊社の一般的な製品の方向性に関する概要を説明するものです。また、情報提供を唯
一の目的とするものであり、いかなる契約にも組み込むことはできません。マテリアルやコード、
機能の提供をコミットメント（確約）するものではなく、購買を決定する際の判断材料になさらな
いでください。オラクル製品に関して記載されている機能の開発、リリースおよび時期については、
弊社の裁量により決定されます。

免責条項

Copyright © 2020, Oracle and/or its affiliates.

強力
拡張可能
グラフィカル
広範な統計情報
インストールのしやすさ、使いやすさ
充実したエコシステム

• 数千のオープン・ソース・パッケージ
• 世界中に数百万人のユーザー

データ・サイエンティストが頻繁に利用
無料

データ・サイエンティストやデータ・アナリストが
RおよびPythonを使用する理由

Copyright © 2020, Oracle and/or its affiliates.

アクセスの待機時間
パラダイム・シフト：R/Python→データ・アクセス言語 → R/Python
メモリの制約 – データ・サイズ、インメモリ処理
シングルスレッド
バックアップ、リカバリ、セキュリティの問題
本番環境への非定型のデプロイ

従来の分析とデータソースの相互作用

デプロイ
非定型

cronジョブ

データソースフラット・ファイル
読取り 抽出/エクスポート

エクスポート ロード

データソース接続パッケージ

組込みのツール機能を使用したファイルの読取り
/書込み

?

Copyright © 2020, Oracle and/or its affiliates.

企業のスケーラビリティに影響する要素 - R、Pythonの場合

データへの
アクセス、
分析、 探索

機械 学習

データと
タスクの

パラレル処理

本番環境への
デプロイ

自動化

Copyright © 2020, Oracle and/or its affiliates.

データへのアクセス、分析、探索

All
処理

データ・フレーム・
プロキシを使用して
より強力なバックエ
ンドへと処理をオフ
ロード

データの移動を回避

SQL HiveQLSpark

R、Pythonの呼出しを変換

メイン処理 メイン処理 メイン処理
…

データソース.

データ + HPC環境

軽量の
ローカル処理

Copyright © 2020, Oracle and/or its affiliates.

• 言語の機能やインタフェースをそのまま活用
• プロキシ・オブジェクト経由でデータを参照することでデータ移動を回避
• オープン・ソースの呼出しをデータ処理エンジンの言語に変換する関数を

オーバーロード
• データ処理エンジンで実行

すべてのデータをより迅速に分析
データ・アクセスの待機時間なし
データ処理エンジンのパフォーマンス最適化機能を活用

データへのアクセス、分析、探索

Copyright © 2020, Oracle and/or its affiliates.

プロキシ・オブジェクト
OML4Rインタフェースを使用した例

data.frame

プロキシ
data.frame

継承

Copyright © 2020, Oracle and/or its affiliates.

library(ORE)

ore.connect("oml_user", ...)

import oml
import pandas as pd
import matplotlib.pyplot as plt
oml.connect("oml_user", ...)

ore.sync()
ore.attach()
ore.ls()
head(ONTIME_S)
TMP_ONTIME <- ore.get("ONTIME_S")

t = oml.sync(table="*",regex_match=True)
t.keys()
oml.dir()
ONTIME_S = t.get("ONTIME_S","none")
ONTIME_S.head()

dim(ONTIME_S)
summary(ONTIME_S)
cor(ONTIME_S[,c('ARRDELAY','DEPDELAY')],

use="complete.obs")

ONTIME_S.shape()
ONTIME_S.describe()
ONTIME_S[['ARRDELAY','DEPDELAY']].corr()

* Pythonについては近日追加予定

OML4R OML4Py*
オープン・ソース言語によるOracle Databaseへのアクセス

Copyright © 2020, Oracle and/or its affiliates.

hist(DF$ARRDELAY,breaks=100,color="green",
main= 'Histogram of Arrival Delay',
xlab = 'Arrival Delay (minutes)',
ylab = '# of flights')

_ = oml.graphics.hist(DF['ARRDELAY'],
100, color='green')

plt.title('Histogram of Arrival Delay')
plt.xlabel('Arrival Delay (minutes)')
plt.ylabel('# of flights')

boxplot(SEPAL_WIDTH ~ Species, data=IRIS,
notch=TRUE, ylab='cm',
main= 'Distribution of IRIS Attributes')

oml.graphics.boxplot(IRIS[:, :4], notch=True,
showmeans = True, labels=['Sepal Length', 'Sepal

Width','Petal Length', 'Petal Width'])
plt.title('Distribution of IRIS Attributes')
plt.ylabel('cm');

DF <-
ONTIME_S[ONTIME_S$DEST=="SFO",1:21])

DF =
ONTIME_S[ONTIME_S["DEST"]=="SFO",1:21]

Copyright © 2020, Oracle and/or its affiliates.

OML4R OML4Py*
オープン・ソース言語によるOracle Databaseへのアクセス

df1 <-data.frame(x1=1:5,y1=letters[1:5]) df2 <-

data.frame(x1=5:1,y2=letters[11:15])

ore.drop(table="TEST_DF1")
ore.drop(table="TEST_DF2")

ore.create(df1, table="TEST_DF1")
ore.create(df2, table="TEST_DF2")

letters = list(map(chr, range(97, 123)))
df1 = pd.DataFrame({'x1':range(1,6),

'x2':letters[1:6]}) df2 =
pd.DataFrame({'x1':range(1,6),

'x2':letters[11:16]})
oml.drop("TEST_DF1")
oml.drop("TEST_DF2")

TEST_DF1 = oml.create(df1, table="TEST_DF1")
TEST_DF2 = oml.create(df2, table="TEST_DF2")

merge(TEST_DF1, TEST_DF2, by="x1") df2.merge(df1,on='x1')

Copyright © 2020, Oracle and/or its affiliates.

OML4R OML4Py*
オープン・ソース言語によるOracle Databaseへのアクセス

スケーラブルな機械学習

All
処理

モデルの構築をパラレ
ルのソフトウェアおよ
び強力なマシン/環境に
オフロード

SQL TensorflowSpark

R、Pythonの呼出しを変換

メイン処理 メイン処理 メイン処理
…

データソース

軽量の
ローカル処理

データ・シンク
Copyright © 2020, Oracle and/or its affiliates.

オープン・ソースの機械学習インタフェースをそのまま活用
• OML4R - 記述しやすいR計算式 – コード行数は最小限 変換、

インタラクション用の語句など
• OML4Py – 使い慣れたPython予測変数/ターゲット・

インタフェース （fit()、predict()を使用）

スケーラブルな機械学習

アルゴリズム・
ファサード

アルゴリズム

Copyright © 2020, Oracle and/or its affiliates.

スケーラブルな機械学習

オープン・ソースの機械学習インタフェースをそのまま活用
• OML4R - 記述しやすいR計算式 – コード行数は最小限 変換、

インタラクション用の語句など
• OML4Py – 使い慣れたPython予測変数/ターゲット・

インタフェース （fit()、predict()を使用）
アルゴリズムをデータの側に配置

• データの移動が不要または最小限に
• プロキシ・オブジェクトを利用して、R/Pythonから

データを参照
低速

高速Copyright © 2020, Oracle and/or its affiliates.

オープン・ソースの機械学習インタフェースをそのまま活用
• OML4R - 記述しやすいR計算式 – コード行数は最小限 変換、インタラ

クション用の語句など
• OML4Py – 使い慣れたPython予測変数/ターゲット・インタ

フェース （fit()、predict()を使用）

アルゴリズムをデータの側に配置
• データの移動が不要または最小限に
• プロキシ・オブジェクトを利用して、R/Pythonからデータを参照

並列分散アルゴリズムの実装
• カスタム、最先端の統合型実装
• オープン・ソースのパッケージおよびツールキットにより補完

スケーラブルな機械学習

アルゴリズム

Copyright © 2020, Oracle and/or its affiliates.

n.rows <- nrow(IRIS) row.names(IRIS) <-
IRIS$Species
my.smpl <- sample(1:n.rows, ceiling(n.rows*0.7))
train.dat <- IRIS[my.smpl,]
test.dat <- IRIS[setdiff(1:n.rows, my.smpl),]

rf_mod <- ore.randomForest(Species~.,train.dat)

from oml import rf

train_dat, test_dat = IRIS.split() train_x =
train_dat.drop('Species') train_y =
train_dat['Species']

rf_mod = rf()
rf_mod = rf_mod.fit(train_x, train_y)

pred <- predict(rf_mod, test.dat, type="all",
supplemental.cols=c("SEPAL_LENGTH","Species"))

table(pred$Species, pred$prediction)

pred = rf_mod.predict(test_dat.drop('Species'),
supplemental_cols = test_dat[:,['SEPAL_LENGTH',

'Species']])
res_ct =

pred.crosstab('Species','PREDICTION',pivot=True)
res_ct.sort_values(by='Species')

モデルの構築とスコアリングをOracle Databaseにオフロード
OML4R OML4Py*

Copyright © 2020, Oracle and/or its affiliates.

• ある顧客の“収益合計”を予測
• 1億8,400万レコード、31の数値型予測変数
• データはOracle Databaseの表に保存

パラレル処理とデータ移動排除のメリット
データがOracle Databaseサーバー・マシンに存続

アルゴリズム
使用

スレッド数*
必要

メモリ**
データ・ロード

時間***
コンピュートのみ

の 経過時間
経過時間

合計
相対的

パフォーマンス

オープン・ソースのR線型モデル（lm） 1 220 Gb 1時間3分 43分 1時間46分 1X

OML4R lm（ore.lm） 1 - - 42.8分 42.8分 2.47X
OML4R lm（ore.lm） 32 - - 1分34秒 1分34秒 67.7X
OML4R lm（ore.lm） 64 - - 57.97秒 57.97秒 110X
OML4R lm（ore.lm） 128 - - 41.69秒 41.69秒 153X
* オープン・ソースのR lm()はシングルスレッドで実行されます
** オープン・ソースのlm()ではすべてのデータをメモリ内に格納する必要があるため、データはR Sessionメモリに移動します
*** 40 GbのRAWデータをオープン・ソースのR Sessionのメモリにロードするためにかかる時間

Copyright © 2020, Oracle and/or its affiliates.

データおよびタスクのパラレル実行

パラレル
処理を

手動制御

データソース データ・シンク

R/Pythonエンジンを
生成するためのロジックを

手動で記述

Rエンジンが利用可能になっ
たらデータをパーティショ

ン化してRにフィード

エンジンの生成/制御
関数とデータを提供

UDFを保存して
呼出し

スクリプト・
リポジトリ

オブジェクト・
リポジトリ

ユーザー定義関数をバックエン
ド・サーバーで実行

データ並列またはタスク並列の
実行に複数のエンジンを使用

データの自動パーティション化と
フィード

オープン・ソース・パッケージを
活用

Copyright © 2020, Oracle and/or its affiliates.

パラレル処理およびデータのパーティション化の容易な指定
• 簡素化されたAPI – オールインワン
• 大量のオープン・ソース・モデルを使用した構築、スコアリング
• 価値または個数によるデータのパーティション化
• ユーザー定義関数を索引入力とパラレルで呼出し

R、Pythonエンジンの自動管理
• ハードウェアの詳細から分離
• 可能な範囲でメモリ・リソースとコンピュート・リソースを制限

データとユーザー定義関数をRエンジン、Pythonエンジンに自動ロード
オープン・ソース・エコシステムのパッケージを活用

データおよびタスクのパラレル実行

Copyright © 2020, Oracle and/or its affiliates.

library(e1071)
buildNB <-

function(dat,dsname){
library(e1071)
dat$Species <- as.factor(dat$Species)
mod<-naiveBayes(Species ~ ., dat)
ore.save(mod,name=dsname,overwrite=TRUE) mod

}

def build_nb(dat, dsname):
import oml
from sklearn.naive_bayes import GaussianNB
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
raw_labels = dat[["Species"]].values
le.fit(raw_labels)
y = le.transform(raw_labels)
X = dat[["SEPAL_LENGTH","SEPAL_WIDTH",
"PETAL_LENGTH","PETAL_WIDTH"]].values
mod = GaussianNB().fit(X, y)
oml.ds.save(objs={'mod':mod},name=dsname,

overwrite=True)

mod <- ore.tableApply(IRIS, buildNB,
dsname='NB_Model-1',
ore.connect=TRUE)

mod = oml.table_apply(IRIS, build_nb,
dsname = 'NB_Model-1',
oml_connect=True)

OML4RとOML4Pyの比較 – 表の適用（Table Apply）
OML4R OML4Py*

Copyright © 2020, Oracle and/or its affiliates.

scoreNBmodel <- function(dat, dsname) {

library(e1071)
ore.load(dsname)
dat$PRED <- predict(mod, newdata = dat)
dat

}

def score_nb_mod(dat, dsname):
import oml
from sklearn.naive_bayes import GaussianNB
objs = oml.ds.load(dsname,to_globals=False)
mod = objs['mod']
dat['PREDICTION'] =

mod.predict(dat.drop('Species',axis=1))
return dat

IRIS_PRED <- IRIS[1,]
IRIS_PRED$PRED <- "A"

res <- ore.rowApply(IRIS, scoreNBmodel,
dsname = 'NB_Model-1',
parallel = 4, rows = 10,
FUN.VALUE = IRIS_PRED,
ore.connect = TRUE)

IRIS_PRED = pd.DataFrame([(1,1,1,1,'a',1)],
columns=["SEPAL_LENGTH","SEPAL_WIDTH",

"PETAL_LENGTH","PETAL_WIDTH",
"Species","PREDICTION"]))

res = oml.row_apply(IRIS,score_nb_mod,
dsname = 'NB_Model-1',
parallel = 4, rows = 10
func_value = IRIS_PRED,
oml_connect = True)

OML4RとOML4Pyの比較 – 行の適用（Row Apply）

Copyright © 2020, Oracle and/or its affiliates.

OML4R OML4Py*

デプロイメント

R、 Python
スクリプト

データソース

データ・
フレーム
イメージ

オブジェクト

アプリケーション
ビジネス・ロジック

C、C++、Java、SQL

結果は表で：構造化、イメージ、XML
パラレル同時実行を自動化

SQL –
R/Python
エンジン
R/Python

スクリプト
データ

使い慣れたSQLまたはRESTプロ
トコルを使用してR、Pythonを
呼び出す

すでにSQLまたはRESTを使用し
ているアプリケーションやダッ
シュボードと統合

RBDMS
HDFS

NoSQL
HIVE

Copyright © 2020, Oracle and/or its affiliates.

アプリケーション
ビジネス・ロジック

C、C++、Java、SQL

デプロイメント

Copyright © 2020, Oracle and/or its affiliates.

• すでにSQLまたはRESTを使用している環境からユーザー定義のRおよびPythonの
関数を容易に呼出し可能

• データの構造と型の自動マッピング

• データ・フレーム、イメージ、XMLをデータベース行セットとしてシームレスに返却

• 完全自動操作のために、ユーザー定義関数の実行スジュールを設定

BEGIN
sys.rqScriptDrop('RandomRedDots');

sys.rqScriptCreate('RandomRedDots',
'function(){

id <- 1:10
plot(1:100, rnorm(100), pch = 21,
bg = "red", cex = 2, main="Random Red

Dots")
data.frame(id=id, val=id / 100)
}');

END;

BEGIN
sys.pyqScriptDrop('RandomRedDots');
sys.pyqScriptCreate('RandomRedDots',

'def RandomRedDots ():
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

d = {''id'': range(1,10),
''val'': [x/100 for x in range(1,10)]}

df = pd.DataFrame(data=d)
fig = plt.figure(1)
ax = fig.add_subplot(111)
ax.scatter(range(0,100),

np.random.rand(100),c=''r'')
fig.suptitle("Random Red Dots")
return df', NULL, TRUE);
END;

SQLからのユーザー定義関数の作成（またはR/Pythonからの使用）

Copyright © 2020, Oracle and/or its affiliates.

OML4R OML4Py*

select ID, IMAGE from
table(rqEval(NULL,'PNG','RandomRedDots'))

select ID, IMAGE from
table(pyqEval(NULL,'PNG','RandomRedDots'))

select dbms_lob.substr(VALUE,4000,1) from
table(rqEval(NULL,'XML',RandomRedDots'))

select dbms_lob.substr(VALUE,4000,1) from
table(pyqEval(NULL,'XML','RandomRedDots'))

In R, invoke same function by name
ore.doEval(FUN.NAME='RandomRedDots')

In Python, invoke same function by name
res = oml.do_eval(func='RandomRedDots')

select ID, VAL from
table(rqEval(NULL,

'select 1 id, 1 val from dual',
'RandomRedDots'))

select ID, VAL from
table(pyqEval(NULL,

'select 1 id, 1 val from dual',
'RandomRedDots'))

SQLからのユーザー定義関数の呼出し

Copyright © 2020, Oracle and/or its affiliates.

OML4R OML4Py*

自動化

MLによって強化された
関数がモデルを自動的
に選択、チューニング

自動ML

モデルの品質の向上
データ・サイエンティストの生産性
向上
全体的なコンピュート時間を削減

1つの関数を呼び出して“最適な”
アルゴリズムとモデルを検索

ハイパーパラメータの自動チュー
ニングによって“最適な”アルゴリ
ズム設定を選択モデル

作成

データソース 候補のモデル

モデル
評価

ユーザーが設定の異なる
複数のアルゴリズムを
使用して多数のモデル
を作成、評価 – 試行錯

誤アプローチ

Copyright © 2020, Oracle and/or its affiliates.

AutoML – OML4Pyの新機能
データ・サイエンティストの生産性向上 – 全体的なコンピュート時間を削減

ハイパーパラメータを
自動でチューニング

• モデル精度が大幅に向上

• 手動探索またはしらみつ
ぶし探索の手法を回避

特徴の自動選択

• もっとも良い予測を特定
して特徴数を削減

• パフォーマンスと精度の
向上

アルゴリズムの自動選択

• もっとも高い品質のモデ
ルとなるインデータベー
ス・アルゴリズムを特定

• しらみつぶし探索より
も高速に実行できる最
適なモデルを検索

アルゴリズムの
自動選択

しらみつぶし探索
よりも

はるかに高速

特徴の 自動選択

データのノイズを除
去して特徴数を削減

自動チューニング

精度の大幅な向上
ML

モデル

エキスパートでないユーザーでも機械学習の活用が可能に

データ 表

Copyright © 2020, Oracle and/or its affiliates.

ms = AlgorithmSelection(mining_function = 'classification',
score_metric = 'accuracy',
parallel = 4)

best_model = ms.select(X_train, y_train)

all_models = ms.select(X_train, y_train, tune=False)

アルゴリズムの自動選択
MLが導く最大のスコア指標を達成するための最適なアルゴリズムを特定
しらみつぶし探索よりも数倍高速に実行できる最適なモデルを検索

Copyright © 2020, Oracle and/or its affiliates.

OML4Py

fs = FeatureSelection(mining_function = 'classification',
score_metric = 'accuracy',
parallel = 4)

selected_features = fs.reduce('dt', X_train, y_train)

X_train = X_train[:,selected_features]

特徴の自動選択
もっとも関連のある特徴を選択することでMLパイプラインを高速化

Copyright © 2020, Oracle and/or its affiliates.

OML4Py

OML4Pyによる特徴の自動選択：事例
もっとも高い関連を特定することで特徴数を削減し、パフォーマンスと精度を向上

30

25

20

15

10

5

0ト
レ

ー
ニ

ン
グ

時
間

（
秒

）

MLトレーニング時間

1
0.99
0.98
0.97
0.96
0.95
0.94
0.93

299 9

精
度

予測精度

33分の1に
削減

+4 %

OpenMLのデータセット312（1925行、299列）

1
0.95

0.9
0.85

0.8
0.75

0.7
0.65

0.6
0.55

0.5
784 309

精
度

予測精度

+18
%

60 %削減
SVMガウス・モデルの構築時間を1.3倍削減

OpenMLのデータセット40996（56000行、784列）

299 9
97 %削減

Copyright © 2020, Oracle and/or its affiliates.

自動チューニング
MLが導くモデル精度が大幅に向上
手動探索またはしらみつぶし探索の手法を回避
OML4Py

at = Autotune(mining_function = 'classification',

score_metric = 'accuracy',
parallel = 4)

results = at.tune('dt', X_train, y_train)

best_mod = results['best_model']
all_evals = results['all_evals']

Copyright © 2020, Oracle and/or its affiliates.

自動チューニング：
OMLニューラル・ネットワークの評価

約300個のデータセット全体で
平均1.7 %改善
一部のデータセットについて
は 8～24 %の改善

50

40

60

70

80

90

100

81
4

33
4

84
4

77
6

72
3

98
4

90
7

43
29

15
47 13 83

4

92
6

90
0

88
6

71
5

リ
ー

ブ
ア

ウ
ト

・
テ

ス
ト

・
セ

ッ
ト

の
精

度
（

%
）

OpenMLデータセット数

OMLニューラル・ネットワーク - デフォルトと
チューニング後の精度比較

デフォルト
チューニング後

Copyright © 2020, Oracle and/or its affiliates.

1. 新しくより強力なMLバックエンドおよびライ
ブラリを、そのリリース時にもっと容易に活
用可能

2. ビッグ・データの処理のためのデータ並列、タ
スク並列の実行がより高速かつ容易に

3. 手間のかかる部分について、処理を強力なバッ
クエンドにオフロード - 透過的なスケーラビリ
ティ

4. データ・サイエンティストのR、Pythonのス
クリプトと結果を本番環境で即座に活用

5. 自動化によってユーザーの生産性を強化

企業でも RおよびPythonが
使用可能にデータへの

アクセス、
分析、 探索

機械学習

データと
タスクの

パラレル処理

本番環境へ
のデプロイ

自動化

Copyright © 2020, Oracle and/or its affiliates.

• Oracle DatabaseをHPC環境として使用
• インデータベース、並列分散の機械学習

アルゴリズムを使用
• Oracle Database内でR、Pythonの

スクリプトとオブジェクトを管理
• オープン・ソースの結果をSQL経由で

アプリケーションおよびダッシュボードに
統合

• OML4Pyでは、自動機械
学習のAutoMLを利用可能

Oracle Machine Learning for R / Python
Oracle Autonomous Databaseに近日追加予定

SQLインタフェース
SQL*Plus
SQL Developer

OML4Py OML4R

Notebooks

Copyright © 2020, Oracle and/or its affiliates.

透過レイヤー
• プロキシ・オブジェクトを活用してデータベース内にデータを

保持
• 機能をSQLに変換するネイティブ関数をオーバーロード
• 使い慣れたR/Python構文を使用してデータベース・データ

を操作
並列分散アルゴリズム
• スケーラビリティとパフォーマンス
• 利用可能なインデータベース・アルゴリズムがOML4SQLによ

り公開
組込み実行
• Oracle DatabaseでRスクリプトまたはPythonスクリプトを管理

して起動
• データ並列、タスク並列、および非パラレルの実行
• オープン・ソースのパッケージを使用して機能を補強

OML4Pyの自動機械学習 - AutoML
• モデルの選択、特徴の選択、ハイパーパラメータ・

チューニング
Copyright © 2020, Oracle and/or its affiliates.

Oracle Machine Learning for R / Python
Oracle Autonomous Databaseに近日追加予定

SQLインタフェース
SQL*Plus
SQL Developer

OML4Py OML4R

Notebooks

追加情報

oracle.com/machine-learning

AskTOM OML Office Hoursもご覧ください
Copyright © 2020, Oracle and/or its affiliates.

https://oracle.com/machine-learning
https://asktom.oracle.com/pls/apex/asktom.search?office=6801#sessions

oracle.com/cloud/free

Mark Hornick
Marcos Arancibia

ありがとうございました

	Oracle Machine Learning：
企業向けのRおよびPythonのスケーリング
	免責条項
	データ・サイエンティストやデータ・アナリストがRおよびPythonを使用する理由
	従来の分析とデータソースの相互作用
	企業のスケーラビリティに影響する要素 - R、Pythonの場合
	データへのアクセス、分析、探索
	データへのアクセス、分析、探索
	プロキシ・オブジェクト
OML4Rインタフェースを使用した例
	オープン・ソース言語によるOracle Databaseへのアクセス
	オープン・ソース言語によるOracle Databaseへのアクセス
	オープン・ソース言語によるOracle Databaseへのアクセス
	スケーラブルな機械学習
	スケーラブルな機械学習
	スケーラブルな機械学習
	スケーラブルな機械学習
	モデルの構築とスコアリングをOracle Databaseにオフロード
	パラレル処理とデータ移動排除のメリット
データがOracle Databaseサーバー・マシンに存続
	データおよびタスクのパラレル実行
	データおよびタスクのパラレル実行
	OML4RとOML4Pyの比較 – 表の適用（Table Apply）
	OML4RとOML4Pyの比較 – 行の適用（Row Apply）
	デプロイメント
	デプロイメント
	SQLからのユーザー定義関数の作成（またはR/Pythonからの使用）
	SQLからのユーザー定義関数の呼出し
	自動化
	AutoML – OML4Pyの新機能
データ・サイエンティストの生産性向上 – 全体的なコンピュート時間を削減
	アルゴリズムの自動選択
	特徴の自動選択
もっとも関連のある特徴を選択することでMLパイプラインを高速化
	OML4Pyによる特徴の自動選択：事例
もっとも高い関連を特定することで特徴数を削減し、パフォーマンスと精度を向上
	自動チューニング
	スライド番号 32
	企業でも RおよびPythonが使用可能に
	Oracle Machine Learning for R / Python
Oracle Autonomous Databaseに近日追加予定
	Oracle Machine Learning for R / Python
Oracle Autonomous Databaseに近日追加予定
	追加情報
	oracle.com/cloud/free
	ありがとうございました

