
PL/SQL による SQL の実行：

ベスト・プラクティスとワー

スト・プラクティス
Oracle ホワイト・ペーパー

2008 年 9 月

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

ご注意

本書は、弊社の一般的な製品の方向性に関する概要を説明するものです。また、

情報提供を唯一の目的とするものであり、いかなる契約にも組み込むことはでき

ません。下記の事項は、マテリアルやコード、機能の提供を確約するものではな

く、また、購買を決定する際の判断材料とはなりえません。オラクルの製品に関

して記載されている機能の開発、リリース、および時期については、弊社の裁量

により決定いたします。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

PL/SQL による SQL の実行：ベスト・プラクティス

とワースト・プラクティス

概要 .. 1
はじめに .. 2

注意事項... 3
本書の定期的な改訂... 3

埋込み SQL、ネイティブ動的 SQL、DBMS_Sql API..................................... 4
埋込み SQL .. 4

埋込み SQL 文の名前解決.. 5
名前取得、ファイングレインな依存性の追跡、および防衛的プログ

ラミング ... 7
PL/SQL プログラムで発行されるすべての SQL は動的 SQL 8
プログラマーの認識よりもさらに表現が豊かな埋込み SQL 9

ネイティブ動的 SQL .. 10
DBMS_Sql API.. 14
カーソル・タクソノミー ... 16

カーソル・タクソノミーに関する質問 ... 16
専門用語 ... 17

• 共有可能な SQL 構造 .. 17
• セッション・カーソル ... 18
• 暗黙カーソル ... 19
• 明示カーソル ... 19
• 参照カーソル ... 20
• カーソル変数 ... 20
• 強い参照カーソル ... 21
• 弱い参照カーソル ... 21
• 識別カーソル ... 23
• DBMS_Sql 数値カーソル.. 24
• 明示カーソル属性 ... 25
• 暗黙カーソル属性 ... 25

まとめ ... 26
SELECT 文のアプローチ ... 29

複数行の選択 - アンバウンド結果セット.. 29
フェッチ・ループのプログラミング ... 30
カーソルのオープン ... 31

複数行の選択 - バウンド結果セット.. 32
複数行の選択 - 実行時までわからない select list または バインディン

グ要件... 34
単一行の選択... 38
プロデューサ/コンシューマのモジュール化のアプローチ 40

プロデューサ/コンシューマのステートフルな関係 42
プロデューサ/コンシューマのステートレスな関係 44

INSERT、UPDATE、DELETE、および MERGE 文のアプローチ 46
単一の行の操作... 46

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

単一の行の insert ... 46
単一の行の update ... 48
単一の行の delete... 49
単一の行の merge .. 49

複数行の操作... 52
forall 文の実行時に発生する例外の処理.. 53
補足：DML エラー・ロギング ... 54
forall 文のレコードのフィールドの参照.. 55
バルク・マージ ... 55

insert、update、delete、および merge のネイティブ動的 SQL の使用 56
ユースケースの例 .. 58

問合せ結果に応じた表データの変更 ... 58
実行時までわからない in list 項目の数 .. 60

結論 .. 62
変更履歴... 63
ベスト・プラクティスの原則のまとめ ... 64
レコードのコレクションに select 文の結果を移入する
アプローチの代案... 70
テスト・ユーザーUsr およびテスト表 Usr.t(PK number, v1
varchar2(30), ...)の作成.. 71

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

PL/SQL による SQL の実行：ベスト・プラクティス

とワースト・プラクティス

概要

PL/SQL 開発者には、SQL 文を実行するための構成に多数の選択肢があります。

そして、その領域には、埋込み SQL やネイティブ動的 SQL、DBMS_Sql API、あ

るいはバルクまたは非バルク、暗黙カーソル、パラメータ化された明示カーソル、

または参照カーソルといった複数のディメンションが含まれる可能性があります。

このため、どれを使用するかを決めるのが困難です。また、新しいバリアントが

導入されたことによって、最適な選択をするために古いバリアントを停止する場

合もあります。Oracle Database 11g は、動的 SQL の領域を改善することで、従来

の方法を維持します。

本書は、PL/SQL により SQL を実行するユースケースを調査して分類し、Oracle
Database 11g の観点から、現行の課題に対する最適なアプローチを説明します。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

1

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

はじめに
本書は、データベース PL/SQL ユニットのプログラミングに精通し、とくに SQL
文を処理するすべての PL/SQL の方法について多少経験がある Oracle Database 開

発者を対象としています。このため、各方法のバリアントの説明や確認はおこな

いません。むしろ、予備知識があることを前提とすることで、理解していないため

に説明が必要な部分を認識できます。読者はこのようにして、すべてのベスト・プ

ラクティスの原則の基本となる正しい概念を理解できるようになります。

最新版を参照している必要がありま

す。各ページの上部にある URL にア

クセスして確認してください。

わかりやすく例をあげましょう。成人が外国語を習得していく場合、伝える内容

を徐々に正確に表現できるようになります。しかし、言語の仕組みを深く理解せ

ずに熟語を使用していることがあります。熟語の使い方が不適切なために、内容

を誤解されてしまうこともあります。このような問題の解決策は、文法のルール

とそのルールに準拠している文の意味を積極的に理解しようとすることです。

5 ページの"埋込みSQL、ネイティブ動的SQL、DBMS_Sql API"の項では、SQL文を

処理するPL/SQLの 3 つの方法について、その概要を示しています。

select文は、アプリケーション・コード
1
から発行されるSQL文のうちもっとも頻繁

に使用されるものです。30 ページの"select文のアプローチ"の項では、次のように

ユースケースを分類します。

• 結果セット・サイズが大きい場合の複数行の選択。結果セット・サイズが適

度な制限を超えないことを想定できる場合の複数行の選択。単一行の選択。
• コンパイル時に SQL 文の固定が可能であること。コンパイル時にテンプレー

トの固定が可能であること（ただし、実行時まで表の名前を指定しないこと）。

実行時に select list、where 句、または order by 句の構築が必要であること。
• SQL 文の仕様のカプセル化が可能であること。その結果のフェッチおよび単

一の PL/SQL ユニットの結果に適用される、後続処理または異なる PL/SQL ユ

ニットの結果の処理へ実装する必要があること。
表データを変更するSQL文は、select文に続いてもっとも一般的です。47 ページの

"insert、update、delete、およびmerge文のアプローチ"の項で、これらの文を取り

上げます。

埋込み SQL がサポートしていない、lock table 文、トランザクション制御文、その

ほかすべての SQL 文は、プログラミングへの影響が少ないため、ここでは取り上

げません。

59 ページの"ユースケースの例"の項では、一般的に発生するシナリオを考察し、

要件を実現するための最適なアプローチについて説明します。

本書には、ベスト・プラクティスの原則について、いくつか記載されています。

すぐに参照できるように、65 ページの"付録B：ベスト・プラクティスの原則のま

とめ"で再現
2
します。

本書では、新たにコードを記述する場合に使用される最適なアプローチを提供し

ます。コードの刷新プロジェクトを正当化するものではありません。

1. ここでのアプリケーション・コードの定義では、インストールおよびアップグレードされるスクリ

プトを除いています。

2. 本書は、Adobe Framemaker 8.0 で作成しています。相互参照機能によって、ソース・パラグラフの

テキストを移動先の参照に挿入できます。このため、まとめに記載されているベスト・プラクティ

スの原則の記述が本文の記述と同じであることが確認できます（ただし、フォントは維持されません）。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

2

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

注意事項

3GL プログラミングのベスト・プラクティスの原則を規定することは、非常に困

難です。以下のような資質を備えた読者にとって、安全性というテーマは非常に

困難な課題の 1 つです。

• 理想の"両親"
3
をもっている

• 非常に発達した言語能力とともに一般的な常識がある

• 機械システムを視覚化する能力がある

• 自身や他人の卓越性を追及する

• 一流の交渉力がある（優れたコードは、悪いコードよりも記述およびテスト

に時間がかかります。マネージャーは、厳しい時間枠の中でコードの配信を

要求します。）

• 一流の教育を受けている

• 優れた技術文書を記述できる（コードの要件の記述、テスト仕様の記述、お

よびその過程で発生する問題の説明が必要となるためです。）

読者は、次のような知的支援を受けられる環境で作業できます。

• 1 人以上の優れた指導者が身近にいる

本書のテーマに関して、ベスト・プラクティスの原則を取り入れて直感的に使用

するには、次の条件を満たす必要があります。

• Oracle Database を十分理解している

• PL/SQL を十分理解している

本書の定期的な改訂

本書は、スペルミスや文法エラーが存在する可能性もあるため、定期的
4
に改訂し

ています。また、顧客とのユースケースの継続的なディスカッションによって、

新しいベスト・プラクティスの原則が作成されることもあります。本書を学習す

る前に、ページのヘッダーにあるURLにアクセスし、最新版かどうかを確認して

ください。

URL は変更される場合がありますが、次の Oracle Technical Network にある PL/SQL
Technology Center にかならず接続します。

http://www.oracle.com/technology/global/jp/tech/pl_sql/index.html

本書が別の URL へ移動していても、このページで簡単に確認することが可能です。

3. 著者の母国語は、イギリス英語です。著者の文化的な背景により、重要な点を強調するためにユー

モアをさりげなく用いる傾向があります。イギリス英語を母国語としない読者の方々は、この傾向

を念頭において読むことが望まれます。

4. 改訂履歴は本書の最後に記載されています。64 ページの"付録A：変更履歴"を参照してください。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

3

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

http://www.oracle.com/technology/global/jp/tech/pl_sql/index.html

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

埋込み SQL、ネイティブ動的 SQL、DBMS_Sql API

PL/SQL では、SQL を発行する 3 つの方法をサポートします。この項では概要を

説明し、各方法をすでに実行した読者が高く評価した点を示しています。特定の

要件に合わせて最適な方法を選択するには、3 つのすべての方法を正しく理解す

る必要があります。

埋込み SQL

PL/SQLの埋込みSQL5では、PL/SQL文で直接SQL構文を使用できるので、操作が

非常に簡単です6。select、insert、update、delete、merge、lock table、commit、rollback、
savepoint、set transactionといったSQL文のみをサポートします。

通常、PL/SQLの埋込みSQL文の構文は、対応するSQL文の構文と同じです
7
。ただ

し、select... into文、update... set row...文、insert... values Some_Record文（Code_3を

参照）には、PL/SQL固有の構文があります
8
。

埋込みSQL文には、その通常のSQL文に対して重要な意味上の利点があります。

通常のSQL文でプレースホルダを使用できる場所にPL/SQL識別子を使用できま

す。6 ページの"埋込みSQL文の名前解決"で詳しく説明します。

Code_1に、簡単な例を示しています。

-- Code_1
for j in 1..10 loop
 v1 := f(j);
 insert into t(PK, v1) values(j, b.v1);
end loop;
commit;

ここでの b は、変数 v1 が宣言されたブロックの名前です。

5. 本書では、後述する理由に従って、一般的な静的 SQL ではなく埋込み SQL という用語を使用して

います。

6. このため、"PL/SQL は SQL に対するオラクルのプロシージャ拡張機能"と呼ばれます。ただし、簡

略した表現であり、正確ではありません（過去を考慮して、ストアド PL/SQL ユニットの前に特殊

な SQL 文の無名ブロックが導入されました）。次のような表現が適切です。PL/SQL は、SQL コマ

ンドのシームレスな処理を実現するために設計された命令型の 3GL です。そのため、PL/SQL には

特別な構文が用意されており、SQL とまったく同じデータ型もサポートされています。

7. SQLには文のシーケンスという概念がないので、SQL文は特殊な終了文字を必要としません。対照

的に、PL/SQLユニットは多くの文で構成され、それぞれ最後にセミコロンを使用します。最後に

セミコロンを必要とするため、PL/SQLの埋込みSQL文は通常のSQL文と異なります。SQL*Plusス
クリプト言語では、SQL*Plusコマンドと組み合わせたSQL文のシーケンスをサポートしているため、

初心者は混乱することがあります。そのため、スクリプト言語で各SQL文を終了する特殊な文字が

必要になります。デフォルトはセミコロンですが、SET SQLTERMINATORコマンドで上書きされ

る場合があります。本書のすべてのSQL*Plusスクリプトの例は、SET SQLTERMINATOR OFFの発

行後に実行されます。初心者はexecute immediateの引数になるテキストでSQL文の最後にセミコロ

ンを記述してしまう傾向がありますが、これは間違いです。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

4

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

Code_2は、SQL文の処理を簡潔かつ正確にするPL/SQLの言語機能を明確に示して

います
9
。これは暗黙カーソルFORループ

10
と呼ばれます。

-- Code_2
for r in (
 select a.PK, a.v1
 from t a
 where a.PK > Some_Value
 order by a.PK)
loop
 Process_One_Record(r);
end loop;

Code_3は、PL/SQL固有の構文を含む埋込みSQL文を示しています。
-- Code_3
<>declare
 Some_Value t.PK%type := 42;
 The_Result t%rowtype;
Begin
 select a.*
 into b.The_Result
 from t a
where a.PK = b.Some_Value;

 The_Result.v1 := 'New text';

 update t a
 set row = b.The_Result
 where a.PK = b.The_Result.PK;

 The_Result.PK := -Some_Value;
 insert into t
 values The_Result;
end;

埋込み SQL 文の名前解決

PL/SQL コンパイラは、埋込み SQL 文を検出すると、次のように処理します。

• 分析するためにSQLサブシステムに渡します
11
。SQLサブシステムは、構文的

に正しいことを確認し（正しくない場合はPL/SQLユニットのコンパイルに失

敗します）、from list項目の名前を検出して、そのスコープでほかの識別子を

解決します。
• SQL 文のスコープで識別子を解決できない場合、"エスケープ"し、PL/SQL コ

ンパイラが解決します。最初に、現在の PL/SQL ユニットのスコープで試行

されます。失敗した場合、スキーマのスコープで試行されます。これにも失

敗した場合は、PL/SQL ユニットのコンパイルは失敗します。

8. where current of Cur 構文（Cur は明示カーソル）も通常の SQL にはありません。ただし、本書で推

奨されているベスト・プラクティスの原則に従った場合、これは必要ありません。

9. 本書のコードの例では、table tテストを使用します。これを作成するコードは、72 ページの"付録D：
テスト・ユーザーUsrおよびテスト表Usr.t(PK number, v1 varchar2(30), ...)の作成"の項に記載されて

います。

10. この簡単な構造が本番コードとして推奨されていないことが30 ページの"複数行の選択 - アンバ

ウンド結果セット"の項で確認できます。

11. select... into 文では、SQL サブシステムに文が渡される前に、PL/SQL コンパイラが into 句を削除し

ます。set row といったそのほかの埋込み SQL 文の PL/SQL 固有の構文でも同様です。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

5

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

• コンパイル・エラーがない場合、PL/SQL コンパイラは、通常の SQL 文と同

じテキストを生成し、生成されたマシン・コードで保存します。PL/SQL ユニッ

トのスコープで解決された識別子を埋込み SQL 文で使用した場合、この文で

はプレースホルダを使用します。

• 実行時に、適切な呼出しがおこなわれ、通常の SQL 文をパース、バインド、

および実行します。バインド引数は、式に結合されるエスケープ PL/SQL 識

別子によって提供されます。select 文では、指定した PL/SQL ターゲットに結

果がフェッチされます。

Code_4は、Code_1に対して生成された通常のSQL文
12
を示しています。

-- Code_4
INSERT INTO T(PK, V1) VALUES(:B2 , :B1)

Code_5は、Code_3に対して生成された通常のSQL文を示しています。
-- Code_5
SELECT A.* FROM T A WHERE A.PK = :B1

UPDATE T SET "PK" = :B1 ,
 "N1" = :B2 ,
 "N2" = :B3 ,
 "V1" = :B4 ,
 "V2" = :B5 WHERE PK = :B1

INSERT INTO T VALUES (:B1 ,:B2 ,:B3 ,:B4 ,:B5)

PL/SQL コンパイラを使用することで、どの程度作業が軽減されるかを確認します。

The_Result レコードの構造と表の列形式を検出して、通常の SQL 文のテキストを

適宜生成します。呼出し場所の異なる埋込み SQL 文が共有プールで同じ構造を共

有する確率を高めるために、大/小文字および空白文字を標準化します。/*+ ... */
ヒント構文を使用している場合のみ、埋込み SQL のコメントが、生成された SQL
に保存されます。

生成されたSQL文のバインド引数として機能するPL/SQL識別子は、変数または仮

パラメータを表しています。ただし、埋込みSQLを含むPL/SQLユニットにのみ表

示されるファンクションは表しません。これは、SQL文のファンクション呼出し

に対して定義されたセマンティックから生じます。各行に対し、そのファンクショ

ンは、SQL実行サブシステムで評価されなければなりません。このため、埋込み

SQL文では、スキーマ・スコープでアクセスできるファンクションのみ使用でき

ます。Code_1は、この対処方法を示しています。

12. 次のような問合せを使用して、Code_4およびCode_5を検出します。

select Sql_Text

from v$Sql

where Lower(Sql_Text) not like '%v$sql%'

and (Lower(Sql_Text) like 'select%a.*%from%t%' or

 Lower(Sql_Text) like 'update%t%set%' or

 Lower(Sql_Text) like 'insert%into%t%')

読みやすくするために、Code_5は手動でフォーマットされています。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

6

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

名前取得、ファイングレインな依存性の追跡、および防衛的プログラミング

Code_3の識別子は、修飾子が過剰に付加されているように見えます。同じ機能を

実装するCode_6が示すように、一般的な方法とは対照的です。
-- Code_6
select v1
into l_v1
from t where PK = p_PK;

プログラマーによっては、このステータスを示す接頭辞または接尾辞の規則で、

ローカル変数や仮パラメータの名前をつけるスタイルをすでに使用しています

（in、out、in outなどの異なるパラメータ・モードを区別した名前を使用するプロ

グラマーもいます）。通常、名前取得のリスクがないスタイルが要求されます。

ここで問題になるシナリオは、Code_6の表tが変更されてc1 などの列が追加される

ことです。SQLコンパイラは最初にc1 の解決を試み、解決されない場合のみ

PL/SQLコンパイラへのエスケープを許可するため、新しいc1 列の追加によってこ

のエスケープを停止することで、Code_6の意味が変更される可能性があります。

これは、エスケープのあとに識別子c1 が解決されたかどうか（つまり、埋込みSQL
文ですでに使用されたかどうか）に依存します。すでに使用されている場合、c1
という名前はSQLで取得されます。c1 が識別されない場合、PL/SQLユニットを再

コンパイルして正確性を証明する必要があります。

表の列を示す各識別子が表の別名で修飾されている場合、および PL/SQL ユニッ

トのスコープで解決される各識別子が宣言されているブロックの名前で修飾され

ている場合は、不正確な要素はありません。

以上の説明から、プログラミング・スタイルで意図した目的を実現することが保

証できないということは明白です。今回の例では、表 t を変更して、p_PK という

列を追加する場合があります。開発現場が、p_または l_で始まる名前のスキーマ・

レベルの表の列を禁止するといった幅広いネーミング規則を要求する場合のみ、

そのプログラミング・スタイルは有効です。ただし、PL/SQL コンパイラでは、こ

のような人為的に規制されたルールを信頼しません。これに関しては、ファイン

グレインな依存性の追跡を導入している Oracle Database 11g ではさらに重要にな

ります。

以前は、オブジェクト全体の粒度で依存性の情報が記録されました。Code_6の例

では、現在のPL/SQLユニットが表tに依存していることが記録されます。そして

Oracle Database 11gでは、PL/SQLユニットが表t内のt.vおよびt.PK列に依存してい

ることが記録されます。新しいアプローチでは、依存に無関係な方法で参照オブ

ジェクトが変更される場合は、不要な無効化を避け、減少させることを目標とし

ています。今回の例では、経験の浅いプログラマーは、依存するPL/SQLユニット

がtの特定の名前の列のみを参照する場合にtへ新規に列を追加することは無関係

であると、まず考えるかもしれません。しかし、名前取得に関しては、常にそう

とは限りません。新しい列の名前は、PL/SQLスコープで解決されたエスケープ識

別子と競合する場合があります。変更された表の構造で正しい意味をもつPL/SQL
を保証する唯一の方法は、再コンパイルして新しく名前の解決が実行されるよう

に、新しい列の追加に応じて無効化することです。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

7

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

Code_3のように修飾名を使用すると、分析内容が変更されます。修飾識別子b.PK
は、問合せでの別名がaである表の列（既存または新規）を意味するものではあり

ません。これは、テストで簡単に確認できます。列PKおよびvを使用する表t、Code_3
を含むプロシージャp1、およびCode_6を含むプロシージャp2 を作成します。

User_Objects問合せで両方が有効なことを確認します。tを変更して列（numberデー

タ型のc1 など）を追加し、User_Objects問合せを繰り返します。p1 が有効でp2 が

無効になります
13
。

最後に、Code_7で反例を検討してみます。
-- Code_7
<>declare
 Some_Value t.PK%type := 42;
 The_Result t%rowtype;

begin
 select b.*
 into b.The_Result
 from t b
 where b.PK = b.Some_Value;

 DBMS_Output.Put_Line(The_Result.n1);
end;

ここでは、表 t の別名が PL/SQL ブロックの名前と競合します。t に Some_Value
列がありませんが、このコードは正しく動作します。ただし、このような列が導

入された場合、問合せが意図しなかった意味に変更されます。つまり、コードが

名前取得の影響を受けて、ファイングレインな依存性の追跡を活用できなくなる

のです。

PL/SQL コンパイラによる埋込み SQL 文の処理（とくに、名前取得のリスクが発

生した場合の処理）を理解すると、次のベスト・プラクティスの原則の論理的根

拠がわかります。

Principle_1

埋込み SQL 文を記述する場合、常に各 from list 項目の別名を確認し、適切な別

名で各列を修飾します。現在のPL/SQLユニットで解決する各識別子の名前は、

宣言されているブロックの名前で常に修飾します。これがブロック文の場合、

ラベルによる名前が使用されます。別名および PL/SQL ブロックの名前はすべ

て一意である必要があります。これによって、参照される表が変更される場合

に名前取得を回避するため、ファイングレインな依存性の分析でPL/SQLユニッ

トを無効化する必要がないという結論に達する可能性が高くなります。

埋込み SQL では、from list 項目の別名

で各列の名前をドット修飾します。宣

言するブロックの名前で各 PL/SQL識

別子をドット修飾します。

PL/SQL プログラムで発行されるすべての SQL は動的 SQL

実行時に、各埋込みSQL文から生成されたSQL文は、Oracle DatabaseのSQLサブシス

テムでサポートされている方法でのみ実行されます。まず、セッション・カーソル
14

が開き、SQL文がテキストとして表示され、パースされます。select文では、select list
要素のターゲットが定義されます。SQL文にプレースホルダがある場合は、バイン

ド引数がバインドされます。続いて、セッション・カーソルが実行されます。

13. p2 は、コードを変更せずに簡単に再度有効にできます。ただし、その有効化によって意味が変わ

る可能性があります。p1 の意味は変更できません。

14. この専門用語の定義は、19 ページを参照してください。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

8

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

select文では、結果がフェッチされます。最後に、セッション・カーソルが閉じます
15
。

PL/SQL プログラムが動的 SQL を使用する場合も、SQL 文の実行時処理は同じで

す。違いは、何が実行時コードの生成に必要な処理をおこなうかです。ネイティ

ブ動的 SQL（とくに DBMS_Sql API）の場合はプログラマーが、埋込み SQL の場

合は PL/SQL コンパイラで、それぞれ処理します。

経験の浅いプログラマー（とくに、動的SQLは初めてで、埋込みSQLの経験は過

去にあるプログラマー）がこのことを理解しているとは限りません。たとえば、

埋込みSQL文が正しくコンパイルされれば、生成されるSQL文は実行時に失敗
16
す

るはずがないなどと考えます。これは、少し考えると誤りであることがわかりま

す。実行者権限のPL/SQLユニット
17
が実行される場合、Current_Schemaが

Session_User（実行者権限のPL/SQLユニットだけがコール・スタックに存在する

場合）または定義者権限のPL/SQLユニット
18
あるいはスタックにもっとも近い

ビューのOwnerに設定されます。これは、たとえば、生成されたSQL文内の修飾さ

れていない識別子が、コンパイル時ではなく実行時に個別に解決される場合があ

ることを意味しています
19
。最悪の場合、実行時エラーのORA-00942: table or view

does not existが発生する可能性があります
20
。

プログラマーの認識よりもさらに表現が豊かな埋込み SQL

埋込み SQL を使用していれば SQL の要件に対応できる場合でも、ネイティブ動

的SQLまたはDBMS_Sql APIを使用しているコードを目にすることがあります（と

くに、コードを記述したのが初心者で、経験を積んだ PL/SQL プログラマーがコー

ドを確認していない場合）。コードの表現が十分であれば、埋込み SQL は使用し

ないという理由は説得力に欠けています。このように埋込み SQL を回避すること

は、明らかにワースト・プラクティスと言えます（次の項で、この件について触

れていきます）。

15. 実行時まで select list が不明で直接 PL/SQL プログラムで構築されていない場合、追加の手順が必要

です。PL/SQL プログラムは、SQL システムに select list を要求します。これには、DBMS_Sql API
の使用が必要です。ただし、このユースケースは、本番 PL/SQL プログラムでは非常にまれです。

このアプローチを提案する実装設計は慎重に検討する必要があります。

16. ここでの失敗の概念は、insert の Dup_Val_On_Index 例外や、select... into の No_Data_Found および

Too_Many_Rows 例外などのデータ駆動型の条件を除外して、定義しています。

17. 実行者権限の PL/SQL ユニットは、authid プロパティと Current_User が同じです。

18. 実行者権限の PL/SQL ユニットは、authid プロパティと Definer が同じです。

19. このため、実行者権限の PL/SQL ユニットを正しくコンパイルするには、PL/SQL ユニットの Owner
が所有するスキーマのテンプレート・オブジェクトが必要になる場合があります。名前解決のルー

ルおよび PL/SQL のコンパイル時に使用される権限確認のルールは、実行者権限および定義者権限

の PL/SQL ユニットで同じです。

20. 定義者権限の PL/SQL ユニットは、public に明示的に付与される権限とともに、Owner に明示的に

付与される権限を常に確認します。実行者権限の PL/SQL ユニットは、コール・スタックの状態に

依存する権限を確認します。定義者権限の PL/SQL ユニットがスタックに存在する場合、実行者権

限の PL/SQL ユニットは、定義者権限の PL/SQL ユニットまたはスタックにもっとも近いビューと

同じ権限を確認します。実行者権限の PL/SQL ユニットだけがコール・スタックに存在する場合、

Current_User の権限を直接確認するか、現在使用できるすべてのロールを介した Current_User の権

限とともに public を介した Current_User の権限を確認します。このため、実行者権限の PL/SQL ユ

ニットがスキーマ修飾名を使用してオブジェクトを識別する場合でも、実行時に ORA-00942 が発

生する可能性があります。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

9

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

ネイティブ動的 SQL

Code_8では、ネイティブ動的SQLの簡単な例を示しています。名前にネイティ

ブという用語を使用しているのは、PL/SQL言語機能として実装されているため

です。
-- Code_8
procedure p authid Current_User is
 SQL_Statement constant varchar2(80) := q'[
 alter session
 set NLS_Date_Format = 'dd-Mon-yyyy hh24:mi:ss'
]';
begin
 execute immediate SQL_Statement;
 DBMS_Output.Put_Line(Sysdate());
end p;

alter sessionのSQL文は埋込みSQLでサポートされていないので、Code_9に示され

ているようにPL/SQLコンパイラでSQL文を分析しない方法を使用する必要があ

ります。動的SQLという用語は、このような方法を表すために広範に使用されま

すが、"動的"という言葉が誤解を招く可能性があります。この方法で実行される

SQL文のテキストが実行時に構築される可能性があるのでこの用語が選択された

のですが、実際はかならずしもそうではありません。Code_8では、コンパイル時

にSQL文が固定されます。これは、constantキーワードを使用することで強調され

ます。

汎用的な PL/SQL ベスト・プラクティスの原則は、次のとおりです。

Principle_2

初期化のあとに変更されない変数の宣言でconstantキーワードを使用します
21
。

最悪のケースでもconstantの変更を試みるコードがコンパイルに失敗するため

（このエラーによってプログラマーの考え方が鋭くなります）、この原則に従っ

てもペナルティはありません。この原則は、可読性と正確性という点で明白な

利点が得られます
22
。

ブロックによって意図的に変更され

ない限り、constant キーワードで各

PL/SQL 変数を宣言します。

動的SQLのコンテキストでは、可能であれば、constantとしてSQL文のテキストを

宣言すると有用です。このようにすることで、SQLインジェクション攻撃
23
の領域

が削減されます。

このコネクションで、p の authid プロパティが Current_User に明示的に設定され

ます。authid 句が省略された場合、プロパティのデフォルト値の Definer が使用さ

れます。

21. PL/SQL コンパイラがこの事例を検出する場合があります（ただし、パッケージ仕様のグローバル・

レベルで変数が宣言される場合を除く）。エンハンスメント・リクエスト 6621216 では、この事例

にコンパイラの警告を要求します。

22. この情報がないと安全ではないと判断されてしまう場合に、ある状況下で constant キーワードを使

用することによって、特定の最適化は安全であるということが PL/SQLコンパイラに通知されます。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

10

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

この動作は、履歴によって決定します。互換性を理由に変更することはできませ

ん。ただし、プログラマーは、プロパティのデフォルト値を無視して、次のベス

ト・プラクティスの原則を採用できます。

Principle_3
常に authid プロパティを明示的に指

定 し ま す 。 Current_User ま た は

Definer を慎重に選択します。
各PL/SQLユニットのauthidプロパティを常に明示的に指定します。ユニットの

目的を慎重に分析したあと、定義者権限または実行者権限を選択します
24
。

Code_9では、ネイティブ動的SQLの反例を示しています。
-- Code_9
procedure p(Input in varchar2) authid Current_User is
 SQL_Statement constant varchar2(80) := 'Mary had... ';
begin
 execute immediate SQL_Statement||Input;
end p;

このバージョンのプロシージャ p は、エラーなくコンパイルされます。ただし、

実行時に ORA-00900: invalid SQL statement エラーで失敗します（この例で使用さ

れている実引数は関係ありません）。これは、明白な結果を抽出して、明白では

ない結果を議論するコンテキストを提供するための極端な方法です。議論によっ

て、ベスト・プラクティスの原則のコメントが動機づけられます。

実行時までSQL文は分析されません。これは、埋込みSQLが対応していないSQL
文のサポートを可能にする方法の特性です。通常、SQL文のテキストは、実行時

までわかりません。そのため、実行されるSQL文がコンパイル時に存在せずに、

コンパイルとSQL文の実行の間に作成されるオブジェクトにアクセスする場合が

あります。グローバル一時表
25
を導入する前に、PL/SQLプログラムで大量の一時

データのオーバーフローに対応するスクラッチ表を使用している場合があります。

単純な実装では、動的SQLでスクラッチ表を作成し、あとで削除します。高度な

実装では、管理プールからこのような表の名前を保存し、あとで削除します。い

ずれの場合も、プログラムが実行時まで表の名前を識別できないので、埋込みSQL
でサポートされる通常のSQL文でも動的SQL文が必要になります。Code_10は、定

型化された一般的な例を示しています。

23. SQLインジェクションの詳細については、このホワイト・ペーパーでは取り上げていません。ここ

では、コンパイル時にテキストが固定されるSQL文のみを発行するPL/SQLプログラムで脅威を避

けることができるということ、そして、constant SQL文テキストを使用する埋込みSQLおよび動的

SQLにこの特性があるということを指摘するに留めておきます。SQLインジェクションに対する脆

弱性がないことを確認するのは、SQLを発行するコードを記述したPL/SQLプログラマーの責任で

す。参考資料のホワイト・ペーパー『How to write injection-proof PL/SQL』は、Oracle Technology
Network の 次 の URL で 確 認 し て く だ さ い 。

www.oracle.com/technology/tech/pl_sql/how_to_write_injection_proof_plsql.pdf
詳細まで確認することを強く推奨します。

24. エンハンスメント・リクエスト 6522196 は、authid プロパティが明示的に指定されていない場合に

コンパイラの警告を要求します。これが Oracle Database 11g Release 2 に実装されています。

25. サポートされているすべてのバージョンの Oracle Database でグローバル一時表がサポートされま

す。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

11

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

-- Code_10
procedure b(The_Table in varchar2, PK t.PK%type)
 authid Current_User
is
 Template constant varchar2(200) := '
 select a.v1 from &&t a where a.PK = :b1';

 Stmt constant varchar2(200) := Replace(
 Template, '&&t',
 Sys.DBMS_Assert.Simple_Sql_Name(The_Table));

 v1 t.v1%type;
begin
 execute immediate Stmt into v1 using PK;
 ...

end b;

constantテンプレート
26
および派生したconstant SQL文の使用によって、コードの正

確性が増します。

本書の目的はベスト・プラクティスとワースト・プラクティスであるため、例以

外のコード（ただし、反例を除く）を記載する余裕がありません。そのため、説

明には Sys.DBMS_Assert.Simple_Sql_Name()を使用します。名前は、汎用的な SQL
および PL/SQL のベスト・プラクティスの原則に従って修飾されます。

Principle_4
Owner を使用して、Oracle Database
に付属しているオブジェクトの名前

をドット修飾します。
Oracle Databaseに付属するオブジェクトの参照はOwnerでドット修飾されます（Sys
になる場合が多いですが、かならずそうなるわけではありません）。これによって、

目的のオブジェクトと名前が競合するローカル・オブジェクトが、名前の解決時に

現行のスキーマに作成される場合でも、意図したとおりに保存されます。

実引数が適切な修飾されていないSQL識別子の場合、SQL文のとおりに記述され、

ファンクションで入力が返されます。返されない場合は、ORA-44003: invalid SQL
nameエラーが発生します。Code_11のb()の呼出しがエラーなく実行され、期待さ

れた結果が生成されます。
-- Code_11
b('t', 42);
b('T', 42);
b('"T"', 42);

Code_12の呼出しがORA-44003 で失敗します。
-- Code_12
b('"USR"."T"', 42);

Code_13では、要求するSQL文を示しています。
-- Code_13
select a.v1 from "USR"."T" a where a.PK = :b1

この文は適切ですが識別子が修飾されます。そのため、修飾されないとアサーショ

ンは失敗します。

26. SQL 文テンプレートの&&t 表記に形式的な意味はありません。テンプレートの概念を詳細に説明

している参考資料のホワイト・ペーパー『How to write injection-proof PL/SQL』で使用されます。SQL
を実行する Oracle Database のスキームを使用して、値をプレースホルダにバインドできます。ただ

し、文の識別子に対応する機能はありません。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

12

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

Code_14の呼出しもORA-44003 で失敗します。
-- Code_14
b('t a
 where 1=0
 union
 select Username v1
 from All_Users where User_ID = :b1 --',
 42);

識別子は適切ですが、アサーションは失敗します。Code_15では、要求するSQL文
を示しています。
-- Code_15
select a.v1 from t a
where 1=0
union
select Username v1
from All_Users where User_ID = :b1 -- a where a.PK = :b1

これは、簡潔なSQLインジェクションの例で、要求されたSQL文は適切です。SQL
文は、プログラマーの意図と異なる構文テンプレートの例です。動的に構築され

たSQL文は、リスクの高い方法で大幅に変更されています
27
。DBMS_Assertファン

クションを慎重に使用すれば、このような脆弱性からコードを保護することがで

きます。

グローバル一時表を使用して一部のユースケースで簡潔かつ適切なアプローチを

実現できますが、実行時まで 1 つ以上のSQL文の識別子がわからないユースケー

スもあります。これは、select、insert、update、delete、merge、またはlock table文
28

がネイティブ動的SQLで最適にサポートされる（ほぼ）唯一のユースケースです
29
。

埋込み SQL が機能的に適切な状況において、動的 SQL の使用を正当化する理由

をときどき耳にすることがあります。それは、動的 SQL を使用することで依存性

をもたずに構築できるため、PL/SQL ユニットを無効化しなくても、PL/SQL ユニッ

トが依存する表とビューの構造を変更することができるといったものです。ここ

での提言は、PL/SQL コンパイラが実行できない処理をプログラマーが認識すると

いうことと、このような重要な表やビューを変更しても、PL/SQL ユニットからの

それらへのアクセスの有効性には影響を与えません。新しいファイングレイン依

存性の追跡モデルが導入されたため、Oracle Database 11g ではこのリスクの高い分

析の必要性がなくなります。埋込み SQL で参照されるオブジェクトにおこなわれ

た変更に関する安全性が立証されます。変更が安全な場合、参照している PL/SQL
ユニットは有効なままです。安全ではない可能性があれば、PL/SQL ユニットは無

効になります。

27. 攻撃者がソース・コードを参照していることが想定されます。また、テスト実装で脆弱性を把握し

ている可能性があります。ただし、SQL インジェクションの脆弱性の多くは、ブラック・ボックス・

テストによって検出できます。

28. Oracle Database の『SQL Language Reference Guide』の正式な定義と一般的な使用方法が異なるため、

このホワイト・ペーパーでは、DML という用語を使用していません。一般的な使用方法は、select
を除外し、insert、update、delete、および merge と対比してこれを設定します。つまり、4 つの DML
のみを呼び出します（lock table は考慮しません）。また、『SQL Language Reference Guide』には、

DML の定義に call と explain plan が含まれます。ただし、これらは PL/SQLの埋込み SQLではサポー

トされません。

29. もう 1 つ、難解なユースケースがあります。たとえば、大きい表を使用したデータウェアハウス・

アプリケーションの場合、最適な実行計画は、制約条件であるリテラル値の使用に依存します。参

照列への実際の値の分散を記録する統計から適切に使用されます。つまり、その条件が、動的 SQL
を順番に指示する SQL 文に直接エンコードされることを意味しています。
このユースケースでは、Sys.DBMS_Assert.Enquote_Literal()を使用して、SQL インジェクションの脅

威から保護する必要があります。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

13

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

この項については、以下のベスト・プラクティスの原則にまとめられます。

Principle_5
コンパイル時にテキストが固定され

る SQL 文を使用してください。使用

できない場合は、固定したテンプレー

トを使用してください。プレースホル

ダにバインドします。DBMS_Assert
を使用して、連結した SQL 識別子を

保護します。

コンパイル時にテキストが固定されるSQL文のみを常に使用してください。

select、insert、update、delete、merge、およびlock table文には、埋込みSQLを使

用します。ほかの文には、ネイティブ動的SQLを使用します。コンパイル時に

SQL文を固定できない場合、固定した構文テンプレートを使用し、名前のプロ

ビジョニングへの実行時のバリエーションを制限してください（これは、プレー

スホルダの使用とバインディングの負担の軽減を意味します）。スキーマ・オ

ブ ジ ェ ク ト の 名 前 と 列 名 な ど の オ ブ ジ ェ ク ト 内 の 識 別 子 に は 、

Sys.DBMS_Assert.Simple_Sql_Name()を使用します。例外的に、プレースホルダで

はなくリテラル値の使用が条件の場合は、Sys.DBMS_Assert.Enquote_Literal()を
使用します。ほかの値（Code_8のNLS_Date_Formatの値など）の場合は、パラ

メータ化されたユーザー入力に応じてプログラムで構築します。

最後に、execute immediate はネイティブ動的 SQL を実装する唯一の構成メンバー

ではありません。Curがカーソル変数である open Cur for文については後述します。

DBMS_Sql API

DBMS_Sql API によって、動的 SQL を実行する手順がサポートされます。以前の

バージョンの Oracle Database では、DBMS_Sql API が動的 SQL を実行する唯一の

手段でしたが、さまざまな出来事を経て、現在では、サポートされているすべて

のバージョンでネイティブ動的 SQL がサポートされています。

ネイティブ動的SQLは、DBMS_Sql APIの拡張機能として導入されました（簡潔な

記述と迅速な実行が可能です）。Code_17およびCode_18でこの点を確認できます。

一意に識別される単一行を大きい表から正しく選択するテストで、Code_16で設定

したSQL文を実行します。
-- Code_16
Stmt constant varchar2(80) := ' select t.n1 from t where t.PK
= :b1';

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

14

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

Code_17では、DBMS_Sql APIを使用します。
-- Code_17
declare
 Cur integer := DBMS_Sql.Open_Cursor(Security_Level=>2);
 Dummy integer;
begin
 DBMS_Sql.Parse(Cur, Stmt, DBMS_Sql.Native);
 DBMS_Sql.Define_Column(Cur, 1, n1);

 for j in 1..No_Of_Rows loop
 DBMS_Sql.Bind_Variable(Cur, ':b1', j);
 Dummy := DBMS_Sql.Execute_And_Fetch(Cur, true);
 DBMS_Sql.Column_Value(Cur, 1, n1);
 ...

 end loop;
 DBMS_Sql.Close_Cursor(Cur);
end;

Open_Cursor()、Parse()、Define_Column()、およびClose_Cursor()の呼出しはループ

の外で、Bind_Variable()およびExecute_And_Fetch()の呼出しはループの中で実行さ

れます。これによって、同じSQL文を繰り返してパースする必要がなくなります
30
。

Code_18では、ネイティブ動的SQLを使用します。
-- Code_18
for j in 1..No_Of_Rows loop
 execute immediate Stmt
 into n1 using j;
 ...
end loop;

Code_18は、Code_17よりも短く、わかりやすくなっています。このほうが、プロ

グラマーの意図を正確に表現する可能性が増します。また、Code_18は、11,000
行のテスト表においてCode_17の実行速度の約 2 倍です。これは、同等の埋込み

SQLアプローチとほぼ同じ速度です。

ただし、DBMS_Sql APIは、ネイティブ動的SQLでは対応できないSQL文を実行す

る要件をサポートしています
31
。その要件は以下のとおりです。

30. Parse()呼出しは、同じ意味をもつ同一の文のテキストで、共有プールの共有可能なSQL構造を検出

します。何も検出されない場合、ハード・パースが実行されます。これは周知のとおり負荷が高く

なります。ただし、すでに存在している共有可能な構造を使用するタスク（ソフト・パース）でも

負荷はかかります。Code_17のOpen_Cursor()、Parse()、Define_Column()、およびClose_Cursor()を移

動して、ループ内で呼出すように変更すると、11,000 行のテスト表でのCode_17の実行結果よりも

約 3 倍の時間がかかります（適切な統計的調査では、繰り返し実行されるパースは、実際にソフト

である（速度が遅い）という結果を示しています）。

31. 逆に、ネイティブ動的 SQL に対応するほとんどの SQL 文の実行要件は、DBMS_Sql API にも対応

します。Oracle Database 11g は、多くの拡張機能を DBMS_Sql API に導入しています。Parse()には、

SQL 文に対して新しい CLOB 形式のオーバーロードが備わっています。select list には、ユーザー

定義型の列を含めることができます。ユーザー定義型のバインド引数がサポートされます。

DBMS_Sql 数値カーソルを参照カーソルに変換することができます（また、参照カーソルを

DBMS_Sql 数値カーソルに変換することもできます）。

1 つ例外があります。ユーザー定義型のコレクションに select list をバルク・フェッチできません。

DBMS_Sql パッケージ仕様に定義されているコレクション・タイプのいずれかを使用する必要があ

ります。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

15

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

• プレースホルダへのバインドの要件は、実行時までわかりません。Code_18を
参照すると、理由が簡単にわかります。ネイティブ動的SQLは、using句でバ

インディングをサポートします。コンパイル時にこの句が固定されます。対

照的に、DBMS_Sql APIは、実行時のテストに応じてBind_Variable()へ必要な

だけの呼出しを実行できます。

• 戻り値の要件は、実行時までわかりません。これは、実行時までselect listがわ

からないselect文で顕著に発生します。Code_18では、ネイティブ動的SQLで
into句を使用し、select listのPL/SQLターゲットを指定する方法を示しています。

この句もコンパイル時に固定されます。対照的に、DBMS_Sql APIは、実行時

のテストに応じてDefine_Column()へ必要なだけの呼出しを実行できます。

insert、update、delete、またはmerge文にreturning句が含まれる場合、Code_19で示

されているようにusing句
32
でこれらの値のPL/SQLターゲットを指定します。

-- Code_19
 ...
 Stmt constant varchar2(200) := q'[
 update t
 set t.v1 = 'New '||t.v1 where t.PK = :i1
 returning t.v1 into :o1]';
begin
 ...
execute immediate Stmt using in PK, out v1;
 ...

次に、動的 SQL を実行するための適切な方法とそれにかかる時間に関して疑問が

生じます。これには、次のベスト・プラクティスの原則で解決できます。

Principle_6
動的 SQL には、ネイティブ動的 SQL
を使用します。使用できない場合の

み、DBMS_Sql API を使用します。
動的SQLには、機能が不十分な場合を除いて常にネイティブ動的SQLを使用し

ます。機能が不十分な場合にのみ、DBMS_Sql APIを使用します。select、insert、
update、delete、およびmerge文の場合、コンパイル時にわからないプレースホ

ルダまたはselect list項目がSQL文に含まれると、ネイティブ動的SQLでは対応で

きなくなります
33
。ほかのSQL文の場合、操作がリモート・データベースで実行

されるとネイティブ動的SQLでは対応できません。

カーソル・タクソノミー

さまざまなカーソルの特性を表すために、慎重に定義された専門用語
34
は、SQLを

発行するための 3 つの方法を使用した経験のあるPL/SQLプログラマーだけが、そ

の定義を理解できるようになります。

カーソル・タクソノミーに関する質問

主な質問は、以下のとおりです。

32. この反対は、戻り値のターゲットがプレースホルダとして提供される SQL の returning 句の構文

です。

33. DBMS_Sql.To_Refcursor()ファンクションを使用して、実行されている DBMS_Sql 数値カーソルを

変換できます。また、DBMS_Sql.To_Cursor_Number()ファンクションを使用して、カーソル変数を

DBMS_Sql 数値カーソルに変換できます。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

16

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

質問 0：カーソルという用語はどの論理ドメインで使用されますか。また、ど

のドメインにおいても同じことを指しますか。

質問 1：誰がカーソルを管理しますか（カーソルのオープン、SQL 文のパース、

カーソルのクローズなど）。プログラマーですか。それとも PL/SQL システム

ですか。

質問 2：カーソルにはプログラマーが定義する識別子がありますか。ある場合、

その識別子はどのように使用できますか。

質問 3：埋込み SQL、ネイティブ動的 SQL、または DBMS_Sql API を使用して

カーソルは開きますか。

質問 0 については、2 つの異なるドメイン（公開および非公開）があります。公

開ドメインは、PL/SQLソース・テキストおよびPL/SQLの構文とセマンティックの

定義を考慮して指定される動作の説明です。非公開ドメインは、PL/SQLシステム

の実装です。理論的に望ましくありませんが、プロフェッショナルなOracle
Database開発者は理解しておく必要があります。PL/SQLランタイム・システムは、

OCI
35
と同等のサーバー側の機能を正しく呼び出して、ソース・テキストで指定す

るSQL文の処理を管理します。Oracle Netプロトコルの受信側で使い慣れたクライ

アント側のOCIを実装するAPIとして、このAPIを表現できます。このため、同等

の操作がサポートされます。SQLを発行する 3 つの方法のいずれかを使用する

PL/SQLコードは、サーバー側のOCIに実行時に呼び出される方法と同じように実

装されます。つまり、クライアント側のOCIを使用するプログラマーが、慣れて

いるカーソルの概念でデータベースPL/SQLで発行されるSQL文の実行時処理の

説明をサポートします。とくに、Open_CursorsやSession_Cached_Cursorsなどの初

期化パラメータは、データベースPL/SQLで発行されるSQL文と（直接）OCI、ODBC、
またはJDBCドライバ（thickドライバあるいはthinドライバ）を使用したクライア

ント・プログラムで発行されるSQLで同じ意味をもちます。

非公開ドメインの詳細は、共有プールに関連します。v$SqlAreaおよびv$Sqlビュー

で公開されるセッションに依存しない構造は、正しくありませんがカーソル
36
と呼

ばれます。

専門用語

専門用語
37
を以下に示します。

• 共有可能な SQL 構造

共有プールのオブジェクトです。メタデータが v$SqlArea および v$Sql ビュー

に公開されます。共有可能な SQL 構造は、これを作成したセッションのライ

フタイムを超えて存在し、同時にほかのセッションでも使用できます。

34. "term of art"（専門用語）をGoogleで検索すると、Everything2.comでは次のように定義され議論され

ています。専門的な活動分野で専門家によって使用される語またはフレーズ。活動分野において、

厳密で、一般的にかなり専門的な意味を持ちます。専門家らは、その分野の専門用語を使用して簡

潔かつ明確に意思の疎通を図ります。一般的に、専門用語として適切な新語を作成するのは非常に

困難と言われています。専門用語となる新語の意味は、分野に固有ではないことも少なくありませ

ん。これによって、分野の専門家とそれ以外の人との間に、情報伝達の壁ができるという認識が強

くなります。

35. OCI は、Oracle Call Interface の略です。

36. たとえば、"カーソル共有"や"子カーソル"などのフレーズでこれを耳にします。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

17

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

http://www.google.com/search?q=%22term+of+art%22
http://www.everything2.com/index.pl?node_id=1673786

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

SQL文のテキストが同じ場合およびほかの共有基準（SQL文の識別子が同じオ

ブジェクトを示す場合など）が満たされる場合のみ、共有可能なSQL構造を再

利用できます
38
。このため、この用語は、非公開領域のPL/SQLの実装（実際

は、SQL文の処理をサポートする環境の実装）に属します。共有可能なSQL構
造を再利用すると、パフォーマンスが向上します。このため、すべての環境

からSQLを処理するもっとも有名な次のベスト・プラクティスの原則がありま

す。

Principle_7 動的 SQL を使用する場合、SQL 文の

リテラルを回避してください。代わり

に、適切な値をプレースホルダにバイ

ンドしてください。

動的に作成した SQL 文で連結されたリテラルを使用しないでください。リテ

ラルではなくプレースホルダを使用してください。実行時にリテラルだった

値をバインドします。これによって、共有可能な SQL 構造を最大限に再利用

できます。

• セッション・カーソル

セッションのメモリ
39
のオブジェクトです。このため、セッションとともに停

止します。また、メタデータがv$Open_Cursorビューに公開されます。個別の

セッションのSQL処理がサポートされます。

この用語も非公開領域に属します。SQL文を発行するクライアント（たとえば、

PL/SQL）は、セッション・カーソルを使用します。セッション・カーソルは、

単一の共有可能なSQL構造と関連づけられます。ただし、共有可能なSQL構造

には、関連づけられたいくつかのセッション・カーソルが存在する場合があ

ります。また、セッション・カーソルは、再利用される可能性のあるオブジェ

クトです。クライアントが特定のSQL文の処理を完了した場合、この処理をサ

ポートしたセッション・カーソルは破棄されません。ソフト・クローズとし

てマークされ、最近使用したキャッシュに保存されます
40
。最初にソフト・ク

ローズしたセッション・カーソルのキャッシュを検索して、SQL文をパースす

るクライアントの呼出しが実装されます。検索には、共有プールの共有可能

なSQL構造の再利用候補に関する検索と同じ基準（SQL文のテキストおよび意

味の識別）を使用します
41
。検出されない場合のみ、新しいセッション・カー

ソルの基礎として使用される一致した共有可能なSQL構造が共有プールで検

索されます。共有プールの検索は、ソフト・パースと呼ばれます。ソフト・

クローズしたセッション・カーソルの再利用は、ソフト・パースの実行を避

ける最適化です。最悪の場合、共有プールでも検出されません。この場合、

ハード・パースで新しいセッション・カーソルの基礎になる適切で新しい共

有可能なSQL構造が作成されます。

37. 外国語の単語として implicit（暗黙）や explicit（明示）、cursor（カーソル）などを扱う際に役立ち

ます。また、英単語本来の意味との関連性を意識する必要がありません。とくに、implicit cursor
（暗黙カーソル）や explicit cursor（明示カーソル）といった英語に直訳しない外国語の熟語のフレー

ズを検討する際に有効です。問題は、これらのフレーズの意味と正しい使用方法だけです。原則は

やはり通例となります。アメリカ英語の freeway（高速道路）は通行料がかからないことを示す場

合が多いですが、イギリスでは通行料のかかる freeway は珍しくありません。

38. 再利用は、select、insert、update、delete、merge、無名 PL/SQL ブロックといった SQL 文に制限さ

れます。プレースホルダが使用できるのは、これらの SQL 文だけです。

39. これは一般的に PGA とも呼ばれますが、正しくは UGA です。

40. Cursor_Space_For_Time が true に設定される場合のみ、セッション・カーソルがキャッシュされま

す。

41. PL/SQL は、検索領域を単一の項目に絞り込んだ解析呼出しをおこなう PL/SQL 文のソース・テキ

ストの場所に基づいて、このアプローチの最適化されたバージョンで使用します。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

18

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

Open_Cursors初期化パラメータは、単一のセッションで同時にオープン状態で

存在するセッション・カーソルの最大数を設定します。Session_Cached_Cursors
初期化パラメータは、単一のセッションで同時にソフト・クローズ状態で存

在するセッション・カーソルの最大数を設定します42。新しくソフト・クロー

ズしたカーソルまたは新しく開いたセッション・カーソルのために、ソフト・

クローズしたセッション・カーソルが破棄される場合があります。

• 暗黙カーソル

暗黙カーソルは、明らかな PL/SQL 言語の構造と概念の観点で表示されるカー

ソルがない場合に、埋込み SQL 構造およびネイティブ動的 SQL 構造のファミ

リーを実装する SQL 処理をサポートしたセッション・カーソルを表します。

PL/SQL コンパイラで実行される分析を反映した PL/SQL ランタイム・システ

ムで、open、parse、bind、execute、fetch、close などの操作を指定する明示的

な言語構造を必要としないセッション・カーソルを管理します。このため、

この用語は非公開領域に属します。

SQLを実行するカーソルのないPL/SQL構造のファミリーの例を示す場合に、

この用語が非公式に使用されることがあります。このような使用には注意し

てください。逆説的に、類似した用語の暗黙カーソル属性は、PL/SQLの構文

およびセマンティックの公開領域に属します。同類の明示カーソル属性を定

義するまで、この用語は定義しません。Code_1、Code_2、Code_3は、埋込み

SQLのカーソルのないPL/SQL構造の例を示しています。Code_8、Code_10、
Code_18、Code_19は、ネイティブ動的SQLのカーソルのないPL/SQL構造の例

です。これには、常にexecute immediateが使用されます。

• 明示カーソル

用語から暗黙カーソルの反意語という印象がありますが、そうではありませ

ん43。明示カーソルは、固有のPL/SQL言語機能です。このため、この用語は

公開領域に属します。Code_20のPkg1 パッケージの仕様で宣言されている

Cur_Proc識別子は、明示カーソルを示します。
-- Code_20
package Pkg1 is
 type Result_t is record(PK t.PK%type, v1 t.v1%type);
 cursor Cur_Proc(PK in t.PK%type) return Result_t;
 ...
end Pkg1;

42. Open_Cursors は、機能の制限を設定します。アプリケーションが同時にアクティブにするセッショ

ン・カーソルの数を確認する必要があります。対照的に、Session_Cached_Cursors は、パフォーマ

ンスのトレードオフに対して標準的な領域を管理します。

43. これは以前に警告されています。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

19

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

Cur_Proc は、Code_21 の Pkg1 パッケージ本体で定義されます。
-- Code_21
package body Pkg1 is
 cursor Cur_Proc(PK in t.PK%type) return Result_t is
 select a.PK, a.v1
 from t a
 where a.PK > Cur_Proc.PK
 order by a.PK;
 ...
end Pkg1;

Code_22は、Cur_Proc明示カーソルの使用方法を示しています。この構造は、

明示カーソルFORループと呼ばれます。
-- Code_22
for r in Pkg1.Cur_Proc(PK=>Some_Value)loop
 Process_Record(r);
end loop;

明示カーソルは、動的 SQL を使用して定義することはできません。埋込み SQL
が唯一の手段です。

プログラマーが明示カーソルという用語を採用したのですが、可変要素では

ありません。つまり、サブプログラムの呼出しで実際の引数として使用する

ことはできないのです。また、ファンクションで返すこともできません。こ

の点で、プロシージャに非常に似ています
44
。また、前方宣言、パッケージと

本体への宣言と定義の分割、仮パラメータの使用などの類似性もあります。

ただし、この可能性を活用するコードを記述してもメリットはありません（代

わりに、参照カーソルを返すファンクションを常に使用でき、メリットを得

られます）。

• 参照カーソル

宣言されたPL/SQLのみのデータ型
45
です。たとえば、Code_23またはCode_24の

Cur_tなどです。参照カーソルを使用して、変数、サブプログラムの仮パラメー

タ、およびファンクションの戻り値を宣言できます。コレクションの要素ま

たはレコードのフィールドのデータ型の宣言には使用できません。2 種類の参

照カーソル（弱い参照カーソルおよび強い参照カーソル）があります。

• カーソル変数

データ型が参照カーソルに基づいた変数です。参照カーソル、弱い参照カー

ソル、強い参照カーソル、およびカーソル変数は、PL/SQL言語の機能です。

このため、公開領域に属します。Curがカーソル変数の場合、select文とカーソ

ル変数を関連づけるopen Cur for PL/SQL文で使用できます。埋込みSQLまたは

ネイティブ動的SQLを使用して関連づけることができます。fetch文のソースと

してもCurを使用できます
46
。

44. カーソル・サブプログラムという名前が適切である可能性もあります。

45. 厳密にいうと、record(...)や table of boolean index by pls_integer のように、カーソルというキーワー

ドはデータ型構造を示します。REF キーワードは別で、データ型が参照カーソルの場合に参照セマ

ンティックに従うことを示します。これは異例です。通常、PL/SQL の場合に値セマンティックに

従います。参照セマンティックに従う場合も少しあります。たとえば、独自のルールである永続

LOB ロケータなどです。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

20

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

パッケージの仕様または本体のグローバル・レベルでカーソル変数が宣言さ

れない場合があります。

• 強い参照カーソル

宣言されたデータ型です。Code_23のStrong_Cur_tなどが該当します。
-- Code_23
 type Result_t is record(PK t.PK%type, v1 t.v1%type);
 type Strong_Cur_t is ref cursor return Result_t;

強い参照カーソルは、select 文で定義する select list 項目の数値およびデータ型

を厳密に指定します。埋込み SQL でのみ、データ型が強い参照カーソルのカー

ソル変数を開くことができます。

• 弱い参照カーソル

宣言されたデータ型です。Code_24のWeak_Cur_tなどが該当します。
-- Code_24
 type Weak_Cur_t is ref cursor;

弱い参照カーソルは、select文で定義するselect list項目の数値およびデータ型

には依存しません。データ型が弱い参照カーソルのカーソル変数は、埋込み

SQLまたはネイティブ動的SQLを使用することで開くことができます47。

Code_25のPkg2 パッケージの仕様では、New_Cursor()ファンクションを宣言し

ます。このファンクションは、Code_20のPkg1 で宣言された明示カーソルと同

じようにパラメータ化され、値がカーソル変数に設定されるように設計され

ています。
-- Code_25
 package Pkg2 is
 type Result_t is record(PK t.PK%type, v1 t.v1%type);

 type Cur_t is ref cursor
 $if $$Embedded $then return Result_t;
 $else ;
 $end

 function New_Cursor(
 PK in t.PK%type)
 return Cur_t;
 ...
end Pkg2;

46. 制限を克服するために明示カーソルよりもあとに参照カーソルとカーソル変数が PL/SQLに導入さ

れました。参照カーソルとカーソル変数が最初に導入されていた（最初からバッチ・バルク・フェッ

チ構造がサポートされていた）場合、明示カーソルを導入したプロジェクトが正しく評価されてい

た可能性は非常に低いと考えられます。

47. データ型が強い参照カーソルのカーソル変数を使用すると、レコードまたは select list の構造に一

致しない一連のスカラーにフェッチする場合に、ランタイム・エラーではなくコンパイル時にエ

ラーを取得できる利点があります。それ以外の場合、利点はありません。また、ソース・テキスト

の保守に少し負担がかかります。Oracle9i Database から、Standard パッケージで弱い参照カーソル

型の Sys_RefCursor が宣言されます。これを使用すると入力が省略されて、読者に直接意味が伝え

られます。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

21

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

Code_26のPkg2 パッケージの本体では、ファンクションを定義します
48
。

-- Code_26
package body Pkg2 is
 function New_Cursor(
 PK in t.PK%type)
 return Cur_t

 is
 Cur_Var Cur_t;
 begin

 open Cur_Var for
 $if $$Embedded $then
 select a.PK, a.v1
 from t a
 where a.PK > New_Cursor.PK
 order by a.PK;

$else
 '
 select a.PK, a.v1
 from t a
 where a.PK > :b1
 order by a.PK'
 using in New_Cursor.PK;
$end
 return Cur_Var;
 end New_Cursor;
 ...
end Pkg2;

Code_25およびCode_26では、条件付きコンパイル
49
を使用して、カーソル変数

を開く 2 つの方法における小さな差異と大きな類似点を強調しています。

48. 文の種類が select、insert、update、delete、merge、または無名 PL/SQL ブロックの場合、constant を

使用して宣言されたテキストの SQL 文でネイティブ動的 SQL を使用する理由は、実際のコードで

はほとんどありません。前述のとおり、使用する理由があるとすれば、参照対象の表または PL/SQL
ユニットがコンパイル時には存在していないが、コード実行前には作成されるという場合です。

コードがインストール・スクリプトではない限り、このアプローチを提案するユースケースは、慎

重に検討する必要があります。

49. Oracle Database 10g Release 2 で条件付きコンパイルが導入されました。Embedded 識別子は、CC フ

ラグと呼ばれます。$$Embedded（問合せディレクティブと呼ばれます）を記述して、ソース・テ

キストに値を取得します。次のようなコマンド（create or replace の前）で値が設定されます。

alter session set Plsql_CCflags = 'Embedded:true'

既存のパッケージ本体 Pkgには、次のようなコマンドを使用します。

alter package Pkg compile

 Plsql_CCflags = 'Embedded:false'

 reuse settings

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

22

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

Code_27は、New_Cursor()で初期化されたCur_Varカーソル変数の使用を示し

ています。ループ構造は、無限カーソル・フェッチ・ループ
50
と呼ばれます。

-- Code_27
declare
 Cur_Var Pkg2.Cur_t :=
 Pkg2.New_Cursor(PK=>Some_Value);
 r Pkg2.Result_t;begin
 loop
 fetch Cur_Var into r;
 exit when Cur_Var%NotFound;
 Process_Record(r);
 end loop;
 close Cur_Var;
end;

無限カーソル・フェッチ・ループ（Code_27）は機能的に明示カーソルFORルー

プ（Code_22）と同等ですが、より冗長になります。無限カーソル・フェッチ・

ループはカーソル変数または明示カーソルで使用できますが、明示カーソル

FORループは明示カーソルでのみ使用できます。また、Oracle Database 10g以
降、明示カーソルFORループは、無限カーソル・フェッチ・ループよりも高

速になりました。これは、最適化されたコンパイラが配列フェッチ
51
を使用し

て、前者を内部的かつ安全に実装できるようになったためです。このような

最適化は、後者にとって安全ではありません。コード内の同じ明示カーソル

またはカーソル変数からインターリーブ・フェッチが発生しないことがオプ

ティマイザで保証されないためです
52
。ただし、これらのアプローチよりも

バッチ・バルク・フェッチ（Code_29を参照）または全体バルク・フェッチ

（Code_32およびCode_33を参照）の方が望ましいため、これらのアプローチに

は現実的な利点がありません。

• 識別カーソル

無限カーソル・フェッチ・ループのソース・テキストは、明示カーソルおよ

びカーソル変数の両方で同一であり、（Code_29およびCode_34に示されてい

るように）このプロパティをもつほかの構造が存在するため、明示カーソル

およびカーソル変数のスーパークラスに対して、この専門用語を使用すると

便利です。実際、このような用語は存在しませんが、本書では名前の意図す

るとおりに識別カーソルという用語を採用しています。これによって、暗黙

カーソルで内部的にサポートされるカーソルのないPL/SQL構造と、プログラ

マーが明示カーソルまたはカーソル変数の識別子を作成する場合に識別カー

ソルを使用する構造を、それぞれ正しく区別できます。また、サポートして

いるセッション・カーソルの管理方法がPL/SQLシステムに少なくともある程

度は通知されます。

50. 明示カーソル FOR ループは明示カーソルにのみ有効ですが、無限カーソル・フェッチ・ループは

明示カーソルおよびカーソル変数の両方に有効です。ただし、現実的な利点はありません。

51. この"配列フェッチ"は、サーバー側の OCI のプログラミング技術を示します。

52. コード内の同じ明示カーソルまたはカーソル変数からインターリーブ・フェッチが発生しないこと

がオプティマイザで保証されない制限は、現在使用されている（Oracle Database 11g の）オプティ

マイザ技術を反映しています。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

23

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

• DBMS_Sql 数値カーソル

DBMS_Sql.Open_Cursor()ファンクションの戻り値です。numberデータ型（また

はintegerなどのnumberのサブタイプ）の通常の変数（Curなど）に割り当てる

ことができます。SQL文の処理が完了した場合、in out仮パラメータの実効値c
として、Curを使用してDBMS_Sql.Close_Cursor()を呼び出します。呼出し時に

Curが既存の開いているDBMS_Sql数値カーソルを示す場合、Curがnullに設定

されます。DBMS_Sql.Is_Open()を呼び出して、Curの現在の値が開いている

DBMS_Sql数値カーソルを示しているかどうかを確認できます。DBMS_Sql API
の各サブプログラムには、値を返すOpen_Cursor()およびパラメータ・モード

がin outのClose_Cursor()を除く既存の開いているDBMS_Sql数値カーソルに実

効値を設定するin仮パラメータがあります。既存の開いているDBMS_Sql数値

カーソルを示さないCurの値でこれらを呼び出すと、ORA-29471: DBMS_SQL
access deniedエラーが発生します。セッションでこのエラーが発生すると、

DBMS_Sql APIの後続のすべてのサブプログラムの呼出しで同じエラーが発生

します
53
。

Open_Cursor()ファンクションには、2 つのオーバーロードがあります。1 つに

は仮パラメータがありません。もう 1 つ（Oracle Database 11gの新機能）には、

仮パラメータ（値 1 または 2 を使用できるSecurity_Level）があります。

Security_Level = 2 の場合、Parse()への最近の呼出しと同様にDBMS_Sql APIへ
のすべての呼出しで、Current_Userおよび有効なロールを同じにする必要があ

ります
54
。Security_Level = 1 の場合、Parse()への最近の呼出しと同様に

Bind_Variable()、Execute()、Execute_And_Fetch()への呼出しで、Current_User
および有効なロールを同じにする必要があります。ただし、Define_Column()、
Define_Array()、Fetch_Rows()などの呼出しは制限されていません。本書では、

プロデューサPL/SQLユニット（41 ページの"プロデューサ/コンシューマのモ

ジュール化のアプローチ"を参照）のDBMS_Sql APIへの呼出しのカプセル化を

推奨しています。次のベスト・プラクティスの原則は、この推奨に従ってい

ます。

Principle_8
常に DBMS_Sql.Parse
(Security_Level=>2)で DBMS_Sql
数値カーソルを開きます。

Security_Level仮パラメータを使用するDBMS_Sql.Parse()のオーバーロードを

常に使用してください
55
。また、DBMS_Sql数値カーソルのすべての操作が同

じCurrent_Userおよび有効なロールで実行される実効値 2で常に呼び出してく

ださい。

53. これは、Oracle Database 11g の新しい動作です。開いている DBMS_Sql 数値カーソルへのスキャン

攻撃から保護して、制限されたデータを表示するためにリバインドや再実行などをおこなう目的が

あります。

54. 最近の Parse()呼出し時と同じ有効なロール（またはそのスーパーセット）を使用する必要があり

ます。

55. エンハンスメント・リクエスト 6620451 は、仮パラメータのない DBMS_Sql.Parse()のオーバーロー

ドが使用される場合にコンパイラの警告を要求します。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

24

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

• 明示カーソル属性

Curが明示カーソルまたはカーソル変数の場合、Cur%IsOpen（戻り値は

boolean）、Cur%NotFound（戻り値はboolean）
57
、およびCur%RowCount（戻

り値はinteger）といったリフレクタ
56
を使用できます。Cur%IsOpenがtrueでは

ない場合、ほかの明示カーソル属性の参照に失敗します
58
。select文にのみ明示

カーソルおよびカーソル変数が開かれるので、Cur%RowCountは、カーソルの

ライフタイムで今までにフェッチした行の総数を提供します。Cur%NotFound
は、すべての行がフェッチされるまでtrueのままです。本書で推奨している

SQL文を処理するためのアプローチを採用した場合、すべての一般的なユース

ケースでCur%RowCountおよびCur%NotFoundを使用することで利点を得るこ

とはできません。Code_28に示されているように、例外ハンドラにCur%IsOpen

が役立つ可能性があります
59
。

-- Code_28
if Cur_Var%IsOpen then
 close Cur_Var;

end if;

• 暗黙カーソル属性

これらのリフレクタは、暗黙カーソルが使用される現在のSQL文（現在実行さ

れていない場合は最近完了したSQL文）の実行情報を通知します。暗黙カーソ

ルがとくにexecute immediate文をサポートするので、すべての種類の文が使用

される可能性があります。スカラー・リフレクタは、 Sql%IsOpen、

Sql%NotFound
60
、Sql%RowCountです。

これらは、同じデータ型を返し、対応する名前の明示カーソル属性と同じ意

味があります（SQL は PL/SQL の予約語なので、暗黙カーソル属性と明示カー

ソル属性を混同する危険はありません）。ただし、暗黙カーソルが PL/SQL シ

ステムで管理されるので、Sql%IsOpen を確認する利点はありません（単なる

調査対象です）。驚くことに（しかし、暗黙カーソルが PL/SQL システムで管

理されることと同じ理由で）、Sql%IsOpen が false の場合に Sql%NotFound お

よび Sql%RowCount を参照できます。Sql%NotFound は、Sql%RowCount = 0 と

常に同じなので無視できます。Sql%RowCount は、最新の select、insert、update、
delete、または merge 文の影響を受ける行の数を通知します。ただし、より直

接的なほかの方法では同じ結果になるので、select 文は無視できます。ほかの

種類の文のあとに Sql%RowCount が常にゼロになるため、無視できます。

56. ファンクションのように機能します。式に使用できますが、割当て対象としては使用できません。

57. Cur%Found もありますがここでは取り上げません。値が常に not Cur%NotFound と同じになり、ほ

とんど使用されないためです（Cur%NotFound が null の場合、Cur%Found も null です）。

58. エラーは ORA-01001: invalid cursor です。

59. カーソル変数が範囲外の場合、PL/SQL ランタイム・システムで閉じます。ただし、例外ハンドラ

で明示的にこの安全策に対応しても問題ありません。対策が必要かどうかを推測するよりもこれを

実行する方が常に簡単です。

60. 値が常に not Sql%NotFound と同じになる Sql%Found もあります。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

25

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

非スカラー・リフレクタは、Sql%Bulk_RowCountおよびSql%Bulk_Exceptionsで、

それぞれforall文に関連した場合のみ有効です。forall文は、insert、update、delete、
およびmergeのSQL文のみをサポートします。Sql%Bulk_RowCountは、numeric
データ型で索引づけされたコレクションです。要素のデータ型はpls_integerで
す。forall文の繰返しで影響を受ける行の数を通知します。索引は繰返しの数

で、1 から文の起動に使用されたコレクションのCount()までの範囲で順番につ

けられます。Sql%Bulk_Exceptionsは、forall文でsave exceptionsが使用される場

合のみ有効です。Bulk_Errors例外のORA-24381 の例外ハンドラでのみアクセ

スできます。pls_integerで索引づけされたコレクションです。要素のデータ型

はレコードに基づきます。最初のフィールドはError_Indexで、2 つ目のフィー

ルドはError_Numberです。両方ともpls_integerです。索引は 1 から順番につけ

られます。ただし、forall文の繰返しが多いと例外が発生します。Error_Index
は、繰返しの数です。範囲は 1 から文の起動に使用されたコレクションの

Count()までです。Error_Numberは、Pragma Exception_Init文で使用されるよう

な例外に対応するOracleエラー番号と-1 を乗算した値と同じです
61
。

暗黙カーソルを使用する方法で SQL 文を実行するたびに、暗黙カーソル属性

で前述のような SQL 文に通知した値を上書きします。このため、次のベスト・

プラクティスの原則があります。

Principle_9
使用する必要がある唯一の明示カー

ソル属性は、Cur%IsOpen です。
必要な暗黙カーソル属性は、

Sql%RowCount、
Sql%Bulk_RowCount、および

Sql%Bulk_Exceptions のみです。

本書が推奨するアプローチに従う場合、唯一の便利な明示カーソル属性は

Cur%IsOpen です。ほかの明示カーソル属性を使用する必要はありません。唯

一影響のあるスカラー型の暗黙カーソル属性は、Sql%RowCount です。暗黙

カーソルを使用して対象の SQL 文を実行する文に準拠する PL/SQL 文で、こ

れを常に確認してください。同じ論理が Sql%Bulk_RowCount コレクションに

当てはまります。Bulk_Errors 例外の例外ハンドラでのみ、Sql%Bulk_Exceptions
を使用する必要があります。実行可能なセクションの唯一の文として、forall
文を含むブロック文にこれを配置してください。

まとめ

慎重に定義した専門用語により、しっかりとした基盤が確立されたので、この項

の前半に記載した質問に回答できます。

• "質問 0：カーソルという用語はどの領域で使用されますか。また、各領域で

同じ意味で使用されていますか"では、公開領域（PL/SQLの構文およびセマン

ティック）と非公開領域（PL/SQLのランタイム実装）の 2 つの異なる領域で

この用語が使用されます。大局的には、SQL文の処理をサポートするほかの

環境の構文およびセマンティックの説明にもこの用語を使用します。ただし、

本書では取り上げません
62
。

61. Error_Number が正数であることに混乱するユーザーもいます。これは、このような動作の変更で

破損する可能性のある既存のプログラムのために修正されないバグとして考慮してください。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

26

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

• "質問 1：誰がカーソルを管理しますか（カーソルのオープン、SQL文のパー

ス、カーソルのクローズなど）。プログラマーですか。それともPL/SQLシス

テムですか"では、実行を命令する言語構造を使用しないでSQL文をサポート

するセッション・カーソルの管理方法をPL/SQLシステムで決定する場合、一

連のカーソルのないPL/SQL構造があります。このような場合、セッション・

カーソルは暗黙カーソルと呼ばれます（既存のアプリケーション・アーキテ

クチャに準拠したコードを記述しているジュニア・プログラマーは、カーソ

ルという用語を何年も耳にしていない可能性があります）。ほかの場合（埋

込みSQLおよびネイティブ動的SQLでは常にselect文）、セッション・カーソ

ルの管理を決定する 2 つの明示的な言語構造のいずれかを使用します。構造

は明示カーソルとカーソル変数です。DBMS_Sql APIを使用する場合、プログ

ラマーは、OCIで公開されるカーソル管理プリミティブに、通常 1 対 1 でマッ

プされるサブプログラムを使用して、セッション・カーソルを詳細に管理し

ます。

• "質問 2：カーソルにはプログラマーが定義する識別子がありますか。ある場

合、どうすれば使用できますか"では、カーソルのないPL/SQL構造では反復し

てプログラマーが定義する識別子を使用できません。ただし、明示カーソル、

カーソル変数、およびDBMS_Sql数値カーソルでは、識別子を作成できます。

明示カーソルの識別子は、サブプログラムの識別子に似ています。割当てに

は使用できません（サブプログラムの仮パラメータとして使用できないことを

示します）。対照的に、カーソル変数およびDBMS_Sql数値カーソルの識別子を

サブプログラムの仮パラメータとして割当てに使用できます。

• "質問 3：埋込みSQL、ネイティブ動的SQL、またはDBMS_Sql APIを使用して

カーソルが開きますか"では、特定の埋込みSQL文およびネイティブ動的SQL
文に応じて暗黙カーソルが管理されますが、DBMS_Sql APIでは管理されませ

ん。埋込みSQLのselect文にのみ、明示カーソルが関連づけられます。埋込み

SQLのselect文またはネイティブ動的SQLのselect文で、カーソル変数を開くこ

とができます。すべての種類のSQL文でDBMS_Sql数値カーソルを使用できま

す。

カーソル
63
自体が便利な専門用語というわけではありません。それどころか、修飾

されていないと意味がないのです。つまり、直接関連する文において適切な専門

用語を使用して、修飾されていないカーソルを削除することが、あいまいな文を

回避するための有効な手段となります。これは、次のベスト・プラクティスの原

則につながります。

62. SQL 文コマンドのカーソル変数のプレースホルダとして:Cur を記述できるように、SQL*Plus スク

リプト言語で VARIABLE Cur REFCURSORコマンドをサポートします。

63. カーソルという用語を選択したのは、結果セットに沿って実行され、現在の位置を保持するからで

す。この用語が使われるようになった時点（本書の執筆時点でオラクルには 30 年の歴史がありま

す）で、ビジュアル・ディスプレイ・ユニット（80 文字のスクロール可能なテレタイプ・ロール

を緑色の画面に表示）は、現在の文字位置を表すために類似した概念が必要になり、同じカーソル

という用語が採用されました。この用語は select 文の処理の説明に属しますが、厳密にいうとすべ

ての種類の SQL 文の処理を含むすべての構造を示します。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

27

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

Principle_10
専門用語のセッション・カーソル、暗

黙カーソル、明示カーソル、カーソル

変数、および DBMS_Sql 数値カーソル

を学習します。省略せず、慎重に使用

してください。

PL/SQL プログラムを説明する場合、PL/SQL プログラム自体の説明、そのコメ

ント、および外部ドキュメントの記述が、修飾されていない"カーソル"の使用

を回避する目的で含まれています。セッション・カーソル、暗黙カーソル、明

示カーソル、カーソル変数、または DBMS_Sql 数値カーソルといった適切な専

門用語を使用してください。この原則により思考力が高まってプログラムの品

質が向上します。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

28

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

SELECT 文のアプローチ

SELECT 文の概念が難解であると思われているようですが、この項は、読者が主

題の内容に精通していることを前提としています。ここでは、最適なアプローチ

の詳細について説明し、さらに、これまでの経緯から簡単だと思われていた、最

適ではないアプローチに簡単に触れることにします。

複数行の選択 - アンバウンド結果セット

データベース PL/SQL プログラムの一般的な使用の 1 つに、レポートの一括準備

があります。これは、非常に大きい表の各行（および関連する詳細）の処理をお

こなう際に使用します。このようなシナリオには、各行を個別に処理できます。

Oracle Databaseを使用してプログラミングするすべてのPL/SQLアプリケーション

開発者は、SQLとPL/SQLは異なる仮想マシンで実行されるということを、じきに

理解するようになります。つまり、PL/SQLサブプログラムがSQL文を実行する際

に、PL/SQL仮想マシンからSQL仮想マシンに切り替えられ、再度PL/SQL仮想マシ

ンに切り替える、いわゆるコンテキスト・スイッチが少なくとも 1 回、あるいは

何回もおこなわれます。PL/SQLでは、メモリ内での使用のために最適化される形

式が使用され、SQLでは、ディスク上での使用のために最適化される形式が使用

されるため、コンテキスト・スイッチではデータの表示変換も同時におこなわれ

ます。コンテキスト・スイッチには必然的に負担が生じます。SQL文の実行中に

発生するコンテキスト・スイッチの数を最小限に抑えることで、パフォーマンス

は改善できます
64
。

Oracle8i Database（今ではほとんど使用されていません
65
）で、バルクSQLのPL/SQL

構造が導入されました。以降、Oracle Databaseのすべてのサポート・バージョンで

この構造がサポートされています。select文の場合、limit allで、1 回のコンテキス

ト・スイッチによって多数の結果行をフェッチできます。本番使用のコードで、

複数の行を返すselect文を実行する際に、PL/SQLの非バルク構造が適しているとい

うわけではありません
66
。

64. コンテキスト・スイッチの説明が不十分と感じるかもしれませんが、重要なことは、別の手段で同

じ効果を得ることは困難であるということを覚えておくことです。たとえば、C や Java で記述さ

れたクライアント側のプログラムで SQL を実行する方法を考えてください。ここでもコンテキス

ト・スイッチが必要です。この場合のコンテキスト・スイッチは、より劇的です。単一の実行可能

なプログラムのアドレス空間内でおこなう PL/SQL と SQL のコンテキスト・スイッチのラウンド

トリップは、ここでは異なるマシンで実行される個別のプログラム間でおこなわれます。ただし、

ネットワーク通信を実装するほかのプログラムが介在します。そのため、データ表現が 2 回変換さ

れる場合があります（クライアント・プログラムの表現および通信の表現の変換と、通信の表現お

よび SQL のディスク上の表現の変換）。

65. Oracle Technology Network の Web サイトから『PL/SQL ユーザーズ・ガイドおよびリファレンス』

のリリース 8.1.6 をオンラインで入手できます。公開日は 1999 年です。

66. PL/SQLに精通しているユーザーは、一時的な非定型レポートの生成に頻繁に使用します。このよ

うに一度書き込んで数回使用する場合、Code_29のバルク・アプローチよりもプログラミングの負

担が若干少ないため、Code_2の暗黙カーソルFORループが適切なアプローチになります。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

29

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

フェッチ・ループのプログラミング

多くの行をフェッチするターゲットには、コレクションを使用する必要がありま

す。これをモデル化するもっとも一般的な方法は、フィールドがselect list項目に

対応したレコードのコレクションを使用することです。Code_29は、例を示してい

ます。
-- Code_29
-- Cur is already open here.
-- The fetch syntax is the same for
-- an explicit cursor and a cursor variable.
loop
 fetch Cur bulk collect into Results limit Batchsize;
 -- The for loop doesn't run when Results.Count() = 0
 for j in 1..Results.Count() loop
 Process_One_Record(Results(j));
 end loop;
 exit when Results.Count() < Batchsize;
end loop;
close Cur;

Cur カーソルを開くために使用される問合せの結果セットが大きいことが要件ド

キュメントに記載されている場合、プログラマーは、1 回のコンテキスト・スイッ

チですべての結果を安全にフェッチできません。正確に言えば、すべての結果は

バッチでフェッチする必要があります。コンパイル時にバッチの最大サイズを安

全に設定できます。limit 句を使用してこれを要求します。

プログラマーによっては、終了基準の指定方法がわからずに、Cur%NotFoundのテ

ストを試みるプログラマーもいます。この処理は、fetch文が行の取得中に、フェッ

チされた行数がバッチサイズよりも少ないにもかかわらずfalseになるため不適切

です。最後の部分的なバッチのサイズは、たいていゼロ以外になる可能性が高く、

このため、通常Cur%NotFoundがfalseの場合に終了すると、異常な動作が起こりま

す
67
。テストに必要な数は、Results.Count()でフェッチした行数です。fetch文の直

後にあるexit when Results.Count() < 1;の配置は適切ですが、これは通常、必要な

フェッチよりも 1 つ多いフェッチが試行されることを意味します。Code_29は、こ

のわずかな負担を回避する適切なアプローチを示しています。当然ですが、行の

総数がバッチサイズの整数倍になる場合、正しい動作を保証するための負担が生

じます。ただし、通常は、1..Results.Count()ループで結果が処理され、正確性が保

証されます。

結果として、バッチ・バルク・フェッチの実装において明示カーソル属性は役立

ちません。
68

Batchsizeの値は、数百程度が適切です 。これを実行時に変更する理由はありませ

ん。このため、constantとしてBatchsizeが適切に宣言されます。また、Batchsizeと
同等の最大サイズのvarrayとして、コレクションが適切に宣言されます。Code_30

は、この宣言を示しています
69
。

67. Cur%RowCount も役立ちません。連続した fetch 文でインクリメントされるので、すべてのバッチ

でフェッチした行の総数と同じままになります。

68. バッチサイズがわずかな値（3 や 5）の場合に少しずつ増やすことで、すべての結果の処理に必要

な時間が大幅に削減されたというテスト結果があります。ただし、バッチサイズが数百程度の場合、

数百から数千に増やしても効果は小さいという結果がでています。この点に関しては、ご自身でテ

ストすることをお奨めします。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

30

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

-- Code_30
Batchsize constant pls_integer := 1000;

type Result_t is record(PK t.PK%type, v1 t.v1%type);
type Results_t is varray(1000) of Result_t;
Results Results_t;

カーソルのオープン

カーソルのないPL/SQL構造でバッチ・バルク・フェッチを表す構文がないという

点は重要です。このアプローチでは、識別カーソルを使用する必要があります。

Code_31は、Code_29を実行可能にするためにCur識別カーソルを設置する 3 つの

方法を示しています。
-- Code_31
 ...
 $if $$Approach = 1 $then
 cursor Cur is
 select a.PK, a.v1
 from t a
 where a.PK > b.Some_Value
 order by a.PK;
$elsif $$Approach = 2 or $$Approach = 3 $then
 Cur Sys_Refcursor;
 $if $$Approach = 3 $then
 Stmt constant varchar2(200) := '
 select a.PK, a.v1
 from t a
 where a.PK > :b1
 order by a.PK';
 $end
 $end
begin
 $if $$Approach = 1 $then
 open Cur;
 $elsif $$Approach = 2 $then
 open Cur for
 select a.PK, a.v1
 from t a
 where a.PK > b.Some_Value
 order by a.PK;
$elsif $$Approach = 3 $then
 open Cur for Stmt using Some_Value;
$end
...

CC フラグの Approach が 1 の場合、Cur は明示カーソルとして設置されます。

Approach が 2 の場合、カーソル変数として設置され、埋込み SQL で開かれます。

Approach が 3 の場合、カーソル変数として設置され、ネイティブ動的 SQL で開か

れます。
ただし、Code_29のコメントに示されているように、これらの 2 つの種類のカーソ

ルのフェッチ・コードは同じです。このため、"明示カーソルとカーソル変数の使

用が望ましい状況をどうやって判断すればいいか"という疑問が生じます。ユース

ケースで動的SQLが必要な場合は、カーソル変数だけが使用可能です。したがっ

て、この疑問に関連するのは、埋込みSQLでこの要件を満たすことができる場合

だけです。

69. Oracle Database 11gのPL/SQLでは、Code_30の特別な意味をもった数値である 1000 のテキストの繰

返しを回避するための便利な方法がありません（$$Batch_Sizeなどの条件付きコンパイルの問合せ

ディレクティブを使用できますが、Code_30を含むPL/SQLユニットのカプセル化が破損するという

大きな欠点があります）。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

31

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

これについては簡単に回答できます。このような場合は、宣言と対象の select 文

への関連付けがよりコンパクトなコードで達成されるので、明示カーソルを使用

してください。
ほかにも検討事項はありますが、それらは具体的なユースケースで検討するのが

最善の選択です。この点については、41 ページの"プロデューサ/コンシューマの

モジュール化のアプローチ"で説明します。

この項の議論は、以下のベスト・プラクティスの原則にまとめられます。
Principle_11

問合せで取得される行数がわからな

い場合、無限ループ内で limit 句ととも

に fetch... bulk collect into を使用して

ください。

多くの行が選択されて結果セットが大きい場合は、無限ループ内で limit 句とと

もに fetch... bulk collect into を使用してバッチで処理します。limit 句の値として

constant を使用し、バッチサイズを定義します。適切な値は 1000 です。同じサ

イズで宣言された varray にフェッチします。ループを終了するため

に%NotFound カーソル属性をテストしないでください。代わりに、ループの最

後の文として exit when Results.Count() < Batchsize;を使用します。これによって、

最後のフェッチがゼロ行になる処理が正しく実行されます。埋込み SQL で十分

な場合は、明示カーソルを使用します。ネイティブ動的 SQL が必要な場合は、

カーソル変数を使用します。

複数行の選択 - バウンド結果セット
データベースPL/SQLプログラムの一般的な使用には、マスター行および関連する

すべての詳細行のフェッチもあります。正規化されたマスターの例は、Orders表
です。正規化された詳細の例は、Order_Line_Items表です。これらの表がインター

ネット・ショッピング・サイトのバックエンドをサポートしている場合、注文の

明細項目の最大数（たとえば、1000）を設定して、これを超えないようにビジネ

ス・ルールをまとめると安全です
70
。

推奨されているバッチサイズでバッチ・バルク・フェッチ・アプローチを使用す

る場合、複数のバッチをフェッチしません。そのため、このアプローチは必要あ

りません。代わりに、簡単な全体バルク・フェッチを使用できます。

Code_32は、埋込みSQLを使用した例を示しています
71
。

-- Code_32
declare
 Target_Varray_Too_Small exception;
 pragma Exception_Init(Target_Varray_Too_Small, -22165);
begin
 select a.PK, a.v1
 bulk collect into x.Results
 from t a
 where a.PK > x.Some_Value
 order by a.PK;
exception when Target_Varray_Too_Small then
 Raise_Application_Error(-20000,
 'Fatal: Business Rule 12345 violated.');
end;

70. 書籍または DVD をオンラインで注文する利用者のショッピング・カートが 1,000 個のアイテムで

いっぱいになることはまずありません。もしこのようなことがあった場合でも、"ショッピング・

カートのアイテムが 1,000 を超えました。確認して別のカートを利用してください。本日注文する

と、新しいカートのアイテムには 10%の割引が適用されます。"というように顧客側にメリットの

あるメッセージであれば、顧客の満足度が低下したりビジネスの損失につながったりする可能性は

低いでしょう。

71. 本書では、現実的な例を作成しようとはしていません。本書は、そうした例を必要としない十分な

経験をもっている読者を対象にしています。ここでは、PL/SQL により SQL を実行するさまざまな

技術に焦点を当てています。余計な細かい情報で説明が複雑になることを避け、一般的な例でわか

りやすく説明しています。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

32

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

1..<varray size>の範囲ではない索引で varray の要素にアクセスした場合、

ORA-22165 エラーが発生します。事前のバグ診断技術として、このエラーのハン

ドラを提供する厳密に囲んだブロック文の全体バルク・フェッチ文を記述すると

便利です。

Code_33は、ネイティブ動的SQLを使用した例を示しています。
-- Code_33
declare
 Stmt constant varchar2(200) := '
 select a.PK, a.v1
 from t a
 where a.PK > :b1
 order by a.PK';
 Target_Varray_Too_Small ...
begin
 execute immediate Stmt
 bulk collect into Results
 using Some_Value;
exception when Target_Varray_Too_Small then
 Raise_Application_Error(-20000,
 'Fatal: Business Rule 12345 violated.');
end;

各例でカーソルのないPL/SQL構造が使用されていることを確認します。比較のた

め、Code_34にCur識別カーソルを使用する全体バルク・フェッチ方式を示します。
-- Code_34
-- Cur is already open here.
-- The fetch syntax is the same for
-- an explicit cursor and a cursor variable.
fetch Cur bulk collect into Results;
close Cur;

Code_31と同じコードを使用して、Curを設置します。

Code_34のアプローチに必要なコード量の合計は、機能上同等のCode_32や
Code_33よりも大幅に多くなります。理論上の違いは、識別カーソルの使用によっ

てselect文を定義するコードとそこからフェッチされるコードを異なるモジュー

ル間に分割できることです。ただし、このようなモジュール化スキームが一般的

に適切ではないことが、41 ページの"プロデューサ/コンシューマのモジュール化

のアプローチ"に記載されています。

値を超えると致命的なエラーが発生するハードコードされた制限を禁止している

読者は、常にバッチ・バルク・フェッチを使用する必要があります
72
。ただし、

Code_35で示されているように、とくにアンバウンド結果セットのN番目のスライ

スを取得するためにselect文が設計される事例を忘れないでください。少なくとも

ここでは、全体バルク・フェッチを安全に使用できます。

72. エンハンスメント・リクエスト 6616605 は、全体バルク・バッチ（select... bulk collect into、execute

immediate... bulk collect into、または fetch... bulk collect into の 3 つのうちのいずれか）が使用される

場合に、新しい PL/SQL のコンパイラの警告を要求します。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

33

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

-- Code_35
-- Set the lower and upper bound of the slice.
lb := Slice_Size*(Slice_No - 1) + 1;
ub := lb + Slice_Size - 1;

with Unbounded as (
 select a.PK, a.v1, Rownum r
 from t a
 order by a.PK
)
select Unbounded.PK, Unbounded.v1
bulk collect into b.Results
from Unbounded
where Unbounded.r between b.lb and b.ub;

41 ページの"プロデューサ/コンシューマのモジュール化のアプローチ"のアンバ

ウンド結果セットのスライスの説明に戻ります。

この項の議論は、以下のベスト・プラクティスの原則にまとめられます。

Principle_12 問合せでどのように行の最大数が取

得されるかがわかる場合は、select...
bulk collect into または execute
immediate... bulk collect into を使用し

て、単一の手順ですべての行をフェッ

チします。

多くの行が選択されており、結果セットの管理可能な最大サイズが安全に設定

された場合、単一の手順ですべての行をフェッチします。埋込み SQL を使用で

きる場合、カーソルのない PL/SQL 構造 select... bulk collect into を使用します。

動的 SQL が必要な場合、execute immediate... bulk collect into を使用します。処理

できる最大サイズで宣言された varray にフェッチします。ORA-22165 の例外ハ

ンドラを実装して、バグ診断をサポートしてください。

複数行の選択 - 実行時までわからない select list または
バインディング要件

組織内の職務をサポートする情報システムを実装した場合、多くの列を使用した

単一のデータベース表として主要な情報エンティティを表すことが一般的です

（さまざまなディテール表の可能性もあります）。たとえば、有名なHR.Employees
のように各従業員のファクトを記録する人事システムです。このようなシステム

の一般的な要件は、表の列にマップされるエンティティ属性に一致条件を入力で

きる場合および任意で条件を空白のままにできる場合に、エンドユーザーの問合

せインタフェースをサポートすることです。オラクルは、このような内部システ

ムを用意しています。この機能の問合せ画面には、約 12 個のフィールドがありま

す。各属性がテキスト値（氏名や役職など）なので、"greater than"や"between"の条

件テストをおこなう必要がありません。ただし、給与などの数値属性を使用する

類似したシステムでは、このようなテストが役立つ場合があります。最終的な

select文のwhere句でlike述語に各テストが対応する場合でも、問合せ画面に必要な

where句の数が非常に多くなり
73
、コンパイル時にテキストが固定されてバイン

ディング要件が識別されるSQL文では、個別のwhere句はサポートされません。

73. N 列では、where 句の数は、N の 1 や N の 2 といった選択の合計と同じになります。N の（N-1）お

よび N の N が最大になります。これは 2N-1 です。12 列では 4095 になります。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

34

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

問合せ画面で対象となる条件を選択する際に柔軟性を求める一方で、結果の表示

が機能上の仕様で固定される大規模クラスのアプリケーションがあります。実装

において、これはコンパイル時にselect listが識別されることを意味します。この

ようなユースケースの場合、バインディングのサポートにDBMS_Sql APIが必要で

す。また、ネイティブ動的SQLを使用して結果を取得できます（簡潔にプログラ

ミングをおこない迅速に実行できます）。Code_36は、このアプローチを示してい

ます
74
。

-- Code_36
DBMS_Sql_Cur := DBMS_Sql.Open_Cursor(Security_Level=>2);

-- Build the select statement
...
DBMS_Sql.Parse(DBMS_Sql_Cur, Stmt, DBMS_Sql.Native);

-- More eleborate logic is needed when the values to be bound
-- are not all the same datatype.
for j in 1..No_Of_Placeholders loop
 DBMS_Sql.Bind_Variable(
 DBMS_Sql_Cur, ':b'||To_Char(j), Bind_Values(j));
end loop;
Dummy := DBMS_Sql.Execute(DBMS_Sql_Cur);

declare
 Cur_Var Sys_Refcursor :=
 DBMS_Sql.To_Refcursor(DBMS_Sql_Cur);
begin
 loop
 fetch Cur_Var bulk collect into Results limit Batchsize;
 for j in 1..Results.Count() loop
 Process_One_Record(Results(j));
 end loop;
 exit when Results.Count() < Batchsize;
 end loop;
 close Cur_Var;
end;

このユースケースでDBMS_Sql APIを使用した場合の重要な特徴は、実行時に識別

されるファクトで制御フローおよびBind_Variable()の呼出しの実際の引数を決定

できることです。ネイティブ動的SQLではこのようなスキームを使用できません。

using句（Curがカーソル変数の場合のexecute immediate... into文またはopen Cur for

文）がコンパイル時に固定されるためです
75
。

バッチ・バルク・フェッチの使用には注意してください。このユースケースは、

アンバウンド結果セットを示す傾向があります。

SQL 文を構築するロジックは、アプリケーション固有です。一般的に、ユーザー

が入力した基準を表す in 仮パラメータをテストします。null ではない場合、テキ

ストが SQL 文に追加され、示される条件が表されます。追加されるテキストは and
cn = :bm 形式で、cn は表示される列です。m は現在の条件での通常の値を示す

runner になります。Code_37 は、このアプローチを示しています。

74. このアプローチは、DBMS_Sql.To_Refcursor()ファンクションの使用に依存します。これは、Oracle

Database 11gの新機能です。SQL文の情報やセキュリティがデータベースに隠されていても、デー

タベース・クライアントでフェッチが実装されることをシステム・アーキテクチャ全体で推奨して

いれば、この機能は有効となります。クライアントが呼び出すデータベースPL/SQLサブプログラ

ムで参照カーソルに基づくreturnデータ型を使用する必要があります。バインディングにDBMS_Sql
APIが必要な場合でも、これが可能です。ただし、ほかのアプローチが優れていることが41 ページ

の"プロデューサ/コンシューマのモジュール化のアプローチ"に記載されています。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

35

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

-- Code_37
for j in 1..User_Criteria.Count() loop
 if User_Criteria(j) is not null then
 No_Of_Placeholders := No_Of_Placeholders + 1;
 Stmt := Stmt||' and '||
 Column_Names(j)||' = :b'||To_Char(No_Of_Placeholders);
 Bind_Values(No_Of_Placeholders) := User_Criteria(j);
 end if;
end loop;

本書で説明されているように、constantでSQL文の開始文字列を表すことができま

す
76
。基準の入力がない場合にSQL文で=を使用し、ワイルドカード文字（%およ

び_）を含む場合にlikeを使用すると、実際のロジックはさらに複雑になります。

対象の列にvarchar2、number、dateなどのデータ型が混在し、ユーザーが非等価演

算子を指定できる場合（ポップアップ・リストからの選択など）、複雑さが増し

ます。

一般的に組織内の職務をサポートする情報システムに関連して、ユーザーがレ

ポートに含める属性を構成できる状態にしておくことが要件仕様として提示され

ています。つまり、実装においてコンパイル時にselect listがわからないため、

DBMS_Sql APIも使用して結果を取得する必要があることを意味します。Code_38
は、このアプローチを示しています。

75. ネイティブ動的 SQL を順に使用する無名 PL/SQL ブロックをプログラムで生成および実行して、コ

ンパイル時に using 句が固定されるという現象を顧客が解決しようとする事例を確認しました。通

常は、using 句をプログラムで構築することで、仮定の制限を解決するというソリューションが主

流です。このため、欠点が隠れてしまう巧妙なアプローチを確認できません。このアプローチでは、

DBMS_Sql.Bind_Variable()と動的にバインドされる値を無名 PL/SQL ブロックのテキストのリテラ

ルとして代わりにエンコードする必要があります（これを回避するには、DBMS_Sql API を使用し

て無名 PL/SQL ブロックを実行する必要があり、これによってポイントが変わります）。つまり、

生成されたそれぞれの無名 PL/SQL ブロックのテキストが以前と異なることを意味します。結果と

して、実行ごとにハード・パースがおこなわれます。

ベスト・プラクティスとしてこのアプローチが提案されていることがありますが、このアプローチ

は典型的なワースト・プラクティスの例であり、注意が必要です。

76. 一般的に、ループを開始する前に constant テキストに where 1=1 を追加します。これによって、連

結ロジックがわかりやすくなります。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

36

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

-- Code_38
declare
 ...
 type Results_t is table of DBMS_Sql.Varchar2_Table
 index by pls_integer;
 Results Results_t;
begin
 -- Open the DBMS_Sql_Cur,
 -- build and parse the select statement,
 -- bind to the placeholders, and execute as in Code_36.
 -- This will set No_Of_Select_List_Items.

 ...
 loop
 -- Tell it to fill the target arrays
 -- from element #1 each time.
 for j in 1..No_Of_Select_List_Items loop
 DBMS_Sql.Define_Array(DBMS_Sql_Cur, j, Results(j),
Batchsize, 1); end loop;

 Dummy := DBMS_Sql.Fetch_Rows(DBMS_Sql_Cur);

 for j in 1..No_Of_Select_List_Items loop
 -- Have to delete explicitly. NDS does it for you.
 Results(j).Delete();
 DBMS_Sql.Column_Value(DBMS_Sql_Cur, j, Results(j));
 end loop;

 for j in 1..Results(1).Count() loop
 -- Process the results.
 ...
 end loop;

 exit when Results(1).Count() < Batchsize;
 end loop;
 DBMS_Sql.Close_Cursor(DBMS_Sql_Cur);
end;

完全なソリューションは膨大なので、Code_38は概要程度に留めています。select
list項目のデータ型は一般的に異なるので、対応するデータ型のターゲットが使用

される場合は、非常に複雑なアプローチが必要になります。ただし、処理の最終

的な目的が、人間によって読み取れるレポートを準備することであれば、各select
list項目をvarchar2 に変換することで（select listで適切なTo_Char()ファンクション

を呼び出すことを推奨します）、アプローチを大幅に簡素化できます。フェッチ・

ターゲットとして、要素のデータ型が提供されたDBMS_Sql.Varchar2_Tableコレク

ションのindex by pls_integer表を使用できます。つまり、select listの構築の結果と

してNo_Of_Select_List_Itemsが識別されたあと、同じ操作を各select list項目に適用

するループでDefine_Array()およびColumn_Value()を呼び出すことができます。

"Process the results"（結果の処理）のコメントは、プログラミングが複雑になるこ

とを示しています。ただし、ロジックは一般的なものであり、SQL処理との関連

はなくなります。

ここで DBMS_Sql API を使用すると、実行時に初めて識別されるファクトで、制

御フローおよび Define_Array()と Column_Value()の呼出しの実際の引数を決定でき

るということに注意してください。ネイティブ動的 SQL ではこのようなスキーム

を使用できません。（execute immediate... into 文または fetch... bulk collect into 文の）

into 句がコンパイル時に固定されるためです。

コンパイル時にバインディング要件が識別されて実行時までselect listの構成がわ

からない場合、アプリケーションに指定される要件が実装設計につながる可能性

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

37

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

はほとんどありません。結果のフェッチを処理するためにネイティブ動的SQLを
使用し、必要に応じてカーソル変数およびDBMS_Sql APIを開くことができます。

Code_39は、このアプローチを示しています。
-- Code_39
open Cur_Var for Stmt using Some_Value;
DBMS_Sql_Cur := DBMS_Sql.To_Cursor_Number(Cur_Var);

-- The fetch loop is identical to that shown in Code_38.
loop
 for ... loop
 DBMS_Sql.Define_Array(..., Results(j), ...);
 end loop;

 Dummy := DBMS_Sql.Fetch_Rows(DBMS_Sql_Cur);

 for ... loop
 ...
 DBMS_Sql.Column_Value(..., Results(j));
 end loop;

 for j in 1..Results(1).Count() loop
 -- Process the results.
 ...
 end loop;

 exit when Results(1).Count() < Batchsize;
end loop;

結果の順序の基準指定を可能にするユーザー・インタフェースが必要な場合、バ

インディングの実装（order by 句でプレースホルダを使用しない）やフェッチの実

装に影響しないのでさらに複雑になることはありません。

この項の議論は、以下のベスト・プラクティスの原則にまとめられます。

Principle_13
実行時まで select list のバインディン

グ要件がわからない場合は、

DBMS_Sql API を使用します。少なく

ともselect listが識別されている場合、

To_Refcursor()を使用し、次にバッ

チ・バルク・フェッチを使用します。

リテラルで where 句を構成しないでください。とくに、ユーザーが明示的に入

力した where 句を連結しないでください。プレースホルダをバインドするアプ

ローチよりもパフォーマンスが大幅に低下します。直接 where 句を入力した場

合、Sys.DBMS_Assert.Enquote_Literal()で SQL インジェクションから保護するこ

とはできません。実行時までバインディング要件がわからない場合、DBMS_Sql
API を使用して、SQL 文をパース、バインド、および実行します。コンパイル

時に select list が識別される場合、To_Refcursor()を使用して DBMS_Sql 数値カー

ソルをカーソル変数に変換し、バッチ・バルク・フェッチを使用します。実行

時まで select list がわからない場合、DBMS_Sql API を使用して結果もフェッチ

します。コンパイル時にバインディング要件が識別され、実行時まで select list
が識別されない珍しい事例の場合、ネイティブ動的 SQL を使用してカーソル変

数を開き、To_Cursor_Number()を使用してカーソル変数を DBMS_Sql 数値カー

ソルに変換します。次に、DBMS_Sql API を使用して、結果をフェッチします。

単一行の選択

このユースケースの明白な例は、主キーで識別される行の取得です。ただし、最

初に想定したよりも一般的ではない可能性があります。マスター表の行の場合、

関連する詳細が同時に必要になります。ディテール表の行の場合、特定のマスター

のすべての行が同時に必要になります。ただし、単一の行だけを必要とするユー

スケースもあります。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

38

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

Code_40は、埋込みSQLを使用した例を示しています。
-- Code_40
select a.PK, a.v1
into b.The_Result
from t a
where a.PK = Some_Value;

Code_41は、ネイティブ動的SQLを使用した例を示しています。
-- Code_41
declare
 Stmt constant varchar2(200) := '
 select a.PK, a.v1
 from t a
 where a.PK = :b1';
begin
 execute immediate Stmt
 into The_Result
 using Some_Value;

Code_40とCode_32、Code_41とCode_33を比較してください。各例では、カーソル

のないPL/SQL構造を使用しています。Code_34と比較するため、Code_42ではCur
識別カーソルを使用する全体バルク・フェッチ方式を示します。
-- Code_42
-- Cur is already open here.
-- The fetch syntax is the same for
-- an explicit cursor and a cursor variable.
fetch Cur into The_Result;
close Cur;

Code_43は、Code_42を実行可能にするためにCur識別カーソルを設置する 3 つの

方法を示しています。複数行の事例であるCode_31と非常に似ています。
-- Code_43
 $if $$Approach = 1 $then
 cursor Cur is
 select a.PK, a.v1
 from t a
 where a.PK = b.Some_Value;
 $elsif $$Approach = 2 or $$Approach = 3 $then
 Cur Sys_Refcursor;
 $if $$Approach = 3 $then
 Stmt constant varchar2(200) := '
 select a.PK, a.v1
 from t a
 where a.PK = :b1';
 $end
 $end
begin
 $if $$Approach = 1 $then
 open Cur;
 $elsif $$Approach = 2 $then
 open Cur for
 select a.PK, a.v1
 from t a
 where a.PK = b.Some_Value;
 $elsif $$Approach = 3 $then
 open Cur for Stmt using Some_Value;
 $end

複数行の事例と同様に、Code_42のアプローチに必要なコード量の合計は、機能的

に同等のCode_40やCode_41よりも大幅に多くなります。対応する引数が適用され

ます
77
。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

39

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

実行時までバインディング要件がわからないシナリオの性質から複数行を返す問

合せの可能性が高くなります。このため、望ましくない No_Data_Found 例外およ

び予期しない Too_Many_Rows 例外が発生する場合、DBMS_Sql API の使用は適切

ではありません。単一の行だけが要求されているが、実行時まで select list がわか

らないという事例は珍しいので、DBMS_Sql API は必要ありません。

この項の議論は、以下のベスト・プラクティスの原則にまとめられます。

Principle_14 単一の行だけを取得するには、select...
intoまたは execute immediate... intoを使

用します。No_Data_Found および

Too_Many_Rows を活用してください。

単一の行だけを選択するときは、単一の手順で行をフェッチします。埋込み SQL
が使用できれば、カーソルのない PL/SQL 構造 select... into を使用します。動的

SQL が必要な場合は、execute immediate... into を使用します。望ましくない

No_Data_Found 例外および予期しない Too_Many_Rows 例外を活用してくださ

い。

プロデューサ/コンシューマのモジュール化のアプローチ

データベース PL/SQL プログラムのモジュール化を計画している場合、異なる

PL/SQL ユニットで次の 2 つの異なる処理を実行することが一般的です。

• SQL 文（select、insert、update、delete、merge、lock table、commit、または rollback）
の実行

• 表を変更するために取得または使用されるデータの処理

説明が（この項で焦点をあてている）select 操作だけに制限される場合、プロデュー

サ/コンシューマ・メタファは正しく適用されます。プロデューサがすべての SQL
を管理し、コンシューマは関与しないのが理想的です。ただし、このような明確

な区別は現実的に多くの欠点（少なくとも Oracle Database 11g を使用する場合）

をもつため、コンシューマがデータベースの外側の場合、推奨されるアプローチ

にはなりません。

職務の分離の明白な理由は、アクセス制御構造を実施するためです。表データへ

のすべてのアクセスを専用データ・アクセス PL/SQL ユニットに制限して、多く

のビジネス・ルール（どのような種類のデータに依存する変更が許可されるか、

どのように非正規化が維持されるかなど）は安全かつ効果的に実装されます。表

と同じスキーマの定義者権限のデータ・アクセス PL/SQL ユニットを使用し、ほ

かのスキーマでこのデータを使用または準備する PL/SQL ユニットを実装して、

これを簡単に実施できます。データ・アクセス PL/SQLユニットのExecute権限は、

ほかのスキーマに付与されます。ただし、表の Select、Insert、Update、および Delete
権限は付与されません。データベースのクライアントによるアクセスには、同じ

スキームが便利です。このベスト・プラクティスの原則には、明白な利点があり

ます。

Principle_15
API を定義するオブジェクトのプライ

ベート・シノニムだけを含む専用ス

キーマを使用して、データベース・
アプリケーションを公開します。

アプリケーションの機能にアクセスするために、データベース・クライアント

が接続するアプリケーションの専用スキーマ（Some_App_API など）を作成しま

す。厳密に保護されたパスワードを使用して、Some_App_API 以外のスキーマに

すべてのアプリケーションのデータベース・オブジェクトを実装します。

77. パフォーマンスおよび機能の観点から、select... into または execute immediate... into よりも fetch... into

のほうが望ましいと思っているユーザーもいますが、これらに根拠はありません。fetch... into は、

select... into および execute immediate... into よりもパフォーマンスが低下します。一意キーを使用し

て単一の行だけを取得する要件の場合、Too_Many_Rows 例外だけが役立ちます。通常、

No_Data_Found 例外は、望ましくありませんが予想外ではありません。リカバリが可能であり、厳

密に囲まれた例外ハンドラでプログラムする必要があります。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

40

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

また、Some_App_API のオブジェクトをプライベート・シノニムだけに制限しま

す。クライアント API を公開するアプリケーションのデータベース・オブジェ

クトだけにこのようなシノニムを作成します。これらのオブジェクトのアクセ

スに必要な権限だけを Some_App_API に付与します。

オラクルの主要な顧客の多くは、次のベスト・プラクティスの原則を採用して、

体制を強化しています。

Principle_16 PL/SQL API でデータベース・アプリ

ケーションを公開します。データベー

スのクライアントがアクセスできな

いスキーマのすべての表を非表示に

します。

Some_App_APIのプライベート・シノニムがPL/SQLユニットだけに公開される

オブジェクト型を制限します。ほかのスキーマのすべての表を非表示にします。

これらの権限をSome_App_API
78
に付与しないでください。

表データを取得するタスクの場合、どのようにプロデューサ/コンシューマ API を
設計すればよいのでしょうか。データベース内のモジュール化スキームには、次

の 3 つの可能性があります。
• パッケージ仕様のパラメータ化された明示カーソルの宣言を公開して、本体

の定義を非表示にします。カーソルのオープン、フェッチ、およびクローズ

をクライアントで管理します。

• return データ型が参照カーソルに基づくパッケージ仕様のパラメータ化され

たファンクションの宣言を公開して、本体の定義を非表示にします。ファン

クションの return が割り当てられるカーソル変数のフェッチおよびクローズ

をクライアントで管理します。

• return データ型が取得データを表現するように設計されるパッケージ仕様の

ファンクションの宣言を公開して、本体の定義を非表示にします。通常、return
データ型は、レコード（パラメータ化が常に単一の行を示す場合）、レコー

ドのコレクション、または XML ドキュメント（パラメータ化が複数行を示す

場合）として実装されます。

データベースの外側のコンシューマにデータベースを公開する API を定義するに

は、クライアントが PL/SQL で実装されている場合（つまり、Oracle Forms の場合）

のみ、最初のアプローチを使用できます。埋込み SQL で満たすことができる問合

せ要件のみサポートされていることも障害になります。コンシューマがデータ

ベースの内側の場合でも推奨されているわけではないので、これ以上取り上げま

せん。

データベースの外側のコンシューマにデータベースを公開するAPIを定義する場

合、常に 2 つ目のアプローチを使用できます。Oracle DatabaseのSQL文の処理をサ

ポートするすべてのクライアント環境には、無名PL/SQLブロックの実行をサポー

トするAPIが含まれます。とくに、ブロックの変数として記述された場合、カーソ

ル変数として宣言されるプレースホルダに適切なクライアント・データ構造をバ

インドできます。このアプローチを使用すると、理想的なモジュール化の概念が

変わってしまいますが（参照カーソルからのフェッチを実装するために、SQLの

仕組み
79
をクライアントが把握する必要があるため）、多くの顧客がこのアプロー

チを採用し、ミッション・クリティカルな本番コードで使用しています。ADTの
コレクションを使用する必要がある理想的な概念は非常に複雑なことがわかりま

す
80
。

78. これは、ソフトウェア・エンジニアリングの一般的なベスト・プラクティスの原則を Oracle Database

用に特殊化したものです。わかりやすい API を使用して慎重に設計された抽象化レベルでシステム

をモジュールに分割し、各モジュールの機能を公開してこの API のモジュールの実装を非表示にし

ます。Oracle Database の PL/SQL サブプログラムは、API を定義する手段を提供します。モジュー

ル実装の一部である表およびコンテンツを操作する SQL 文を、クライアントからデータベースで

は見えないようにする必要があります。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

41

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

3 つ目のアプローチでクライアントにデータベースを公開するAPIを定義するに

は、少し修正が必要です。こうしたすべてのAPIがプレースホルダへの適切なクラ

イアント・データ構造のバインディングをサポートしているわけではありません。

プレースホルダは、対応する仮パラメータがレコードまたはレコードのコレク

ションであるサブプログラムの呼出しにおいて、実際の引数としての役割を果た

します。ただし、ターゲットの仮パラメータがADT
81
またはADTのコレクションの

場合、すべてのAPIがバインディングをサポートします。71 ページの"付録C：レ

コードのコレクションにselect文の結果を移入する代替のアプローチ"は、この目的

のいくつかの構造を示しています。人間が読み取れるレポートを準備することが

クライアントの目的である場合、returnデータ型としてXMLドキュメントを選択す

ることがとくに有用です。

3 つ目が理論的にもっともわかりやすい API 設計です。プロデューサは、データ

取得のすべての処理をカプセル化します。コンシューマは、正しく指定された表

現のデータのみを確認できます。

この 3 つ目のアプローチに関連して、コンシューマとプロデューサのステートフ

ルな関係下でアンバウンド結果セットをフェッチする方法を確認してから、ス

テートレスな関係の事例を確認すると有用です
82
。

プロデューサ/コンシューマのステートフルな関係

コンシューマおよびプロデューサが、異なるスキーマのパッケージのPL/SQLサブ

プログラムとして実装される場合などのステートフルな事例
83
で、状態はどのよう

になり、誰が保持するのでしょうか。状態は、次にフェッチされてカーソル変数
84

に保存される結果セットのメンバーです。ただし、Oracle Database 11gでは、パッ

ケージの仕様または本体のグローバル・レベルでカーソル変数が宣言されない場

合があります
85
。解決策として、すべてのバッチが処理されるまで、コンシューマ

が保持できる状態にプロデューサがハンドルを戻す方法があります
86
。Code_44は、

プロデューサ・パッケージの仕様を示しています。

79. とくに、コンシューマは、プログラミング環境に全体バルク・フェッチまたはバッチ・バルク・フェッ

チと同等の機能を実装する必要があります。

80. 複雑ですが、これを実装する方法を説明します。

81. create type... as object(...)の結果の便利なシノニムとして、本書では ADT を使用します。ADT を

Object_Type が type のオブジェクトとして参照すると非常に複雑になります。また、これはコレク

ション型というよりもオブジェクト型だといえます。

82. コンシューマがデータベースの内側の場合、関係が自動的にステートフルになります。コンシュー

マがデータベースの外側の場合、関係が一般的にステートレスになります。

83. 近年、新規プロジェクトでユーザー向けアプリケーションを構築し、ユーザー・インタフェースに

データベースへのステートフルな接続が装備されているアーキテクチャを選択することは比較的

まれです。ほぼ例外なく、ステートレスな HTML ブラウザのユーザー・インタフェースを実装す

ることが一般的です。注目すべき例外として、データベース開発の IDE（Oracle SQL Developer な
ど）があります。

84. ここでは、カーソルという用語の隠喩的な意味を理解します。

85. この制限に根拠はありません。エンハンスメント・リクエスト 6619359 は、解除を要求します。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

42

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

-- Code_44
package Producer is
 type Result_t is record(PK t.PK%type, v1 t.v1%type);
 type Results_t is table of Result_t index by pls_integer;
 function The_Results(
 Some_Value in t.PK%type,
 Cur_Var in out Sys_Refcursor)
 return Results_t;
end Producer;

Code_45は、本体を示しています。
-- Code_45
package body Producer is
 function The_Results(
 Some_Value in t.PK%type,
 Cur_Var in out Sys_Refcursor)
 return Results_t
 is
 Stmt constant varchar2(200) := '
 select a.PK, a.v1
 from t a
 where a.PK > :b1
 order by a.PK';
 Batchsize constant pls_integer := 1000;
 Results Results_t;
begin
 if Cur_Var is null then
 open Cur_Var for Stmt using Some_Value;
 end if;

 fetch Cur_Var bulk collect into Results limit Batchsize;

 if Results.Count() < Batchsize then
 close Cur_Var;
 Cur_Var := null;
 end if;

 return Results;

 exception when others then
 if Cur_Var%IsOpen then
 close Cur_Var;
 end if;
 raise;
 end The_Results;
end Producer;

は、コンシューマ・プロシージャを示しています。 Code_46

-- Code_46
procedure Consumer is
 Some_Value constant t.PK%type := 0;
 Cur_Var Sys_Refcursor := null;
 Results Producer.Results_t;
begin
 loop
 Results := Producer.The_Results(Some_Value, Cur_Var);
 for j in 1..Results.Count() loop
 ...
 end loop;
 exit when Cur_Var is null;
 end loop;
end Consumer;

ネイティブ動的SQLを使用する必要がない場合、パッケージ本体の最上位レベル

で宣言されている明示カーソルを代わりに使用できます
87
。コンシューマはプロ

デューサへの呼出しの間に参照カーソルを"保持"する必要がないので、設計が簡

素化されます。

86. これは非常に一般的なパラダイムです。たとえば、DBMS_Sql および Utl_File で使用されます。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

43

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

コンシューマはプロデューサへの呼出しの間に参照カーソルを"保持"する必要が

ないので、設計が簡素化されます。埋込みSQLとネイティブ動的SQLの両方でこ

のアプローチを使用できるので、ここでは参照カーソルを使用しました。

DBMS_Sql APIを使用する要件の場合、プロデューサの設計が大幅に変更されるこ

とがあります。状態は、Open_Cursor()から返された数値です。プロデューサ・パッ

ケージの本体の最上位レベルで宣言された変数へこの値を簡単に保存できます。

コンシューマが呼出しの間に参照カーソルを"保持"する必要がないことを除いて、

コンシューマはプロデューサの実装におけるこのような違いを確認しません。防

衛的設計では、3 つのすべての方法に対してAPIで参照カーソルを公開し、プロ

デューサを実装できます。実装に明示カーソルまたはDBMS_Sql APIを使用した場

合も違いはありません
88
。

プロデューサ/コンシューマのステートレスな関係

ステートレスなHTMLブラウザでユーザー・インタフェースを実装するOracle
Databaseアプリケーションでは、"次のページ"および"前のページ"ボタンまたはN
番目のページに直接移動できるボタンを使用して、バッチの問合せ結果を表示す

ることが非常に一般的です。このアーキテクチャは、各ページ・ビュー・リクエ

ストがミドルウェアからデータベースへの呼出しで満たされることを示します。

このデータベースは、前のページ・ビューの呼出しではなく異なるセッションか

ら呼び出されます
89
。つまり、これを実行するためには、必要なページを取得する

問合せをパラメータ化する必要があります。ステートフルな構造とは異なり、最

後にアクセスした場所からは続行できません。Code_35は、このような問合せを示

しています。これは、全体バルク・フェッチ・アプローチに完全に対応していま

す。
この項の議論は、以下のベスト・プラクティスの原則にまとめられます。

Principle_17 return データ型が任意のデータを表す

ファンクションとして、プロデューサ

/コンシューマ API を定義します。プロ

デューサ・モジュールのすべての SQL
処理を非表示にします。これによっ

て、コンシューマは、要件の変更が原

因の実装の変更による影響を受けな

くなります。問合せのパラメータ化の

ようにプロデューサ・ファンクション

をパラメータ化してください。このア

プローチは、バッチでの行の取得や単

一の呼出しでのすべての行の取得に

対応します。これがスライスになる場

合もあります。

return データ型が作成されたデータを表す機能として、プロデューサ/コン

シューマ API を定義します。プロデューサ・モジュールで、SQL 処理に関連す

るすべての処理（フェッチを含む）を非表示にします。問合せのパラメータ化

で単一の行のみを指定する場合、select list と同じ構造でレコードまたは ADT を

使用します。この場合、動的 SQL の要件に応じてカーソルのない PL/SQL 構造

の select... into または execute immediate... into を使用します。問合せのパラメー

タ化で複数の行を指定する場合、レコードのコレクションまたは ADT のコレク

ションを使用します。ここで安全であることが確認できれば、全体バルク・

フェッチを使用します。これによって、カーソルのない PL/SQL 構造の select...
bulk collect into または execute immediate... bulk collect into を使用できます。全体

バルク・フェッチが安全ではない場合、プロデューサ/コンシューマの関係がス

テートフルなときにバッチ・バルク・フェッチを使用します。これには識別カー

ソルが必要です。埋込み SQL で十分な場合、プロデューサ・パッケージの本体

のグローバル・レベルで宣言された明示カーソルを使用します。これによって、

各バッチを取得するコンシューマからの呼出しの状態が保持されます。動的

SQL が必要な場合、カーソル変数を使用します。コンシューマが保持できるよ

うに、各バッチの結果とともにこれをコンシューマに戻します。プロデューサ/
コンシューマの関係がステートレスな場合、結果セットのスライスを使用します。

87. 本書のアプローチでは、パッケージ仕様の明示カーソルの宣言とパッケージ本体の定義を分割する

機能は活用していません。
88. Oracle Database 11g の DBMS_Sql.To_Refcursor()ファンクションも確認してください。select list の構

成がコンパイル時に識別される場合、ネイティブ動的 SQL を使用してわかりやすいフェッチ・コー

ドを記述できます。
89. このパラダイムは、読取り一貫性の問合せ結果を表示する典型的なプリファレンスを意図的に放棄

します。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

44

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

全体バルク・フェッチで各スライスの配信を実装します。要件に示されている

場合、DBMS_Sql API を使用して、プロデューサ・モジュールでこれを使用する

すべてのコードを非表示にします。
Oracle Database 11gには、PL/SQLファンクション結果キャッシュが導入されていま

す。プログラマーは、authidが使用される構文でresult_cacheキーワードを使用しま

す。ファンクションの起動に使用する実際の引数の組合せごとに戻り値をキャッ

シュして、同じ引数を使用した後続の呼出しの再計算を少なくします。すべての

セッションでキャッシュにアクセスできます。returnデータ型は、レコードまたは

ADTあるいはそのコレクションに基づいています。つまり、ファンクションの戻

り値の計算が表から取得されるデータに依存する場合に適したPL/SQLのメモ化90

です。プログラマーは、宣言的なrelies_on句を使用して、コンテンツがファンク

ションの結果に影響する表を示すことができます。変更がこれらの表にコミット

される場合、ファンクションのキャッシュ結果がパージされます。プロデューサ・

ファンクションが単一の行または少数の行を返し、ファンクションが依存する表

データが頻繁に変更されない場合、result_cacheでファンクションをマークするこ

とで、パフォーマンスを大幅に向上できます。この明白な例は、代理の主キーと

対応する人間が読み取れる一意キー（ユーザー・インタフェースで制御する値リ

ストを移入するキー）のマッピングを返すファンクションです。

90. この技術は、ソフトウェア・エンジニアリングでよく知られています。Wikipediaに次の説明があり

ます。コンピュータ分野におけるメモ化とは、おもにコンピュータ・プログラムを高速化するため

に使用される最適化技法です。Donald Michieが 1968 年に構築しました。メモ化された関数は、一

連の特定の入力に対応する結果を"記憶"します。記憶された入力を使用した後続の呼出しでは、再

計算するのではなく、記憶されている結果を返します。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

45

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

http://en.wikipedia.org/wiki/Memoization
http://en.wikipedia.org/wiki/Memoization

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

INSERT、UPDATE、DELETE、および MERGE 文のアプローチ

ユーザー・インタラクションでは、単一の行の insert、update、delete、または merge
を使用する場合が一般的なので、このユースケースを最初に扱います。select とは

異なり、複数の行を使用する場合にこれらの操作を無制限の多くの行でサポート

する必要はありません。任意の操作を表すデータは PL/SQL データ構造で最初に

発生するので、複数行のバルク操作に合わせてバッチ処理を実行できます。

この項のコードでは、埋込みSQLを使用します。常にカーソルのないシングルト

ンPL/SQL構造の文を使用します。識別カーソルを使用する可能性はないため、す

べての操作で暗黙カーソルを使用します。つまり、ユースケースで必要になる場

合、ネイティブ動的SQLへの移行が機械的になります。57 ページの"insert、update、
delete、およびmergeのネイティブ動的SQLの使用"で、これを簡単に説明します。

これらのSQL文に対するDBMS_Sql APIの使用は説明しません。最初に必要だと判

断したユースケースでこれを回避する方法を示します
91
。

単一の行の操作

単一の行のシナリオの課題は、insert および update で一部の列だけに値を指定す

る処理です。

単一の行の insert

Code_47は、insertの 2 つの事例を示しています。
-- Code_47
insert into t(PK, n1) values (b.PK, b.n1);
...
insert into t(PK, v1) values (b.PK, b.v1);

92
Code_48の宣言 でInsert_Row_Into_T()プロシージャの設計および実装を検討して

ください。
-- Code_48
procedure Insert_Row_Into_T(
 PK in t.PK%type,
 n1 in t.n1%type := null,
 n1_Specified in boolean := false,
 ...
 v1 in t.v1%type := null,
 v1_Specified in boolean := false,
 ...)
 authid Current_User;

35 ページの"複数の行の選択 - 実行時までわからないselect listまたはバインディ

ング要件"で、SQL文にすべてが記述されない可能性のある 12 個の列で組合せ的

爆発が発生することを説明しました。可能性のあるすべての事例に対応するには、

1,000 以上の個別の埋込みSQL文が必要になります。コンパイル時までバインディ

ング要件がわからないselect文と同じように、DBMS_Sql APIを使用できます。

91. バインディング要件または select list の構成が実行時までわからない select 文に対する DBMS_Sql

API の使用を習得したユーザーは、insert、update、delete、または merge 文に対しても簡単に使用

できます。

92. オプションの値を設定した列に対応する各形式に指定されたかどうかを示す boolean が設定されて

います。プロシージャで null を判別するテストを実行してパラメータがデフォルトかどうかを確認

しないのは、一般的に null が任意の値になる可能性があるためです。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

46

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

ただし、適切な代替手段がある場合は、これを回避するというベスト・プラクティ

スの原則（17 ページを参照）を確認してください。この場合の代替手段は、各列

の値を指定して、指定されない列にはデフォルト値を設定する文を使用すること

です。

Oracle9i Database Release 2 で、埋込みSQLのバインド引数としてのレコードの使用

に対応しました。これによって、この課題に簡単に対処できます。Code_49は、デ

フォルト値にアクセスする方法を示しています
93/ 94

。
-- Code_49
insert into t(PK)
values (PK)
returning PK, n1, n2, v1, v2
into New_Row;

if n1_Specified then
 New_Row.n1 := n1;
end if;
...
update t
set row = New_Row
where t.PK = New_Row.PK;

ただし、このアプローチには、1 つで十分であるにもかかわらず 2 つのPL/SQL→

SQL→PL/SQLコンテキスト・スイッチ
95
が必要であるという欠点があります。デ

フォルト値を取得する最適な方法は、デフォルト値を定義するレコード型を使用

することです。プログラマーは、無名のt%rowtypeや対応するt.PK%typeなどの項目

が列の制約やデフォルト値を表から継承しないことを忘れてしまう場合がありま

す
96
。ただし、アプリケーションのインストール・スクリプトおよびパッチ/アッ

プグレード・スクリプトを構築する場合は、原則に従えば問題になりません。73
ページ Code_81の は、本書の例に使用されるテスト表tのアプローチを示していま

す。これは、次のベスト・プラクティスの原則につながります。

Principle_18 各アプリケーション表で、同じ制約お

よびデフォルト値を定義するテンプ

レートのレコード型を保存します。
各アプリケーション表のレコード型の宣言を公開するパッケージを保存します。

宣言では、表の特徴を示す列名、データ型、制約、およびデフォルト値の指定

を繰り返す必要があります。

93. Rowid を返すと効率的かもしれませんが、これはレコードの使用を妨げます。

94. returning row into A_Record の使用についてですが、この構文はサポートされていません。エンハン

スメント・リクエスト 6621878 でこれを要求します。

95. 30 ページの"複数の行の選択 - アンバウンド結果セット"を参照してください。

96. この理由は非常に複雑です。たとえば、スキーマ・レベルの表には、デフォルト値のない not null
制約の列が存在する場合があります（値を提供しないと、insert のエラーが発生します）。しかし、

PL/SQL は、not null 変数またはレコード・フィールドにはデフォルト値があると主張します。また、

表の列にチェック制約がある場合、ほかの複雑さが発生します。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

47

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

テンプレートのレコード型を配置して、Code_50としてCode_49を書き換えること

ができます。
-- Code_50
 New_Row Tmplt.T_Rowtype;begin
 New_Row.PK := PK;
 if n1_Specified then
 New_Row.n1 := n1;
 end if;
 ...
insert into t values New_Row;

単一の行の update

Code_51は、updateの 2 つの事例を示しています。
-- Code_51
update t a
set a.n1 = b.n1
where a.PK = b.PK;
...
update t a
set a.v1 = b.v1
where a.PK = b.PK;

97
Code_52の宣言 でInsert_Row_Into_T()プロシージャの設計および実装を検討して

ください。

-- Code_52
procedure Update_T_Row(
 PK in t.PK%type,
 n1 in t.n1%type := null,
 n1_Specified in integer := 0,
 ... v1 in t.v1%type := null,
 v1_Specified in integer := 0
 ...)
 authid Current_User;

Code_51に示されているような埋込みSQL文を使用する実装では、組合せ的爆発が

発生します。Code_49と同じ目的のアプローチでは、任意の新しい行をレコードに

取得して指定されたフィールドだけを変更し、update... set row...を使用します。

Code_53はこれを示します
98
。

-- Code_53
select * into The_Row from t a
where a.PK = Update_T_Row.PK
for update;

if n1_Specified then
 The_Row.n1 := n1;
end if;
...
update t a set row = The_Row where a.PK = Update_T_Row.PK;

97. integer として n1_Specified などを宣言する理由は、すぐに明らかになります。

98. Code_53は、n1_SpecifiedなどがbooleanのバージョンのUpdate_T_Row()を使用します。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

48

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

Code_54は、2 つのPL/SQL→SQL→PL/SQLコンテキスト・スイッチを回避するア

プローチ
99
を示しています。

-- Code_54
update t a
set a.n1 = case n1_Specified
 when 0 then a.n1
 else Update_T_Row.n1
 end,
 a.v1 = case v1_Specified
 when 0 then a.v1
 else Update_T_Row.v1
 end
where a.PK = Update_T_Row.PK;

これで、integer として n1_Specified などが宣言される理由が明らかになりました。

SQL は、boolean データ型を識別しません。

単一の行の delete

単一の行を一意なキーで識別する必要があるので、実行時までわからないバイン

ディング要件のジレンマは生じません。Code_55に例を示します（場合によっては、

削除された行のすべての値の監査を保持する必要があります）。
-- Code_55
 Old_Row t%rowtype;
begin
 delete from t a
 where a.PK = b.PK
 returning a.PK, a.n1, a.n2, a.v1, a.v2
 into Old_Row;

単一の行の merge

merge文のサポートがOracle9i DatabaseのSQLに追加されました。また、埋込みSQL

にはこのサポートが自動的に継承されます
100
。その目的は、updateまたはinsert用

にソース表から互換性のある構造の宛先表に移動する行を選択することです。

ソース表と宛先表の名前のついた列のペアの値に従って、選択がおこなわれます。

このため、この機能は、非公式ではありますが、"upsert"と呼ばれることもありま

す。この項では、PL/SQLのmerge文を使用してPL/SQL変数で表される行のupsert
を実行します。

単純なSQLの例から開始します。表tと完全に同じ列定義をもち、表tで値がPKと
して表される行を含む表t1 の場合とそれ以外を想定します。Code_56は、t1 で一致

する行がもつ値を利用して、一致するPK値でtの行を更新し、PKと一致しない場

所にt1 の残りの行を挿入するSQL文
101
を示しています。

99. パフォーマンスの調査は、まだおこなわれていません。理論上の欠点は、Code_53 Code_54と のア

プローチで、不要な場合でも各フィールドにアクセスしてしまうことです。ただし、DBMS_Sql API
を使用してこの欠点を回避する代替手段にも、パフォーマンスの欠点があります。

100. Oracle9i Database では、PL/SQL コンパイラに"一般的な SQL パーサー"が導入されました。これ以

前のリリースでは、埋込み SQL がサポートするクラスの文により PL/SQL コンパイル・エラーが

発生する場合がありました。現在は不要ですが、回避方法は、このような文に動的 SQL を使用す

ることです。

101. 空の行を交互に配置してこのような長い文を読みやすくするには、SET SQLBLANKLINES ON

SQL*Plusコマンドを使用できます。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

49

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

-- Code_56
merge into t Dest
using t1 Source
on (Dest.PK = Source.PK)

when matched then update set
 Dest.n1 = Source.n1,
 Dest.n2 = Source.n2,
 Dest.v1 = Source.v1,
 Dest.v2 = Source.v2

when not matched then insert values (
 Source.PK,
 Source.n1,
 Source.n2,
 Source.v1,
 Source.v2)

構文が冗長なように見えます。ただし、ソース表と宛先表で同じ列名を使用する

必要はありません。Code_56が示す一般的な事例は、省略できません。

末尾にセミコロンを追加することでCode_56のSQLから適切なPL/SQL埋込みSQL
文を作成できます。ただし、便宜上、プレースホルダを使用するSQL文に対応さ

せる必要があります。また、周知のように、プレースホルダは識別子の代わりと

しては不適切です。Code_57
102
の標準的なSQL文がヒントになります。

-- Code_57
merge into t Dest
using (select
 1 PK,
 51 n1,
 101 n2,
 'new v1' v1,
 'new v2' v2
 from Dual) Source
on (Dest.PK = Source.PK)

when matched then update set
 Dest.n1 = Source.n1,
 Dest.n2 = Source.n2,
 Dest.v1 = Source.v1,
 Dest.v2 = Source.v2

when not matched then insert values (
 Source.PK,
 Source.n1,
 Source.n2,
 Source.v1,
 Source.v2)

102. この文は、SQL文の適切な形式を保証するルールの作成が不可能であることを示しています。

Code_35のようにwith句で改善しようとしましたが、適切な構文を作成できませんでした。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

50

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

ここでは、処理したあとにソース行のあるPL/SQLユニットでこの手段を使用する

方法を、Resultレコードで簡単に確認できます
103
。Code_58にこの方法を示します。

-- Code_58
 Result t%rowtype;
begin
 ...
 merge into t Dest
 using (select
 Result.PK PK,
 Result.n1 n1,
 ...,
 Result.v1 v1,
 ...
 from Dual d) Source
on (Dest.PK = Source.PK)

when matched then update set
 Dest.n1 = Source.n1,
 ...,
 Dest.v1 = Source.v1,
 ...

when not matched then insert values (
 Source.PK,
 Source.n1,
 ...,
 Source.v1,
 ...);

比較のため、Code_59にはmerge文を使用しないで"upsert"要件を満たす方法を示し

ます。
-- Code_59
 Result t%rowtype;
begin
 ...
 begin
 insert into t values Result;
 exception when Dup_Val_On_Index then
 update t a
 set row = b.Result
 where a.PK = b.Result.PK;
 end;

表形式の変更によるコード・メンテナンスにレコードを使用する利点があるので、

Code_58よりもCode_59の方が魅力的に見えます。ただし、パフォーマンス・テス

トでは、"正式"なmergeアプローチのほうが大幅に高速化されています。多くの人

は、記述しやすいコードよりも、維持がたいへんであっても優れたパフォーマン

スを発揮するコードを使用します。これは、次のベスト・プラクティスの原則に

つながります。
Principle_19 "upsert"要件には、merge を使用します。

例外ハンドラの insert と一緒に update...
set row...を使用しないでください。 "upsert"が必要な場合は、merge を使用してください。update... set row...を実装し

て、対応する insert を実装した Dup_Val_On_Index の例外ハンドラを用意するよ

りも有効です。

103. 確認しやすいですが、構文の記述は簡単ではありません。ただし、（パフォーマンスの向上につな

がるため）提供されるセマンティックには利用する価値があります。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

51

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

複数行の操作

連続して何度も特定のinsert、update、delete、またはmerge文を実行するために使

用される一連の値は、PL/SQLユニットで算出するのが一般的です。初心者は、

Code_60のようなコードを記述します。

-- Code_60
for ... loop
 ...
 PK := ...
 n1 := ...
 ...
 update t a
 set a.n1 = b.n1, ...
 where a.PK = b.PK;
end loop;

104
Oracle8i Databaseでは、forall文の導入により、insert、update、delete、およびmerge

Code_61文を繰り返し使用する状況における効率が改善されました。 は、forall文
を使用して書き換えられたCode_60を示しています。

-- Code_61
for ... loop
 ...
 PKs(j) := ...
 n1s(j) := ...
 ...
end loop;
forall j in 1..PKs.Count() loop
 update t a
 set a.n1 = b.n1s(j), ...
 where a.PK = b.PKs(j);

バインドされるコレクションの要素の数がNの場合にforall文を実装することに

よって、Code_60をN回切り替えるのではなく、1 回のPL/SQL→SQL→PL/SQLコン

テキスト・スイッチ
105
でSQL文のN回の実行を管理して、効率性を改善します。パ

フォーマンスが何倍にも改善されることが小規模なテストで示されています。

forall文を使用することがもっとも重要です。使用しない理由がありません。

Code_61 Code_60は、 よりも記述や理解が困難ではありません。表現も同様です。

たとえば、Code_61を少し書き換えることで、レコード・バインドでset row構文を

使用できます。これにより、パフォーマンスの利点も大きくなります。

104. Oracle9i Database まで merge 文は導入されていませんでした。導入後は、forall 文でもサポートされ

ています。

105. 30 ページの"複数の行の選択 - アンバウンド結果セット"を参照してください。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

52

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

forall 文の実行時に発生する例外の処理

Code_62は、Code_60の単一の行のアプローチを変更する方法を示しています。特

定の繰返しが望ましくないが予想外でもない例外を引き起こした場合に、その実

行を継続させます。
-- Code_62
for ... loop
 ...
 PK := j;
 n1 := j;
 ...
 begin
 update t a
 set a.n1 = b.n1, ...
 where a.PK = b.PK;
 exception
 when Dup_Val_On_Index then
 n := n + 1;
 The_Exceptions(n).Error_Index := j;
 The_Exceptions(n).Error_Code := SqlErrm();
 when ... then
 ...
 end;
end loop;

The_Exceptions は、index by pls_integer 表です。この要素は、例外を引き起こした

繰返しの回数を保持するフィールドと、エラー・コードを保持するフィールドを

それぞれもったレコードです。Dup_Val_On_Index 以外の例外（容量不足エラーな

ど）は、大局的にこれだけがリカバリ可能だと見なされるので、設計上適切に処

理するために上位層にバブルアップされます。

Code_63 Code_61は、特定の繰返しで例外が発生した場合に、 のバルク・アプロー

チを変更して実行を継続する方法を示しています。
-- Code_63
for ... loop
 ...
 PKs(j) := ...
 n1s(j) := ...
 ...
end loop;

declare
 Bulk_Errors exception;
 pragma Exception_Init(Bulk_Errors, -24381);
begin
 forall j in 1..PKs.Count() save exceptions
 update t a
 set a.n1 = b.n1s(j), ...
 where a.PK = b.PKs(j);
exception
 when Bulk_Errors then
 for j in 1..Sql%Bulk_Exceptions.Count() loop
 The_Exceptions(j).Error_Index :=
 Sql%Bulk_Exceptions(j).Error_Index;
 The_Exceptions(j).Error_Code :=
 -Sql%Bulk_Exceptions(j).Error_Code;
 end loop;
end;

実際のコードでは、事前に定義されたSql%Bulk_Exceptionsコレクションから、ロー

カルのThe_Exceptionsコレクションにコピーするループが理解できない場合があ

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

53

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

ります。 Code_63 をこのように記述したのは、バルク・アプローチの

Sql%Bulk_Exceptions の情報が単一の行のアプローチの手動で移入した

The_Exceptionsの情報と同じであることを強調するためです。

若干のセマンティックの違いを確認してください。単一の行のアプローチでは、

Dup_Val_On_Index だけを取得するハンドラを使用できました。バルク・アプロー

チの save exceptions は、ORA-24381 を取得して実装される when others ハンドラの

ように機能します。Dup_Val_On_Index だけがリカバリ可能な設計では、ORA-24381
の ハ ン ド ラ の Sql%Bulk_Exceptions を 横 断 し て 、 Error_Code の 値 が

Dup_Val_On_Indexに対応する値ではない場合に新しい例外を意図的に発生させる

必要があります。

補足：DML エラー・ロギング

DML エラー・ロギングは、Oracle Database 10g Release 2 で導入されました。insert
文などの特殊な構文を使用すると、特定の行でエラー（varchar2 値は、ターゲッ

ト・フィールドの許容値よりも大きくなる可能性があります）が発生した場合に、

その行をスキップして次の行の操作を継続するように要求できます。また、スキッ

プした行の情報が（自律型トランザクションで）この目的のために指定した表へ

書き込まれます。

この機能は、特定のシナリオを考慮して導入されました。つまり、既知のダー

ティ・データ
106
（検出後に手動で破棄または修正し、2 回目のロードで使用するデー

タ）をもつソースから表をバルク・ロードするためにinsert... select...を使用する場

合です。このアプローチは、PL/SQLを使用して暗黙カーソルFORループでソース

行をステップ実行するハンド・コーディング・アプローチ（各行をターゲット表

に挿入し、例外が発生するごとに対処するアプローチ）としては、大きなパフォー

マンス上の利点があります。また、このハンド・コーディング・アプローチは、

バッチ・バルク・フェッチおよびinsertのforall文を使用することで最適化できます

（このアプローチの例は、59 ページのCode_68に示されています）。このような最

適化であっても、DMLエラー・ロギングを使用して不良データをスキップするア

プローチの方が、PL/SQLアプローチよりも大幅に高速になります。また、単一の

SQL文としてプログラミングすることが非常に容易になります。

この結果から、そのほかの理由からすでに PL/SQL を使用して forall 文で記述され

ているコードにおいても、（save exceptions 句を使用して ORA-24381 のハンドラ

を実装する代わりに）汎用的な代替手段として DML エラー・ロギングを推奨す

る開発者もいます。forall 文の本来の目的をよく考え、insert、update、delete、ま

たは merge を使用する場合の選択肢を慎重に検討することを推奨します。

2 つのアプローチにおけるセマンティックの違いに注意してください。通常、insert
よりも update および delete の違いが大きくなります。このため、insert の forall 文
の一般的な使用では、1 回の繰返しでソース PL/SQL コレクションから単一の行を

挿入します。ただし、update および delete の場合は、1 回の繰返しで多くの行に影

響を与えます。forall 文の失敗の粒度は、繰返しです。ただし、DML エラー・ロ

ギングの失敗の粒度は、単一の行です。一方のパラダイムが優れているというこ

とはありません。つまり、特定の要件によって適切な選択が決定します。DML エ

ラー・ロギングでアプリケーションの通常のオブジェクトとして考慮する必要が

ある表に、失敗したデータをコミットすることにも注意してください。このスキー

ムには、セッション固有の概念がありません。

106. 簡潔なユースケースは、外部表としてファイル・システムに外部システムのデータを表示します。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

54

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

このため、（管理者によるバルク・ロードとは対照的に）マルチユーザー・アプ

リケーションでは、適切な特注のタグ付けメカニズムでこの概念を導入する必要

があります。つまり、エラー表のコンテンツに特注の状態監視が必要になること

を意味します。DML エラー・ロギングでは、すべての種類のエラーを処理できな

いことにも注意する必要があります。たとえば、遅延制約違反、容量不足エラー、

または一意な制約あるいは索引違反を発生させる update や merge 操作は処理でき

ません。

forall 文のレコードのフィールドの参照

Oracle Database 11gでは、プログラマーから強い不満の出ていた制限がなくなりま

した。Code_64を参照してください。
-- Code_64
loop
 fetch Cur bulk collect into Results limit Batchsize;

 for j in 1..Results.Count() loop
 ...
 end loop;

 forall j in 1..Results.Count()
 update t a
 set a.v1 = b.Results(j).v1
 where Rowid = b.Results(j).Rowid;

 exit when Results.Count() < Batchsize;
end loop;

以前のバージョンでは、このコードのコンパイルは失敗し、PLS-00436:
implementation restriction: cannot reference fields of BULK In-BIND table of recordsエ
ラーが発生します。これを回避するには、表の列ごとにスカラーの個別のコレク

ションを使用する必要がありました。Code_68（59 ページを参照）は、以前のバー

ジョンのOracle DatabaseでCode_64と同等の内容を記述した事例です。

バルク・マージ

単一の行のmerge文の"バルク化"には、forall文を使用した単一のinsert、update、お

よびdeleteの変換と同じ論理を適用したくなります。Code_65は、この場合のコー

ドを示しています。
-- Code_65
 type Results_t is table of t%rowtype index by pls_integer;
 Results Results_t;
begin
 ...
 forall j in 1..Results.Count()
 merge into t Dest
 using (select
 Results(j).PK PK,
 Results(j).n1 n1,
 ...,
 Results(j).v1 v1, ...
 from Dual d) Source
 on (Dest.PK = Source.PK)
 when matched then update set
 Dest.n1 = Source.n1,
 ...,
 Dest.v1 = Source.v1, ...
 when not matched then insert values (
 Source.PK,
 Source.n1,
 ...,
 Source.v1,
 ...);

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

55

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

どのようにmerge文が記述されているかを検討してください。その目的は、update
またはinsertのためにソース表から異なる宛先表に移動する行を選択することで

す。オブジェクト・データ型やコレクション・データ型はスキーマ・レベルで定

義された条件下で、データ型がオブジェクトのコレクションであるPL/SQL変数と

ともにtable演算子を使用できるということを覚えていれば、これを活かすことが

できます。Code_66は、これを実行するSQL*Plusスクリプトを示しています。
-- Code_66
create type Result_t is object(
 PK number,
 n1 number,
 ...
 v1 varchar2(30),
 ...)
/
create type Results_t is table of Result_t
/

これを理解することによって、Code_67にCode_65とは大幅に異なる目的を表現で

きます。
-- Code_67
 Results Results_t;
begin
 ...
 merge into t Dest
 using (select * from table(Results)) Source
 on (Dest.PK = Source.PK)

 when matched then update set
 Dest.n1 = Source.n1,
 ...,
 Dest.v1 = Source.v1,
 ...

 when not matched then insert values (
 Source.PK,
 Source.n1,
 ...,
 Source.v1,
 ...);

Code_65は、再バインドして何回も再実行するSQL文を要求します。Code_67は、

SQL文に対してバインドと実行を 1 回だけ要求します。当然、このコードは高速

になります。また、オブジェクトの表を移入するプログラミングには、レコード

の表を移入するプログラミングとは多少異なる記述が求められます。ただし、こ

の違いは根本的ではなく表面的なものです。

この項の議論は、以下のベスト・プラクティスの原則にまとめられます。

Principle_20 単一の行の文を繰り返し記述するの

ではなく forall 文を使用してくださ

い。失敗した繰返しをスキップしても

安全な場合に ORA-24381 を処理しま

す。バルク・マージでは、オブジェク

トのコレクションとともに table 演算

子を使用します。

特定の insert、update、または delete 文の繰返しには、同等の単一の行によるア

プローチではなく、常に forall 文を使用して実行するようにしてください。save
exceptions キーワードを使用して、特定の繰返しに失敗したあとに安全に続行でき

る場合に ORA-24381 のハンドラを提供します。バルク・マージでは、オブジェク

トのコレクションとともに table 演算子を使用して、マージされる行を表します。

insert、update、delete、および merge のネイティブ動的 SQL の使用

埋込みSQLを使用する作業コードを、ネイティブ動的SQLを使用するように変換

することは、ほかと比べて機械的な作業です。変換には常にexecute immediate文を

使用します。埋込みSQLテキストがPL/SQL変数ではなくプレースホルダをもつ同

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

56

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

等のテキストを格納する文字列変数
107

に置き換えられます。これはexecute
immediateとともに使用されます。using句でバインディングが実現します。outバイ

ンドを使用してSQL文のreturning句の出力が取得されます（into句は一切使用しま

せん）。set row構文を使用する埋込みSQLは、ネイティブ動的SQLでは表現できな

い点にとくに注意してください。各レコード・フィールドは、むしろ明示的に記

述する必要があります。

107. 多くの場合、execute immediate のオペランドは varchar2 です。ただし、Oracle Database 11g では、

clob を使用できるようになりました。これは、varchar2 の 32K の制限を超えるソース・テキストを

もつ PL/SQL ユニットのプログラム生成に有用です。以前のリリースでこの制限を超えた場合は、

コードを書き換えて DBMS_Sql API を使用していました。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

57

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

ユースケースの例

この項では、一般的に発生するシナリオを確認して、要件を実装する最適なアプ

ローチを説明します。

問合せ結果に応じた表データの変更

同じ場所で、または新しい表へ、表データを一括変換する必要がある場合、さま

ざまなシナリオが発生します。場合によっては、ソース表のデータを複数の宛先

表に分散させる必要があります
108
。update文またはinsert into... select ... from...文の

SQL式だけを使用する場合、必要なルールを表現できないことがあります。

Code_68は、このような処理におけるバッチ・バルク・フェッチとforall文を併用

する方法を示しています。
-- Code_68
 cursor Cur is
 select Rowid, a.v1 from t a for update;

 type Rowids_t is varray(1000) of Rowid;
 Rowids Rowids_t;

 type vs_t is varray(1000) of t.v1%type;
 vs vs_t;

 Batchsize constant pls_integer := 1000;
begin
 ...
 loop
 fetch Cur bulk collect into Rowids, vs limit Batchsize;
 for j in 1..Rowids.Count() loop
 -- This is a trivial example.
 vs(j) := f(vs(j));
 end loop;
 forall j in 1..Rowids.Count()
 update t a
 set a.v1 = b.vs(j)
 where Rowid = b.Rowids(j);
 exit when Rowids.Count() < Batchsize;
end loop;

変換が少なくPL/SQLファンクションを使用して表現できると、簡単なアプローチ

が可能になります。Code_69は、Code_68と同じ機能を提供します。
-- Code_69
...
update t set v1 = f(v1);

Code_69では、update文を発行するためにPL/SQLサブプログラムを使用する必要は

ありませんが、サブプログラムが表へのダイレクトSQLアクセスを隠すAPIの一部

である場合には役立つことがあります。ただし、Code_68はこの手法の例に過ぎま

せん。Code_69のように、表現できない変換もあります。

108. このシナリオは、とくに特定のバージョンから次のバージョンへのアプリケーションのアップグ

レードに関連して発生します。ベンダーは機能の追加やパフォーマンスの向上を図るために、アプ

リケーションの表の設計を変更する場合があります。たとえば、アップグレードで非正規化を維持

する列が追加される場合です。アップグレード・スクリプトは、このような列を一括して移入する

必要があります。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

58

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

Code_68 Code_69 Code_68および のパフォーマンスを比較すると有用です。 のアプ

ローチを使用することで、パフォーマンスが低下するのでしょうか。そうではな

いと思われます
109
。

最後に、単純な単一の行によるアプローチがどのように記述され、どのように作

用するかについて検討します。Code_70にこれを示します。
-- Code_70
for r in (select Rowid, a.v1 from t a for update) loop
 r.v1 := f(r.v1);
 update t a set a.v1 = r.v1
 where Rowid = r.Rowid;
end loop;

明らかに、Code_68よりもCode_70のほうが簡潔です。ただし、実行速度は大幅に

低速になります
110
。

Code_70のバリエーションとしてCur明示カーソルおよびwhere current of Cur構造

を使用する場合があります。Code_71にこれを示します。
-- Code_71
 cursor Cur is
 select a.v1 from t a for update;
 v1 t.v1%type;
begin
 open Cur;
 loop
 fetch Cur into v1;
 exit when Cur%NotFound;
 v1 := f(v1);
 update t a
 set a. v1 = v1
 where current of Cur;
 end loop;
 close Cur;

Code_72は、PL/SQLコンパイラがCode_71のソース・コードから生成するSQL文

111

を示しています。
-- Code_72
SELECT A.V1 FROM T A FOR UPDATE
UPDATE T A SET A.V1 = V1 WHERE ROWID = :B1

これは、where current of Cur構造が、Rowidを明示的に選択することで達成される

Code_70の糖衣構文にすぎないことを示しています。バルク構造に相当するものは

ありませんが、欠点は少しもありません
112
。

ベスト・プラクティスの原則は、以下のとおりです。

109. 固有のデータで独自のテストを実行できます。

110. 2,000,000 行を含む表を使用したテストで、Code_68とCode_69は、DBMS_Utility.Get_CPU_Time()を
使用して測定したCPU時間が数パーセントの測定精度内で同じでした。ただし、Code_70は、1.5x.
倍低速になりました。

111. 次のような問合せを使用することで、Code_72は生成されます。

select Sql_Text

from v$Sql

where Lower(Sql_Text) not like '%v$sql%'

and (Lower(Sql_Text) like 'select%a.v1%from%t%' or

 Lower(Sql_Text) like 'update%t%a%set%')

読みやすくなるように、Code_5が手動で整えられています。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

59

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

Principle_21
バッチ・バルク・フェッチを使用した

行の取得、PL/SQL による行の処理、

および forall 文を使用した各バッチの

送信の実行を躊躇する必要はありま

せん。SQL 文で直接 PL/SQL ファンク

ションを使用する場合と比較しても、

このアプローチを使用することでパ

フォーマンスが大幅に低下すること

はないためです。

PL/SQL でのみ表現できるアプローチを使用して多くの行を変換する必要があ

る場合、バッチ・バルク・フェッチで取得して処理し、forall 文で各バッチの結

果を使用して、Rowid でソース行を更新するか異なる表に挿入します。必要に

応じて、このアプローチは merge と組み合わせることができます。適切な SQL
文で直接 PL/SQL ファンクションを使用する場合と比較しても、このアプロー

チを使用することでパフォーマンスが大幅に低下することはありません。

実行時までわからない in list 項目の数

可能性は低いものの、where句で 5 つの項目とともにin listを使用する問合せが必要

な場合、要件をあとで変更して現実的なユースケースを反映する課題に左右され

ず埋込みSQL文を記述できます。Code_73は、この仮定の文を示しています。
-- Code_73
select a.PK, a.v1
bulk collect into b.Results
from t a where
 a.v1 in (b.p1, b.p2, b.p3, b.p4, b.p5);

Code_74は、より現実的な文を表しています。
-- Code_74
select a.PK, a.v1
bulk collect into b.Results
from t a
where a.v1 in (b.ps(1), b.ps(2), b.ps(3),
 b.ps(4), b.ps(5), b.ps(6),
 b.ps(7), b.ps(8), b.ps(9),
 ...);

問題は、索引値のリテラルを使用してコレクションの各要素に明示的な参照を記

述するのが困難なことです。記述できたとしてもテキストが膨大になります
113
。

むしろ、"数が多い場合でもこのコレクションのすべての要素"を表す構文が必要

です。このような構文は、埋込みSQLでサポートされています。Code_75にこれを

示します。
-- Code_75
 ps Strings_t;
begin
 select a.PK, a.v1
 bulk collect into b.Results
 from t a
 where a.v1 in (select Column_Value
 from table(b.ps));

112. 一般的に、Rowid の不変性に依存することは危険です。たとえば、alter table... shrink コマンドに従

う場合、特定の主キーを使用した行の Rowid は、行の移動の結果として変更されることがあります。

ただし、別のセッションの alter table... shrink は現在のトランザクションが完了するまで待機するた

め、select... for update の発行とこのトランザクションを完了する commit または rollback の間にリス

クはありません。

113. このような明示的に索引付けされた 1,000 個の要素をハードコードできます。そのあとの実行時に、

任意の値に応じて多くの要素を設定し、残りの値を null にできます。null の等価テストは失敗した

等価テストと同じ効果をもつため、これは正しいセマンティックです。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

60

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

ただし、この内容はほとんどわかりません。これは、おそらくtable演算子
114
を使

用しているためです。psのデータ型は、スキーマ・レベルで宣言する必要があり

ます。Code_76 は、これを作成するSQL*Plusスクリプトを示しています。
-- Code_76
create type Strings_t is table of varchar2(30)
/

table演算子を知らないプログラマーが実行時にSQL文のテキストを構築して機能

要件を満たすことは珍しくありません。この場合、リテラル値を使用してネイティ

ブ動的SQLで文を実行するか、プレースホルダを使用してDBMS_Sql APIで文を強

制的に実行し、実行時までバインディング要件がわからない状況に対応します。

こうした回避策は、典型的なワースト・プラクティスといえます
115
（また、対象

の問合せを結合として表現できるように、最初にin list値をグローバル一時表に挿

入するプログラマーもいるようです）。ベスト・プラクティスの原則は、以下の

とおりです。

Principle_22 要素の数がわからない in list の機能には、

"where x in (select Column_Value from
table(The_Values))"を使用します。 要素の数が実行時までわからない in listの機能が必要な場合、データ型をスキー

マ・レベルで定義する必要があるコレクションに値を移入して、"where x in
(select Column_Value from table(The_Values))"を使用します。別のアプローチは検

討しないでください。

114. table 演算子の使用方法は、『Oracle Database オブジェクト・リレーショナル開発者ガイド』の"SQL

による個々のコレクション要素の操作"の項で説明されています。『Oracle Database PL/SQL 言語リ

ファレンス』でも、説明はありませんが"PL/SQL の言語要素"の項で言及しています。

115. ネイティブ動的 SQL のアプローチは個別の文のテキストの拡散につながるので、余分なハード・

パースが発生します（きちんと考慮されていない場合は、SQL インジェクションのリスクも発生し

ます）。DBMS_Sql API を使用するとハード・パースの回数が削減されますが、1 回で十分な場合

に N 回のハード・パースを実行すると、N-1 回余分になります。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

61

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

結論

本書の5 ページにある"埋込みSQL、ネイティブ動的SQL、およびDBMS_Sql API"の
項では、PL/SQLからSQLを実行するさまざまな構造を簡単に説明しました。また、

新しい専門用語を紹介することで、ユーザーが混乱する可能性の高い概念
116
を明

確にしました。

の"select文のアプローチ"の項とほかにも32 ページ 50 ページの”insert、update、
delete、およびmerge文のアプローチ"の項では、異なる観点で説明しました。これ

は、一貫性のあるメンタル・モデルで保持できるほど小規模で、ほとんどの実用

的な目的に対して十分な機能をもつ、利用可能な機能のサブセットを確認し、推

奨するためです。これには妥協が必要になります。PL/SQLによりSQLを実行する

方法（および機能が導入された経緯）を完全に把握しており、実際のアプリケー

ションですべての技術を活用した経験をもったユーザーは、新しいプロジェクト

で特定の課題に対し、最適な手法を常に選択できます。ただし、そのようなユー

ザーは、本書の対象読者ではありません。本書は、簡単に理解および保守できる

ように、一貫性のあるアプローチを使用し、容認できるパフォーマンスをもった

コードを記述する必要がある読者を対象としています。正確性も求められます。

使用されるプログラミング技術が比較的少ない場合や統一された方法でこれらの

技術要件を満たすことができる場合は、ほとんど同じ目的をもった一連のプログ

ラムよりも正確性が重要となります。

本書が対象読者の手助けとなれば幸いです。

Bryn Llewellyn
オラクル、PL/SQL Product Manager
bryn.llewellyn@oracle.com

2008 年 9 月 21 日

116. この混乱の理由は、PL/SQL の長い歴史を通じてオラクルが安易に使用してきた専門用語によるも

のです。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

62

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

mailto:bryn.llewellyn@oracle.com

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

付録A：

変更履歴

2008 年 9 月 21 日

• 初版

2008 年 9 月 21 日

• authid の選択に関するベスト・プラクティスの原則の改訂。同僚からのフィー

ドバックによるマイナー・エラーの修正

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

63

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

付録B：ベスト・プラクティスの原則のまとめ

この付録には、本書で推奨しているベスト・プラクティスの原則を記載していま

す。あるプログラマーの格言に、"ルールは服従するためのものではなく、役立て

るものである"という言葉がありますが、
117
第一（メタ）原則としてさらに適切な

提案を以下に示します。

 Principle_0：経験のある PL/SQL プログラマーと最初に議論することな

く、以下の原則から逸脱するようなユースケースを採用しないでくださ

い。

次のベスト・プラクティスの原則に違

反する前に、経験のある同僚から承認

を得てください。

埋込み SQL では、from list 項目の別名

で各列の名前をドット修飾します。宣

言するブロックの名前で各 PL/SQL識

別子をドット修飾します。

 Principle_1：埋込みSQL文を記述する場合、常に各from list項目の別名を

確認し、適切な別名で各列を修飾します。現在のPL/SQLユニットで解

決する各識別子の名前は、宣言されているブロックの名前で常に修飾し

ます。これがブロック文の場合、ラベルによる名前が使用されます。別

名およびPL/SQLブロックの名前はすべて一意である必要があります。

これによって、参照される表が変更される場合に名前取得を回避するた

め、ファイングレインな依存性の分析でPL/SQLユニットを無効化する

必要がないという結論に達する可能性が高くなります。（

9 ページ）

 Principle_2：初期化のあとに変更されない変数の宣言でconstantキーワー

ドを使用します 21。最悪のケースでもconstantの変更を試みるコードが

コンパイルに失敗するため（このエラーによってプログラマーの考え方

が鋭くなります）、この原則に従ってもペナルティはありません。この

原則は、可読性と正確性という点で明白な利点が得られます。（

ブロックが変更しない限り、constant
キーワードで各 PL/SQL変数を宣言し

ます。

 11 ペー

ジ

）

常に authid プロパティを明示的に指

定 し ま す 。 Current_User ま た は

Definer を慎重に選択します。

 Principle_3：各PL/SQLユニットのauthidプロパティを常に明示的に指定

します。ユニットの目的を慎重に分析したあと、定義者権限または実行

者権限を選択します。（12 ページ）

117. このテーマのバリエーションで、"この場合も含めて、すべてのルールは破られるものである"とい

う矛盾も存在します。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

64

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

Owner を使用して、Oracle Database
に付属しているオブジェクトの名前

をドット修飾します。

 Principle_4：Oracle Databaseに付属するオブジェクトの参照はOwnerで
ドット修飾されます（Sysになる場合が多いですが、かならずそうなる

わけではありません）。これによって、目的のオブジェクトと名前が競

合するローカル・オブジェクトが、名前の解決時に現行のスキーマに作

成される場合でも、意図したとおりに保存されます。（

13 ページ）

 Principle_5：コンパイル時にテキストが固定されるSQL文のみを常に使

用してください。select、insert、update、delete、merge、およびlock table
文には、埋込みSQLを使用します。ほかの文には、ネイティブ動的SQL
を使用します。コンパイル時にSQL文を固定できない場合、固定した構

文テンプレートを使用し、名前のプロビジョニングへの実行時のバリ

エーションを制限してください（これは、プレースホルダの使用とバイ

ンディングの負担の軽減を意味します）。スキーマ・オブジェクトの名

前 と 列 名 な ど の オ ブ ジ ェ ク ト 内 の 識 別 子 に は 、

Sys.DBMS_Assert.Simple_Sql_Name()を使用します。例外的に、プレース

ホ ル ダ で は な く リ テ ラ ル 値 の 使 用 が 条 件 の 場 合 は 、

Sys.DBMS_Assert.Enquote_Literal()を使用します。ほかの値（

コンパイル時にテキストが固定され

る SQL 文を使用してください。使用

できない場合は、固定したテンプレー

トを使用してください。プレースホル

ダにバインドします。DBMS_Assert
を使用して、連結した SQL 識別子を

保護します。

 Code_8の

NLS_Date_Formatの値など）の場合は、パラメータ化されたユーザー入

力に応じてプログラムで構築します。（

15 ページ）

 Principle_6：動的SQLには、機能が不十分な場合を除いて常にネイティ

ブ動的SQLを使用します。機能が不十分な場合にのみ、DBMS_Sql API
を使用します。select、insert、update、delete、およびmerge文の場合、コ

ンパイル時にわからないプレースホルダまたはselect list項目がSQL文に

含まれると、ネイティブ動的SQLでは対応できなくなります。ほかの

SQL文の場合、操作がリモート・データベースで実行されるとネイティ

ブ動的SQLでは対応できません。（

動的 SQL には、ネイティブ動的 SQL
を使用します。使用できない場合の

み、DBMS_Sql API を使用します。

 17 ページ）

 Principle_7：動的に作成したSQL文で連結されたリテラルを使用しない

でください。リテラルではなくプレースホルダを使用してください。実

行時にリテラルだった値をバインドします。これによって、共有可能な

SQL構造を最大限に再利用できます。（

動的 SQL を使用する場合、SQL 文の

リテラルを回避してください。代わり

に、適切な値をプレースホルダにバイ

ンドしてください。

19 ページ）

 Principle_8：Security_Level仮パラメータを使用するDBMS_Sql.Parse()の
オーバーロードを常に使用してください。また、DBMS_Sql数値カーソ

ルのすべての操作が同じCurrent_Userおよび有効なロールで実行される

実効値 2 で常に呼び出してください。（

常に DBMS_Sql.Parse
(Security_Level=>2)で DBMS_Sql
数値カーソルを開きます。

25 ページ）

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

65

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

 Principle_9：本書が推奨するアプローチに従う場合、唯一の便利な明示

カーソル属性はCur%IsOpenです。ほかの明示カーソル属性を使用する

必要はありません。唯一影響のあるスカラー型の暗黙カーソル属性は、

Sql%RowCountです。暗黙カーソルを使用して対象のSQL文を実行する文

に準拠するPL/SQL文で、これを常に確認してください。同じ論理が

Sql%Bulk_RowCountコレクションに当てはまります。Bulk_Errors例外の

例外ハンドラでのみ、Sql%Bulk_Exceptionsを使用する必要があります。

実行可能なセクションの唯一の文として、forall文を含むブロック文にこ

れを配置してください。（

使用する必要がある唯一の明示カー

ソル属性は、Cur%IsOpen です。必要

な暗黙カーソル属性は、

Sql%RowCount、
Sql%Bulk_RowCount、および

Sql%Bulk_Exceptions のみです。

27 ページ）

 Principle_10：PL/SQLプログラムを説明する場合、PL/SQLプログラム自

体の説明、そのコメント、および外部ドキュメントの記述が、修飾され

ていない"カーソル"の使用を回避する目的で含まれています。セッショ

ン・カーソル、暗黙カーソル、明示カーソル、カーソル変数、または

DBMS_Sql数値カーソルといった適切な専門用語を使用してください。

この原則により思考力が高まってプログラムの品質が向上します。（

専門用語のセッション・カーソル、暗

黙カーソル、明示カーソル、カーソル

変数、および DBMS_Sql 数値カーソル

を学習します。省略せず、慎重に使用

してください。

29
ページ

）

問合せで取得される行数がわからな

い場合、無限ループ内で limit 句ととも

に fetch... bulk collect into を使用して

ください。

 Principle_11：多くの行が選択されて結果セットが大きい場合は、無限

ループ内でlimit句とともにfetch... bulk collect intoを使用してバッチで処

理します。limit句の値としてconstantを使用し、バッチサイズを定義しま

す。適切な値は 1000 です。同じサイズで宣言されたvarrayにフェッチし

ます。ループを終了するために%NotFoundカーソル属性をテストしない

でください。代わりに、ループの最後の文としてexit when Results.Count()
< Batchsize;を使用します。これによって、最後のフェッチがゼロ行にな

る処理が正しく実行されます。埋込みSQLで十分な場合は、明示カーソ

ルを使用します。ネイティブ動的SQLが必要な場合は、カーソル変数を

使用します。（

33 ページ）

問合せでどのように行の最大数が取

得されるがかわかる場合は、select...
bulk collect into ま た は execute
immediate... bulk collect into を使用し

て、単一の手順ですべての行をフェッ

チします。

 Principle_12：多くの行が選択されており、結果セットの管理可能な最大

サイズが安全に設定された場合、単一の手順ですべての行をフェッチし

ます。埋込みSQLを使用できる場合、カーソルのないPL/SQL構造select...
bulk collect intoを使用します。動的SQLが必要な場合、execute immediate...
bulk collect intoを使用します。処理できる最大サイズで宣言されたvarray
にフェッチします。ORA-22165 の例外ハンドラを実装して、バグ診断を

サポートしてください。（35 ページ）

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

66

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

実行時まで select list のバインディン

グ 要 件 が わ か ら な い 場 合 は 、

DBMS_Sql API を使用します。少なく

ともselect listが識別されている場合、

To_Refcursor()を使用し、次にバッ

チ・バルク・フェッチを使用します。

 Principle_13：リテラルでwhere句を構成しないでください。とくに、ユー

ザーが明示的に入力したwhere句を連結しないでください。プレースホ

ルダをバインドするアプローチよりもパフォーマンスが大幅に低下し

ます。直接where句を入力した場合、Sys.DBMS_Assert.Enquote_Literal()
でSQLインジェクションから保護することはできません。実行時までバ

インディング要件がわからない場合、DBMS_Sql APIを使用して、SQL
文をパース、バインド、および実行します。コンパイル時にselect listが
識別される場合、To_Refcursor()を使用してDBMS_Sql数値カーソルを

カーソル変数に変換し、バッチ・バルク・フェッチを使用します。実行

時までselect listがわからない場合、DBMS_Sql APIを使用して結果も

フェッチします。コンパイル時にバインディング要件が識別され、実行

時までselect listが識別されない珍しい事例の場合、ネイティブ動的SQL
を使用してカーソル変数を開き、To_Cursor_Number()を使用してカーソ

ル変数をDBMS_Sql数値カーソルに変換します。次に、DBMS_Sql APIを
使用して、結果をフェッチします。（

39 ページ）

 Principle_14：単一の行だけを選択するときは、単一の手順で行をフェッ

チします。埋込みSQLが使用できれば、カーソルのないPL/SQL構造

select... intoを使用します。動的SQLが必要な場合は、execute immediate...
intoを使用します。望ましくないNo_Data_Found例外および予期しない

Too_Many_Rows例外を活用してください。（

単一の行だけを取得するには、

select... into または execute
immediate... into を使用します。
No_Data_Found および

Too_Many_Rows を活用してくださ

い。 41 ページ）

 Principle_15：アプリケーションの機能にアクセスするために、データ

ベース・クライアントが接続するアプリケーションの専用スキーマ

（Some_App_APIなど）を作成します。厳密に保護されたパスワードを使

用して、Some_App_API以外のスキーマにすべてのアプリケーションの

データベース・オブジェクトを実装します。また、Some_App_APIのオ

ブジェクトをプライベート・シノニムだけに制限します。クライアント

APIを公開するアプリケーションのデータベース・オブジェクトだけに

このようなシノニムを作成します。これらのオブジェクトのアクセスに

必要な権限だけをSome_App_APIに付与します。（

API を定義するオブジェクトのプライ

ベート・シノニムだけを含む専用ス

キーマを使用して、データベース・ア

プリケーションを公開します。

41 ページ）

 Principle_16：Some_App_APIのプライベート・シノニムがPL/SQLユニッ

トだけに公開されるオブジェクト型を制限します。ほかのスキーマのす

べての表を非表示にします。これらの権限をSome_App_APIに付与しな

いでください。（

PL/SQL API でデータベース・アプリ

ケーションを公開します。データベー

スのクライアントがアクセスできな

いスキーマのすべての表を非表示に

します。 42 ページ）

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

67

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

return データ型が任意のデータを表す

ファンクションとして、プロデューサ

/コンシューマ API を定義します。プロ

デューサ・モジュールのすべての SQL
処理を非表示にします。これによっ

て、コンシューマは、要件の変更が原

因の実装の変更による影響を受けな

くなります。問合せのパラメータ化の

ようにプロデューサ・ファンクション

をパラメータ化してください。このア

プローチは、バッチでの行の取得や単

一の呼出しでのすべての行の取得に

対応します。これがスライスになる場

合もあります。

 Principle_17：returnデータ型が作成されたデータを表す機能として、プ

ロデューサ/コンシューマAPIを定義します。プロデューサ・モジュール

で、SQL処理に関連するすべての処理（フェッチを含む）を非表示にし

ます。問合せのパラメータ化で単一の行のみを指定する場合、select list
と同じ構造でレコードまたはADTを使用します。この場合、動的SQLの
要件に応じてカーソルのないPL/SQL構造のselect... intoまたはexecute
immediate... intoを使用します。問合せのパラメータ化で複数の行を指定

する場合、レコードのコレクションまたはADTのコレクションを使用し

ます。ここで安全であることが確認できれば、全体バルク・フェッチを

使用します。これによって、カーソルのないPL/SQL構造のselect... bulk
collect intoまたはexecute immediate... bulk collect intoを使用できます。全

体バルク・フェッチが安全ではない場合、プロデューサ/コンシューマ

の関係がステートフルなときにバッチ・バルク・フェッチを使用します。

これには識別カーソルが必要です。埋込みSQLで十分な場合、プロ

デューサ・パッケージの本体のグローバル・レベルで宣言された明示

カーソルを使用します。これによって、各バッチを取得するコンシュー

マからの呼出しの状態が保持されます。動的SQLが必要な場合、カーソ

ル変数を使用します。コンシューマが保持できるように、各バッチの結

果とともにこれをコンシューマに戻します。プロデューサ/コンシュー

マの関係がステートレスな場合、結果セットのスライスを使用します。

全体バルク・フェッチで各スライスの配信を実装します。要件に示され

ている場合、DBMS_Sql APIを使用して、プロデューサ・モジュールで

これを使用するすべてのコードを非表示にします。（

 45 ページ）

 Principle_18：各アプリケーション表のレコード型の宣言を公開するパッ

ケージを保存します。宣言では、表の特徴を示す列名、データ型、制約、

およびデフォルト値の指定を繰り返す必要があります。（

各アプリケーション表で、同じ制約お

よびデフォルト値を定義するテンプ

レートのレコード型を保存します。
48 ページ）

 Principle_19："upsert"が必要な場合は、mergeを使用してください。update...

set row...を実装して、対応するinsertを実装したDup_Val_On_Indexの例外

ハンドラを用意するよりも有効です。（

"upsert"要件には、merge を使用しま

す。例外ハンドラの insert と一緒に

update... set row...を使用しないでくだ

さい。
52 ページ）

 Principle_20：特定のinsert、update、またはdelete文の繰返しには、同等

の単一の行によるアプローチではなく、常にforall文を使用して実行する

ようにしてください。save exceptionsキーワードを使用して、特定の繰返

しに失敗したあとに安全に続行できる場合にORA-24381 のハンドラを提

供します。バルク・マージでは、オブジェクトのコレクションとともにtable
演算子を使用して、マージされる行を表します。（

単一の行の文を繰り返し記述するの

ではなく forall 文を使用してくださ

い。失敗した繰返しをスキップしても

安全な場合に ORA-24381 を処理しま

す。バルク・マージでは、オブジェク

トのコレクションとともに table 演算

子を使用します。

） 57 ページ

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

68

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

 Principle_21：PL/SQLでのみ表現できるアプローチを使用して多くの行

を変換する必要がある場合、バッチ・バルク・フェッチで取得して処理

し、forall文で各バッチの結果を使用して、Rowidでソース行を更新する

か異なる表に挿入します。必要に応じて、このアプローチはmergeと組

み合わせることができます。適切なSQL文で直接PL/SQLファンクション

を使用する場合と比較しても、このアプローチを使用することでパ

フォーマンスが大幅に低下することはありません。（

バッチ・バルク・フェッチを使用した行

の取得、PL/SQL による行の処理、および

forall文を使用した各バッチの送信の実行

を躊躇する必要はありません。SQL 文で

直接 PL/SQL ファンクションを使用する

場合と比較しても、このアプローチを使

用することでパフォーマンスが大幅に低

下することはないためです。

60 ページ）
 Principle_22：要素の数が実行時までわからないin listの機能が必要な場

合、データ型をスキーマ・レベルで定義する必要があるコレクションに

値を移入して、"where x in (select Column_Value from table(The_Values))"
を使用します。別のアプローチは検討しないでください。（

要素の数がわからない in list の機能には、

"where x in (select Column_Value from
table(The_Values))"を使用します。

62 ページ）

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

69

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

付録C：

レコードのコレクションに select 文の結果を移入する
アプローチの代案

Code_77は、もっともわかりやすいアプローチを示しています。結果がレコードの

コレクションにバルク・フェッチされ、値が同じ構造のADTのコレクションに明

示的なループによりコピーされます。

-- Code_77
select PK, n1, n2, v1, v2
bulk collect into Records
from t
order by PK;

Objects.Extend(Records.Count());
for j in 1..Records.Count() loop
 Objects(j) := Object_t(
 Records(j).PK,
 Records(j).n1,
 Records(j).n2,
 Records(j).v1,
 Records(j).v2);
end loop;

Code_78は、ADTのコレクションに直接バルク・フェッチできるselect list要素とし

て必要なADTを構築し、レコードの一時的なコレクションを使用しないコンパク

トなアプローチを示しています。ただし、このアプローチは、Code_77よりも大幅

に低速になります。

-- Code_78
select Object_t(PK, n1, n2, v1, v2)
bulk collect into Objects
from t
order by PK;

Code_79 は、直接フェッチできる単一の行の select list 要素として SQL で直接必要

な ADT のコレクションを構築するコンパクトなアプローチを示しています。この

アプローチは、Code_77 とほぼ同じ速度です。
-- Code_79
select cast(multiset(
 select Object_t(PK, n1, n2, v1, v2)
 from t
 order by PK)
 as Objects_t)
 into Objects
 from Dual;

もっとも速い 2 つのアプローチも、レコードのコレクションにフェッチしてその

結果を処理する場合に比べると大幅に低速になります。ただし、Oracle Database
11g を使用したこのアプローチでは、PL/SQL API のみを通じてデータベースを公

開するため、任意のクライアントが使用できるようになります。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

70

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

付録D：

テスト・ユーザーUsr およびテスト表 Usr.t(PK number, v1
varchar2(30), ...)の作成

Code_80は、固有のテスト・データベースの非定型テストを開始する便利な

SQL*Plusスクリプトを示しています。
-- Code_80
CONNECT Sys/p@111 AS SYSDBA
declare
 User_Does_Not_Exist exception;
 pragma Exception_Init(User_Does_Not_Exist, -01918);
begin
 begin
 execute immediate 'drop user Usr cascade';
 exception when User_Does_Not_Exist then null; end;
 execute immediate '
 grant Create Session, Resource to Usr identified by p';
end;
/
alter session set Current_Schema = Usr
/

Sysで接続すると、DBA_Objects、v$Sql、v$Parameterなどのビューおよびalter system
などのコマンドへの非定型の問合せを正しく使用できます。一時的なデータベー

スでのみこれを実行する必要があります
118
。ただし、この手段を使用する場合は

注意してください。SQL*Plusスクリプトにより提供されるテストの目的によって

は、すべてのオブジェクトにアクセスできるので結果がわかりづらくなる場合が

あります。これは、実行者権限のPL/SQLユニットの動作を調査または説明するテ

ストで顕著です。

118. このために、新しく作成したデータベースのコールド・バックアップを作成し、スクリプトを記述

してデータベースを停止してからリストアして、データベースを起動しています。開発者向けの

Intel/Linux マシンで実行すると、数分の処理で済みます。仕組みをテストまたは確認するために潜

在的にリスクを伴うテストを検討する場合、正常なテスト環境をリストアする迅速で信頼性の高い

機能は非常に有効です。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

71

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

Code_81は、パラメータ化された行数を使用した便利なテスト表tを作成するプロ

シージャを示しています。パフォーマンス・テストにおいて、小規模なデータセッ

トでコードを迅速にテストしてから大規模なデータセットでテストできるため非

常に便利です。
-- Code_81
procedure Usr.Create_Table_T(No_Of_Batches in pls_integer)
 authid Current_User
is
 Batchsize constant pls_integer := 1000;
 No_Of_Rows constant pls_integer := Batchsize*No_Of_Batches;
 n integer := 0;

 type PKs_t is table of number index by pls_integer; PKs Pks_t;
 type n1s_t is table of number index by pls_integer; n1s n1s_t;
 type n2s_t is table of number index by pls_integer; n2s n2s_t;
 type v1s_t is table of varchar2(30) index by pls_integer; v1s v1s_t;
 type v2s_t is table of varchar2(30) index by pls_integer; v2s v2s_t;
begin
 declare
 Table_Does_Not_Exist exception;
 pragma Exception_Init(Table_Does_Not_Exist, -00942);
 begin
 execute immediate 'drop table Usr.t';
 exception when Table_Does_Not_Exist then null; end;

 execute immediate '
 create table Usr.t(
 PK number not null,
 n1 number default 11 not null,
 n2 number default 12 not null,
 v1 varchar2(30) default ''v1'' not null,
 v2 varchar2(30) default ''v2'' not null)';

 execute immediate '
 create or replace package Usr.Tmplt is
 type T_Rowtype is record(
 PK number not null := 0,
 n1 number not null := 11,
 n2 number not null := 12,
 v1 varchar2(30) not null := ''v1'',
 v2 varchar2(30) not null := ''v2'');
 end Tmplt;';

 for j in 1..No_Of_Batches loop
 for j in 1..Batchsize loop
 n := n + 1;
 PKs(j) := n;
 n1s(j) := n*n;
 n2s(j) := n1s(j)*n;
 v1s(j) := n1s(j);
 v2s(j) := n2s(j);
 end loop;
 forall j in 1..Batchsize
 execute immediate '
 insert into Usr.t(PK, n1, n2, v1, v2)
 values (:PK, :n1, :n2, :v1, :v2)'
 using PKs(j), n1s(j), n2s(j), v1s(j), v2s(j);
 end loop;

 execute immediate
 'alter table Usr.t add constraint t_PK primary key(PK)';
end Create_Table_T;

このプロシージャは、表tと同じ構造、および同じ制約とデフォルト値を実行して、

T_Rowtypeレコード型を公開するパッケージも作成します。これは、一部の値だけ

が指定される場合に、埋込みSQLで新しい行をtに挿入する事例などで役立ちます

（t%rowtypeで宣言された変数は、表から制約およびデフォルト値を取得しません）。

これは、47 ページの"単一の行のinsert"のコードで活用されています。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

72

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

2008 年 9 月 21 日

"PK number"などの繰り返される文字列や varchar2 定数のデフォルト値を宣言す

れば、Create_Table_T()プロシージャが改善されると主張する人もいますが、読み

やすさを考慮して、本書では現状のままにしています。また、そのほかのアプロー

チも存在します。たとえば、PL/SQL サブプログラムは、All_Tab_Cols カタログ・

ビューから Column_Name、Data_Type、Data_Default などの列にアクセスして、表

のリストごとにレコード・テンプレート・パッケージを作成できます。すべてを

同時に実行することは、アプリケーションのインストールやパッチ/アップグレー

ド・スクリプト上の問題になります。

このプロシージャでは、文のテキストがコンパイル時に固定されても、insert 文の

動的 SQL を使用する必要があります。insert のターゲット表がコンパイル時に存

在しないためです。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス

73

Oracle Corporation 発行「Doing SQL from PL/SQL:Best and Worst Practices」の翻訳版です。

PL/SQL による SQL の実行：ベスト・プラクティスとワースト・プラクティス
2008 年 9 月
オラクル PL/SQL Product Manager、Bryn Llewellyn

Copyright © 2008, Oracle.All rights reserved.

本文書は情報提供のみを目的として提供されており、ここに記載される内容は予告なく

変更されることがあります。

本文書は、その内容に誤りがないことを保証するものではなく、また、口頭による明示

的保証や法律による黙示的保証を含め、商品性ないし特定目的適合性に関する黙示的保

証および条件などのいかなる保証および条件も提供するものではありません。オラクル

は本文書に関するいかなる法的責任も明確に否認し、本文書によって直接的または間接

的に確立される契約義務はないものとします。本文書はオラクル社の書面による許可を

前もって得ることなく、いかなる目的のためにも、電子または印刷を含むいかなる形式

や手段によっても再作成または送信することはできません。
Oracle、JD Edwards、PeopleSoft、および Retek は、米国 Oracle Corporation および

その子会社、関連会社の登録商標です。そのほかの名称はそれぞれの会社の商標です。

	
	概要
	 はじめに
	本書の定期的な改訂
	埋込みSQL
	埋込みSQL文の名前解決
	 名前取得、ファイングレインな依存性の追跡、および防衛的プログラミング
	PL/SQLプログラムで発行されるすべてのSQLは動的SQL
	プログラマーの認識よりもさらに表現が豊かな埋込みSQL

	 ネイティブ動的SQL
	DBMS_Sql API
	カーソル・タクソノミー
	カーソル・タクソノミーに関する質問
	専門用語
	 共有可能なSQL構造

	共有プールのオブジェクトです。メタデータがv$SqlAreaおよびv$Sqlビューに公開されます。共有可能なSQL構造は、これを作成したセッションのライフタイムを超えて存在し、同時にほかのセッションでも使用できます。
	 SQL文のテキストが同じ場合およびほかの共有基準（SQL文の識別子が同じオブジェクトを示す場合など）が満たされる場合のみ、共有可能なSQL構造を再利用できます38。このため、この用語は、非公開領域のPL/SQLの実装（実際は、SQL文の処理をサポートする環境の実装）に属します。共有可能なSQL構造を再利用すると、パフォーマンスが向上します。このため、すべての環境からSQLを処理するもっとも有名な次のベスト・プラクティスの原則があります。
	Principle_7
	動的に作成したSQL文で連結されたリテラルを使用しないでください。リテラルではなくプレースホルダを使用してください。実行時にリテラルだった値をバインドします。これによって、共有可能なSQL構造を最大限に再利用できます。
	 セッション・カーソル

	セッションのメモリ39のオブジェクトです。このため、セッションとともに停止します。また、メタデータがv$Open_Cursorビューに公開されます。個別のセッションのSQL処理がサポートされます。
	この用語も非公開領域に属します。SQL文を発行するクライアント（たとえば、PL/SQL）は、セッション・カーソルを使用します。セッション・カーソルは、単一の共有可能なSQL構造と関連づけられます。ただし、共有可能なSQL構造には、関連づけられたいくつかのセッション・カーソルが存在する場合があります。また、セッション・カーソルは、再利用される可能性のあるオブジェクトです。クライアントが特定のSQL文の処理を完了した場合、この処理をサポートしたセッション・カーソルは破棄されません。ソフト・クローズとしてマークされ、最近使用したキャッシュに保存されます40。最初にソフト・クローズしたセッション・カーソルのキャッシュを検索して、SQL文をパースするクライアントの呼出しが実装されます。検索には、共有プールの共有可能なSQL構造の再利用候補に関する検索と同じ基準（SQL文のテキストおよび意味の識別）を使用します41。検出されない場合のみ、新しいセッション・カーソルの基礎として使用される一致した共有可能なSQL構造が共有プールで検索されます。共有プールの検索は、ソフト・パースと呼ばれます。ソフト・クローズしたセッション・カーソルの再利用は、ソフト・パースの実行を避ける最適化です。最悪の場合、共有プールでも検出されません。この場合、ハード・パースで新しいセッション・カーソルの基礎になる適切で新しい共有可能なSQL構造が作成されます。
	 Open_Cursors初期化パラメータは、単一のセッションで同時にオープン状態で存在するセッション・カーソルの最大数を設定します。Session_Cached_Cursors初期化パラメータは、単一のセッションで同時にソフト・クローズ状態で存在するセッション・カーソルの最大数を設定します42。新しくソフト・クローズしたカーソルまたは新しく開いたセッション・カーソルのために、ソフト・クローズしたセッション・カーソルが破棄される場合があります。
	 暗黙カーソル

	暗黙カーソルは、明らかなPL/SQL言語の構造と概念の観点で表示されるカーソルがない場合に、埋込みSQL構造およびネイティブ動的SQL構造のファミリーを実装するSQL処理をサポートしたセッション・カーソルを表します。PL/SQLコンパイラで実行される分析を反映したPL/SQLランタイム・システムで、open、parse、bind、execute、fetch、closeなどの操作を指定する明示的な言語構造を必要としないセッション・カーソルを管理します。このため、この用語は非公開領域に属します。
	SQLを実行するカーソルのないPL/SQL構造のファミリーの例を示す場合に、この用語が非公式に使用されることがあります。このような使用には注意してください。逆説的に、類似した用語の暗黙カーソル属性は、PL/SQLの構文およびセマンティックの公開領域に属します。同類の明示カーソル属性を定義するまで、この用語は定義しません。Code_1、Code_2、Code_3は、埋込みSQLのカーソルのないPL/SQL構造の例を示しています。Code_8、Code_10、Code_18、Code_19は、ネイティブ動的SQLのカーソルのないPL/SQL構造の例です。これには、常にexecute immediateが使用されます。
	 明示カーソル

	用語から暗黙カーソルの反意語という印象がありますが、そうではありません43。明示カーソルは、固有のPL/SQL言語機能です。このため、この用語は公開領域に属します。Code_20のPkg1パッケージの仕様で宣言されているCur_Proc識別子は、明示カーソルを示します。
	 Cur_Procは、Code_21のPkg1パッケージ本体で定義されます。
	Code_22は、Cur_Proc明示カーソルの使用方法を示しています。この構造は、明示カーソルFORループと呼ばれます。
	明示カーソルは、動的SQLを使用して定義することはできません。埋込みSQLが唯一の手段です。
	プログラマーが明示カーソルという用語を採用したのですが、可変要素ではありません。つまり、サブプログラムの呼出しで実際の引数として使用することはできないのです。また、ファンクションで返すこともできません。この点で、プロシージャに非常に似ています44。また、前方宣言、パッケージと本体への宣言と定義の分割、仮パラメータの使用などの類似性もあります。ただし、この可能性を活用するコードを記述してもメリットはありません（代わりに、参照カーソルを返すファンクションを常に使用でき、メリットを得られます）。
	 参照カーソル

	宣言されたPL/SQLのみのデータ型45です。たとえば、Code_23またはCode_24のCur_tなどです。参照カーソルを使用して、変数、サブプログラムの仮パラメータ、およびファンクションの戻り値を宣言できます。コレクションの要素またはレコードのフィールドのデータ型の宣言には使用できません。2種類の参照カーソル（弱い参照カーソルおよび強い参照カーソル）があります。
	 カーソル変数

	データ型が参照カーソルに基づいた変数です。参照カーソル、弱い参照カーソル、強い参照カーソル、およびカーソル変数は、PL/SQL言語の機能です。このため、公開領域に属します。Curがカーソル変数の場合、select文とカーソル変数を関連づけるopen Cur for PL/SQL文で使用できます。埋込みSQLまたはネイティブ動的SQLを使用して関連づけることができます。fetch文のソースとしてもCurを使用できます46。
	 パッケージの仕様または本体のグローバル・レベルでカーソル変数が宣言されない場合があります。
	 強い参照カーソル

	宣言されたデータ型です。Code_23のStrong_Cur_tなどが該当します。
	強い参照カーソルは、select文で定義するselect list項目の数値およびデータ型を厳密に指定します。埋込みSQLでのみ、データ型が強い参照カーソルのカーソル変数を開くことができます。
	 弱い参照カーソル

	宣言されたデータ型です。Code_24のWeak_Cur_tなどが該当します。
	弱い参照カーソルは、select文で定義するselect list項目の数値およびデータ型には依存しません。データ型が弱い参照カーソルのカーソル変数は、埋込みSQLまたはネイティブ動的SQLを使用することで開くことができます47。
	Code_25のPkg2パッケージの仕様では、New_Cursor()ファンクションを宣言します。このファンクションは、Code_20のPkg1で宣言された明示カーソルと同じようにパラメータ化され、値がカーソル変数に設定されるように設計されています。
	 Code_26のPkg2パッケージの本体では、ファンクションを定義します48。
	Code_25およびCode_26では、条件付きコンパイル49を使用して、カーソル変数を開く2つの方法における小さな差異と大きな類似点を強調しています。
	
	
	
	
	
	
	 Code_27は、New_Cursor()で初期化されたCur_Varカーソル変数の使用を示しています。ループ構造は、無限カーソル・フェッチ・ループ50と呼ばれます。
	
	無限カーソル・フェッチ・ループ（Code_27）は機能的に明示カーソルFORループ（Code_22）と同等ですが、より冗長になります。無限カーソル・フェッチ・ループはカーソル変数または明示カーソルで使用できますが、明示カーソルFORループは明示カーソルでのみ使用できます。また、Oracle Database 10g以降、明示カーソルFORループは、無限カーソル・フェッチ・ループよりも高速になりました。これは、最適化されたコンパイラが配列フェッチ51を使用して、前者を内部的かつ安全に実装できるようになったためです。このような最適化は、後者にとって安全ではありません。コード内の同じ明示カーソルまたはカーソル変数からインターリーブ・フェッチが発生しないことがオプティマイザで保証されないためです52。ただし、これらのアプローチよりもバッチ・バルク・フェッチ（Code_29を参照）または全体バルク・フェッチ（Code_32およびCode_33を参照）の方が望ましいため、これらのアプローチには現実的な利点がありません。
	 識別カーソル

	無限カーソル・フェッチ・ループのソース・テキストは、明示カーソルおよびカーソル変数の両方で同一であり、（Code_29およびCode_34に示されているように）このプロパティをもつほかの構造が存在するため、明示カーソルおよびカーソル変数のスーパークラスに対して、この専門用語を使用すると便利です。実際、このような用語は存在しませんが、本書では名前の意図するとおりに識別カーソルという用語を採用しています。これによって、暗黙カーソルで内部的にサポートされるカーソルのないPL/SQL構造と、プログラマーが明示カーソルまたはカーソル変数の識別子を作成する場合に識別カーソルを使用する構造を、それぞれ正しく区別できます。また、サポートしているセッション・カーソルの管理方法がPL/SQLシステムに少なくともある程度は通知されます。
	 DBMS_Sql数値カーソル

	DBMS_Sql.Open_Cursor()ファンクションの戻り値です。numberデータ型（またはintegerなどのnumberのサブタイプ）の通常の変数（Curなど）に割り当てることができます。SQL文の処理が完了した場合、in out仮パラメータの実効値cとして、Curを使用してDBMS_Sql.Close_Cursor()を呼び出します。呼出し時にCurが既存の開いているDBMS_Sql数値カーソルを示す場合、Curがnullに設定されます。DBMS_Sql.Is_Open()を呼び出して、Curの現在の値が開いているDBMS_Sql数値カーソルを示しているかどうかを確認できます。DBMS_Sql APIの各サブプログラムには、値を返すOpen_Cursor()およびパラメータ・モードがin outのClose_Cursor()を除く既存の開いているDBMS_Sql数値カーソルに実効値を設定するin仮パラメータがあります。既存の開いているDBMS_Sql数値カーソルを示さないCurの値でこれらを呼び出すと、ORA-29471: DBMS_SQL access deniedエラーが発生します。セッションでこのエラーが発生すると、DBMS_Sql APIの後続のすべてのサブプログラムの呼出しで同じエラーが発生します53。
	Open_Cursor()ファンクションには、2つのオーバーロードがあります。1つには仮パラメータがありません。もう1つ（Oracle Database 11gの新機能）には、仮パラメータ（値1または2を使用できるSecurity_Level）があります。Security_Level = 2の場合、Parse()への最近の呼出しと同様にDBMS_Sql APIへのすべての呼出しで、Current_Userおよび有効なロールを同じにする必要があります54。Security_Level = 1の場合、Parse()への最近の呼出しと同様にBind_Variable()、Execute()、Execute_And_Fetch()への呼出しで、Current_Userおよび有効なロールを同じにする必要があります。ただし、Define_Column()、Define_Array()、Fetch_Rows()などの呼出しは制限されていません。本書では、プロデューサPL/SQLユニット（41ページの"プロデューサ/コンシューマのモジュール化のアプローチ"を参照）のDBMS_Sql APIへの呼出しのカプセル化を推奨しています。次のベスト・プラクティスの原則は、この推奨に従っています。
	Principle_8
	Security_Level仮パラメータを使用するDBMS_Sql.Parse()のオーバーロードを常に使用してください55。また、DBMS_Sql数値カーソルのすべての操作が同じCurrent_Userおよび有効なロールで実行される実効値2で常に呼び出してください。
	
	
	
	 明示カーソル属性

	Curが明示カーソルまたはカーソル変数の場合、Cur%IsOpen（戻り値はboolean）、Cur%NotFound（戻り値はboolean）57、およびCur%RowCount（戻り値はinteger）といったリフレクタ56を使用できます。Cur%IsOpenがtrueではない場合、ほかの明示カーソル属性の参照に失敗します58。select文にのみ明示カーソルおよびカーソル変数が開かれるので、Cur%RowCountは、カーソルのライフタイムで今までにフェッチした行の総数を提供します。Cur%NotFoundは、すべての行がフェッチされるまでtrueのままです。本書で推奨しているSQL文を処理するためのアプローチを採用した場合、すべての一般的なユースケースでCur%RowCountおよびCur%NotFoundを使用することで利点を得ることはできません。Code_28に示されているように、例外ハンドラにCur%IsOpenが役立つ可能性があります59。
	 暗黙カーソル属性

	これらのリフレクタは、暗黙カーソルが使用される現在のSQL文（現在実行されていない場合は最近完了したSQL文）の実行情報を通知します。暗黙カーソルがとくにexecute immediate文をサポートするので、すべての種類の文が使用される可能性があります。スカラー・リフレクタは、Sql%IsOpen、Sql%NotFound60、Sql%RowCountです。
	これらは、同じデータ型を返し、対応する名前の明示カーソル属性と同じ意味があります（SQLはPL/SQLの予約語なので、暗黙カーソル属性と明示カーソル属性を混同する危険はありません）。ただし、暗黙カーソルがPL/SQLシステムで管理されるので、Sql%IsOpenを確認する利点はありません（単なる調査対象です）。驚くことに（しかし、暗黙カーソルがPL/SQLシステムで管理されることと同じ理由で）、Sql%IsOpenがfalseの場合にSql%NotFoundおよびSql%RowCountを参照できます。Sql%NotFoundは、Sql%RowCount = 0と常に同じなので無視できます。Sql%RowCountは、最新のselect、insert、update、delete、またはmerge文の影響を受ける行の数を通知します。ただし、より直接的なほかの方法では同じ結果になるので、select文は無視できます。ほかの種類の文のあとにSql%RowCountが常にゼロになるため、無視できます。
	
	
	 非スカラー・リフレクタは、Sql%Bulk_RowCountおよびSql%Bulk_Exceptionsで、それぞれforall文に関連した場合のみ有効です。forall文は、insert、update、delete、およびmergeのSQL文のみをサポートします。Sql%Bulk_RowCountは、numericデータ型で索引づけされたコレクションです。要素のデータ型はpls_integerです。forall文の繰返しで影響を受ける行の数を通知します。索引は繰返しの数で、1から文の起動に使用されたコレクションのCount()までの範囲で順番につけられます。Sql%Bulk_Exceptionsは、forall文でsave exceptionsが使用される場合のみ有効です。Bulk_Errors例外のORA-24381の例外ハンドラでのみアクセスできます。pls_integerで索引づけされたコレクションです。要素のデータ型はレコードに基づきます。最初のフィールドはError_Indexで、2つ目のフィールドはError_Numberです。両方ともpls_integerです。索引は1から順番につけられます。ただし、forall文の繰返しが多いと例外が発生します。Error_Indexは、繰返しの数です。範囲は1から文の起動に使用されたコレクションのCount()までです。Error_Numberは、Pragma Exception_Init文で使用されるような例外に対応するOracleエラー番号と-1を乗算した値と同じです61。
	暗黙カーソルを使用する方法でSQL文を実行するたびに、暗黙カーソル属性で前述のようなSQL文に通知した値を上書きします。このため、次のベスト・プラクティスの原則があります。
	Principle_9
	本書が推奨するアプローチに従う場合、唯一の便利な明示カーソル属性はCur%IsOpenです。ほかの明示カーソル属性を使用する必要はありません。唯一影響のあるスカラー型の暗黙カーソル属性は、Sql%RowCountです。暗黙カーソルを使用して対象のSQL文を実行する文に準拠するPL/SQL文で、これを常に確認してください。同じ論理がSql%Bulk_RowCountコレクションに当てはまります。Bulk_Errors例外の例外ハンドラでのみ、Sql%Bulk_Exceptionsを使用する必要があります。実行可能なセクションの唯一の文として、forall文を含むブロック文にこれを配置してください。
	まとめ

	 SELECT文のアプローチ
	複数行の選択 - アンバウンド結果セット
	 フェッチ・ループのプログラミング
	カーソルのオープン

	複数行の選択 - バウンド結果セット
	複数行の選択 - 実行時までわからないselect listまたは バインディング要件
	単一行の選択
	プロデューサ/コンシューマのモジュール化のアプローチ
	プロデューサ/コンシューマのステートフルな関係
	プロデューサ/コンシューマのステートレスな関係

	 INSERT、UPDATE、DELETE、およびMERGE文のアプローチ
	単一の行の操作
	単一の行のinsert
	単一の行のupdate
	単一の行のdelete
	単一の行のmerge

	 複数行の操作
	 forall文の実行時に発生する例外の処理
	補足：DMLエラー・ロギング
	forall文のレコードのフィールドの参照
	バルク・マージ

	insert、update、delete、およびmergeのネイティブ動的SQLの使用

	 ユースケースの例
	問合せ結果に応じた表データの変更
	実行時までわからないin list項目の数

	 結論
	変更履歴
	ベスト・プラクティスの原則のまとめ
	レコードのコレクションにselect文の結果を移入する アプローチの代案
	テスト・ユーザーUsrおよびテスト表Usr.t(PK number, v1 varchar2(30), ...)の作成

