

Oracle Stream Explorerの概要
ソフトウェア・コーディング不要の高速データおよびイベント処理

Oracle ホワイト・ペーパー | 2015 年 3 月

1 | Oracle Stream Explorerの概要

目次
はじめに 2

シェイプ、ストリーム、リファレンス、エクスプロレーション 3

シェイプ 3

ストリームとリファレンス 3

エクスプロレーションとパターン 4

事例：「マイノリティ・リポート」における買い物シーンの実装 6

第 1 部：シナリオ用ソリューション設計の作成 7

第 2 部：Oracle Stream Explorer でのアーティファクトの実装 10

結論 23

付録 A：事例で使用したスクリプトとサンプル 23

付録 B：挨拶用 Message-Driven Bean の作成 29

2 | Oracle Stream Explorerの概要

はじめに

あなたが起きた瞬間から 1 日が終わるまで、数えきれないほどのイベントが私たちの知らぬ間にい
たるところで発生しています。一般的な辞書によると、イベントとは何らかが起きる事象です。た
とえば、家の持ち主によるサーモスタットの調整や、食料品店でのクレジット・カード処理、高速
道路の料金所の通過などがあります。最終的な分析に含まれるすべての要素は事実上イベントと見
なすことができ、多くの種類のイベントはおそらく互いに関連しています。イベントに注意を払う
ことが重要なのは、今何が起きているかを教えてくれ、自分たちを取り巻く状況やもっと広い世界
の現状について気づかせてくれるからです。

イベントの関連性とその結果を分析するテクニックはイベント処理と呼ばれます。イベント処理が
扱うのは進行中のイベントであり、高速道路での燃料切れを防ぐために自動車の燃料警告灯に気を
配るのと同じように、措置を講じる場合はこれが理想的なタイミングだからです。いったん発生し
たイベントは過去のものになり、単なる事実の記録になります。過去の事実を分析することにも価
値はありますが、発生したイベントやそのイベントが示す状況によっては、失われた機会や見過ご
された脅威を表している場合があります。このため、特に 21 世紀型企業にとって、イベント処理
はこれまでになく重要になっています。

ほぼすべてに近い業種で、すでに何らかの形でイベント処理が使用されているもの、とほとんどの
人は考えていますが、実際に使用している業界はほんの一部です。大半の企業は EDA（イベント駆
動型アーキテクチャ）を使用して異なるシステム間でイベントを交換しており、疎結合やメッセー
ジ・ルーティングといった EDA 固有の特性を使用しているにもかかわらず、実際はイベント処理で
はなくイベント配信のみを実行しています。いくつか名前を挙げると、自動取引やオンライン・
ゲームがイベント処理を使用している業種の例です。ただし、これらはもともとイベント駆動型の
業界であり、イベント処理は基幹ビジネスの一部です。では、イベント処理がそれほど重要である
ならば、なぜ残りの業界はこれを利用できていないのでしょうか。

一番の原因は現在のテクノロジーが持つ抽象化レベルにあると考えられます。ビジネス・インテリ
ジェンスと比べると、イベント処理テクノロジーの抽象化レベルは低いものです。OEP（Oracle
Event Processing）のようなもっともパワフルなイベント処理テクノロジーでも開発者コミュニ
ティに焦点を合わせています。このため、OEP はイベント処理アプリケーションの作成やテスト、
デバッグ、デプロイを行うための包括的なツール・セットを提供しており、待機時間が非常に短く
スループットの高い、フォルト・トレラントのような機能含んでいます。しかし、これには代償が
つきもので、分析に関心を寄せるユーザーがテクノロジーの技術的内容に触れる事態になっていま
す。

3 | Oracle Stream Explorerの概要

ビジネス・ユーザーを戸惑わせがちな技術情報をすべて理解しなくても、イベント処理を実行でき
る機能を提供する製品を望む声が、業界には明らかにあります。これこそが、オラクルが新しい
Oracle Stream Explorer 製品に着手した理由であり、オラクルは直感的でシンプルなユーザー・イン
タフェースによってイベント処理アプリケーションを作成できるプラットフォームをビジネス・
ユーザーに提供することを目指しています。Oracle Stream Explorer は社内使用と Oracle Cloud で
の SaaS 使用の両方が可能な Web 対応アプリケーションであり、イベント・ストリームのリアルタ
イム分析に関心のあるユーザーに対してコーディング不要の環境を提供します。

本書の目的は、Oracle Stream Explorer を使用したアプリケーション構築の開始に必要な基本情報を
提供することです。おもな製品機能の概要を提供するとともに、サンプル・アプリケーションの開
発方法を、興味深い事例に基づいてステップごとに紹介します。

シェイプ、ストリーム、リファレンス、エクスプロレーション

この項では、イベント処理アプリケーションの開発中に作成される、もっとも重要なアーティファ
クトについて紹介します。Oracle Stream Explorer を初めて使用する場合、製品を使ってみる前にこ
の項を一読することを強く推奨します。

シェイプ

多くの心理学者によると、人間は何か新しいものを学習し始めるとき、頭の中でその対象をジオン
と呼ばれる単純な幾何学形状に分解します。ジオンは円柱やれんが、くさび、円、長方形などの単
純な 2 次元または 3 次元の形態をとります。全体として観察した場合、すべてのジオンはより高位
のジオン（車など）を表しますが、個々に観察した場合もそれぞれのジオンが何らかを表していま
す。これは、脳内で、対象物の構造表現に各ジオンが対応しているためです。現実世界では、これ
らのジオンはシェイプ（形）として知られています。

シェイプはすべての対象物を分類するための基本的構成要素です。すべての対象物はシェイプであ
り、構造表現を持ちます。イベント処理アプリケーションの構築でもこれに変わりはありません。
分析対象データや分析に役立つデータのすべての断片がシェイプになります。データセットの実用
的な表現を提供するには、シェイプを作成する必要があります。シェイプを作成せずに Oracle
Stream Explorer でデータを処理することはできません。

技術的な観点から見ると、Oracle Stream Explorer におけるシェイプはデータセットに関するメタ
データを提供するある種のアーティファクトになります。名前と属性リスト、それぞれのデータ型
を持ち、一般にソース・タイプと関連付けられた場合に使用されます。ソース・タイプはデータの
取得元によって決まり、各ソース・タイプは内部で OEP アダプタを介して実装されています。シェ
イプに関するもう 1 つの重要な側面として、シェイプが永続化されることはありません。イベン
ト・ストリームの分析中、データはメモリに読み込まれますが、分析が終了するとすぐにすべての
データは破棄されます。

ストリームとリファレンス

一般に、イベントはその時間的な状態によって分類できます。過去の事実を表す処理済みデータが
あれば、現在起きていることを表す進行中のイベントもあります。イベント処理が現時点で起きて

4 | Oracle Stream Explorerの概要

いることの発見にほかならないのは事実ですが、ほとんどの場合、現在発生しているイベントだけ
ではコンテキスト全体を理解するためのデータが十分ではありません。前述したとおり、過去の事
実を分析することには価値がありますが、イベント処理の分野でのこの価値は、過去のイベントを
使用して現在のイベント・ストリームに前後関係をもたらすという考えに基づいています。

たとえば、商品を載せた多数の輸送船が船の位置に関するイベントを絶えず送信しており、これら
のイベントから特定の船が遅れる（つまり商品の配達が遅れる）タイミングを検出して警告する必
要があるとしましょう。イベントには船の識別子が含まれると仮定しても、船の出発地や船籍など
を特定するには外部データソースが必要です。この状況において、船から送られるイベントは進行
中のイベントであり、現時点で発生中であることを表しています、また、それぞれの船に関する詳
細は以前に処理されたデータを表しているため、過去の事実ということになります。

Oracle Stream Explorer では、進行中イのベントを表すために使用される際限のない連続データをス
トリームと呼びます。ストリームは決して停止することなく持続しており、イベント処理分析に未
加工のデータを提供します。しかし、ほとんどの分析ではこの文脈データまたは履歴データの一部
が実用的なものである必要があります。ストリームに対して前後関係をさらに追加するために使用
されたデータを表す統計データは、リファレンスと呼ばれます。リファレンスは静的データであり、
その用途から名前が付けられています。リファレンスは、処理済みデータを参照するために使用さ
れます。時間的な状態の観点から見ると、ストリームは現時点で起きていることを表し、リファレ
ンスは過去の事実を表しています。

エクスプロレーションとパターン

イベント処理アプリケーションの開発では、所定のビジネス目標を達成するために実行する必要の
ある一連の共通アクティビティがあります。これには、接合や時間的制約の作成、集計の実施、出
力結果のフィルタリングとカスタマイズなどが含まれます。ほとんどの場合、これらのアクティビ
ティは求められたビジネス目標に達するまで繰り返し実行する必要があります。Oracle Stream
Explorer では、エクスプロレーションと呼ばれるアーティファクトを介してこれを実現します。

すべてのエクスプロレーションはソース・リストに関連付ける必要があり、ソースはストリームま
たはリファレンスになります。ただし、ソース・リスト内には少なくとも 1 つのストリームが含ま
れる必要があり、これはリスト内の最初のソースでなければなりません。残りのソースは別のスト
リームであるか、またはリファレンスであり、リスト内で使用されるソースの数に制限はありませ
ん。ソースおよびエクスプロレーション間の関係から、エクスプロレーション内での使用を意図し
たすべてのソースは、そのエクスプロレーションよりも先に作成する必要があります。

エクスプロレーションの出力結果は常に新規ストリームになります。このため、いったん公開され
たエクスプロレーションは、その他のストリームと同様に、別のエクスプロレーションのソース・
リスト内で使用できます。図 1 にソースとエクスプロレーションの関係を示します。

5 | Oracle Stream Explorerの概要

図1.ソースとエクスプロレーションの関係

エクスプロレーションの処理には長い時間がかかる場合があり、特に考察の対象シナリオに複雑な
ロジックが必要とされる場合はその可能性が高くなります。この理由から、Oracle Stream Explorer
は、パターンと呼ばれる事前構築済みのエクスプロレーションを利用できるようにしています。パ
ターンは反復する一般的な問題に対する汎用ソリューションであり、詳細な実装ではなくビジネス
上の問題に焦点を合わせ続けるために役立ちます。

パターンの使用法は非常に簡単です。実装する必要のあるパターンを選ぶと具体的なデータまたは
キー・フィールドが要求され、すべてを指定した後でエクスプロレーション全体が自動的に生成さ
れます。Oracle Stream Explorer で現在使用できるパターンは次のとおりです。

» Top N：最初の"N"個のイベントをイベント・ストリームから取得するために使用します。
» Bottom N：最後の"N"個のイベントをイベント・ストリームから取得するために使用します。
» Up Trend：数値フィールドで指定した傾向の変化で値の上昇を示す場合に、これを検出します。
» Down Trend：数値フィールドで指定した傾向の変化で値の下降を示す場合に、これを検出

します。
» Fluctuation：特定のフィールド値が指定した時間枠内で特定の方向（上方または下方）に

変化した場合に、これを検出します。
» Eliminate Duplicates：イベント・ストリーム内の重複イベントを除外します。
» Detect Duplicates：指定した期間内に特定のデータ・フィールドに重複値が含まれる場合

に、これを検出します。
» Detect Missing Event：指定した時間枠内に期待したイベントが発生しなかった場合に、こ

れを検出します。
» W：指定した時間枠内に特定のフィールド値が"W"型に上がって下がった場合に、これを検

出します。
» Inverse W：逆 W 型を検出するために使用します。

いったん構築したエクスプロレーションは別のエクスプロレーションのソースとして使用するか、

またはエクスポートできます。エクスプロレーションをエクスポートするかどうかの判断は通常、

6 | Oracle Stream Explorerの概要

エクスプロレーションが OEP アプリケーションとして使用されることを意図しているどうかによっ

て決まります。つまり、もともとはビジネス目標を達成するために Oracle Stream Explorer で作成

されたものが、後から OEP で拡張されて統合やセキュリティ、パフォーマンス、スケーラビリティ、

フォルト・トレランスなどの技術要素を扱うことになっている場合にあたります。

前述したとおり、Oracle Stream Explorer の基盤は OEP であり、生成されたエクスプロレーション
は OEP アプリケーションとしてデプロイされた EPN（イベント処理ネットワーク）にすぎません。
図 2 に EPN の例を示します。エクスプロレーションは EPN であるため、Oracle Stream Explorer か
らエクスポートして、Oracle JDeveloper などの開発環境に再度インポートすることができます。エ
クスプロレーションをエクスポートすると、イベント・タイプやアダプタ、キャッシュ、チャネル、
プロセッサ、CQL（Continuous Query Language）文などの一般的な EPN アーティファクトを含む
JAR ファイルが生成されます。

図2.エクスプロレーションの実装から生成されたEPNの例

事例：「マイノリティ・リポート」における買い物シーンの実装

2002 年 7 月、20 世紀フォックス・スタジオは映画「マイノリティ・リポート」を公開しました。
Steven Spielberg が監督を、Tom Cruise が主演を務めたこの映画は、あっという間に過去最高の成
績を収めた SF 映画の 1 つになりました。この映画では犯罪予防と呼ばれる特別な警察プログラム
を中心に物語が展開します。犯罪予防プログラムは、特別な空間に横たわる 3 名の予知能力者が見
る未来を予見する映像を使って、殺人が起きる前にこれを阻止するべく、先制攻撃的に警官隊を配
備して未来の殺人犯を逮捕するものです。この映画で犯罪予防プログラムが設立されたのは 2050
年のワシントン DC であり、Tom Cruise が犯罪予防プログラムを担当する John Anderton 警部役を
演じています。極めて興味深いストーリーに加えて、数多くのシーンでハイテクが使われており、
近未来の予想図を描き出しています。

あるシーンで、John Anderton は予知能力者がいる空間に入り込む必要に迫られますが、この時点
で John は将来における犯罪の容疑者であったために難題に直面することになります。2050 年、ほ
とんどの公共の場には全市民を識別できる網膜スキャナが設置されています。逮捕されないように
するため、John は自身の眼球を取り除くほかなく、Yakamoto という死亡した人物の眼球と取り替
える手術を行います。手術後、Yakamoto 氏の眼を手に入れた John は奇妙な状況に陥ります。新し
い洋服を探して GAP の店舗に入った際の「こんにちは、Yakamoto さん。いつもありがとうござい
ます」という挨拶に驚くことになります。

7 | Oracle Stream Explorerの概要

このシーンが教えてくれるのは、センサー技術とイベント処理を組み合わせることで、個人に合わせ
たカスタマ・エクスペリエンスの提供が可能になり、顧客の個人的好みに関する情報を使って、必要
なときに適切な反応を返すことができるということです。ここで使われるセンサーは網膜スキャナで
あり、途切れることなく人間の網膜を読み取って、その結果をイベント処理対応テクノロジーで処理
するために送信しています。イベント処理部分は必要に応じて作動し、複数のイベントのストリーム
から店舗に近いイベントを検出し、人物を認識した後にカスタム・メッセージで挨拶します。

対象人物が店舗近くにいる間に、イベント処理システムがカスタム・メッセージを起動する必要が
なければ、このシナリオの実現はそれほど困難ではないでしょう。仮に現在のビジネス・インテリ
ジェンス・テクニックを使用した場合、人物のスキャン・イベントはステージング・データベース
に格納され、店舗近くにいたときから 1 時間後から 1 日後、場合によっては 1 週間後に、スケ
ジュール設定されたジョブによって最新の"N"個のスキャンがロードされることになります。意味の
ある処理にするには、人物が店舗近くにいる間にカスタム・メッセージを配信しなければなりませ
んが、この状態は数秒しか続きません。

これこそがイベント処理テクノロジーの威力が発揮されるケースであり、この種の SF シーンを可
能にするシステムの構築が実現可能になります。イベント処理では現在発生している事象の分析が
可能であり、引き続き継続中のイベントを処理して、イベント間の複雑な関係を検出することがで
きます。映画「マイノリティ・リポート」の買い物シーンがこの項で開発する事例となります。こ
の事例は、Oracle Stream Explorer でエクスプロレーションを使用して構築します。店舗に近づいた
人物を検出し、その人物を認識し、最後にカスタムの挨拶メッセージを表示するまでが対象になり
ます。実装を可能にするため、以下の想定が当てはまるものとします。

» それぞれの網膜スキャン・イベントには人物の網膜と位置が含まれる

» すべての顧客情報はデータベース表から取得される

» カスタム・メッセージはデータベース表から取得される

この事例の開発は 2 つの部分に分けられます。第 1 部でソリューション設計に関する詳細情報を扱
い、すべての必要なアーティファクトを特定します。第 2 部の対象は Oracle Stream Explorer での
アーティファクト開発であり、アーティファクトの作成方法と構成内容の処理方法を紹介します。

第1部：シナリオ用ソリューション設計の作成

Oracle Stream Explorer で実装するソリューションを設計する場合、シェイプから始まる必要なアー
ティファクトすべてを詳しく指定する必要があります。シェイプはイベント処理アプリケーション
内を流れる全データを表していることから、ソリューション設計の第一歩は概念モデルの構築にな
ります。すでに使用可能なシェイプとこれから必要になるシェイプの 2 つのカテゴリにシェイプを
分けます。図 3 にこの事例の概念モデルを示します。

8 | Oracle Stream Explorerの概要

図3.事例の概念モデルに示したシェイプ

用途に従って各シェイプを分類するために、概念モデルに定型化が含まれる場合があります。進行
中イベントに関連付けられるシェイプはストリームとして定型化され、すでに処理済みのデータに
関連付けられるシェイプはリファレンスとして定型化されます。必要なカテゴリ内に含まれるすべ
てのシェイプはストリームとしても定型化できます。これは、Oracle Stream Explorer の見方では、
シェイプはエクスプロレーションから派生したものであり、エクスプロレーションの出力結果は常
に新規ストリームになるためです。このため、ストリームの代わりに定型化したエクスプロレー
ションを使用しても間違いとは見なされません。最終的な分析ではすべてのエクスプロレーション
がストリームになります。

次のステップでは、すべてのシェイプ間にある因果関係を盛り込み、1 つまたは複数のシェイプを
処理することが、新しいシェイプの作成にどうつながるかに重点を置きます。ここで処理という用
語は、エクスプロレーションの実行中に発生する接合、時間的制約、集計、フィルタリングの各ア
クティビティを使用することを意味します。また、このステップでの重要な処理として、各シェイ
プに属性を追加して、使用可能なシェイプと必要になるシェイプ間で属性同士をマッピングします。
図 4 に、因果関係を含む概念モデルを示します。

図4.因果関係を含めて改善した概念モデル

9 | Oracle Stream Explorerの概要

図 4 に示した 2 つの枠は、Oracle Stream Explorer で構築する必要のあるエクスプロレーションを
表しています。構築する必要のあるエクスプロレーションの数を事前に突き止めることが重要です。
これにより、実装面から見てどのくらいの開発作業が必要になるかが明らかになります。異なるエ
クスプロレーション間での因果関係の実装を義務付けるルールは存在しませんが、ベスト・プラク
ティスとしてビジネス上の問題をより小さいエクスプロレーションに分割すると、アーティファク
トの再利用が推進され、無理のないレベルまで複雑さを緩和できます。

エクスプロレーションには意味のある名前を付ける必要があります。経験から言って、それぞれの
エクスプロレーションに、作成する予定のシェイプ名を含めると良いでしょう。エクスプロレー
ションの実行中にビジネス・ルールを適用する必要がある場合は、ベスト・プラクティスとして、
該当するビジネス・ルールの説明を提供することを推奨します。たとえば、1 番目のエクスプロ
レーションには、顧客が店舗の近くにいるかどうかを検出するため、網膜スキャンのストリームに
含まれる latitude 属性と longitude 属性がビジネス・ルールとして含まれています。また、店舗近
くにいる人物を特定するために、網膜スキャン・ストリーム内の eyeScan 属性と顧客リファレンス
内の scanEntry 属性を関連付ける必要がありますが、これもビジネス・ルールと見なされています。

この説明を利用する対象者は Oracle Stream Explorer でアーティファクトを実装するユーザーであ
り、概念モデルを構築した人物であることもあれば、別のユーザーであることもあります。Oracle
Stream Explorer は細かい実装を高いレベルで抽象化しているため、ほとんどの場合、概念モデルを
構築したユーザーがアーティファクトの実装も行います。このため、ソフトウェア開発スキルをほ
とんど（またはまったく）持たない担当者でも直接製品を使用して、最初から最後まで実装に責任
を持つことができます。

異なる担当者が協力してシナリオを実装する場合は、ビジネス・ルールの内容を記述しておくと、
プロジェクトの実装全体を通じたコミュニケーションで役立ちます。これは特に、ソリューション
の設計者と実装者が異なる会社に属する場合や、地理的に離れた場所にいる場合に重要になります。
図 5 に最終版の概念モデルを示します。

図5.ビジネス・ルールの説明を付けた最終版の概念モデル。

10 | Oracle Stream Explorerの概要

図 5 に細部を記述した概念モデルは、事例の実装に対して確実な基盤を提供します。ほとんとの場合、
概念モデルはビジネス・シナリオの実装中に頭の中で作り込まれます。ここで示す手順は、ソリュー
ション設計手法としての使用を意図したものではありません。代わりに、一般的なイベント処理アプ
リケーションの設計方法とこのようなソリューションでよく持ち上がる懸案事項を紹介しています。

第2部：Oracle Stream Explorerでのアーティファクトの実装

Oracle Stream Explorer でのアーティファクトの実装を始める前に、前提条件が満たされていること
を確認する必要があります。第一に、DDL および DML 権限の付与された実行中データベースを使
用できる必要があります。標準でサポートされているデータベースは Oracle、SQL Server 2005、
Derby です。JDBC に準拠したその他のデータベースも使用できますが、JDBC ドライバのデプロイ
が必要になる場合があります。次に、SQL スクリプトを実行して、実装中に使用する 2 つのデータ
ベース表を作成してデータを挿入する必要があります。この SQL スクリプトは本書の付録 A に記載
されています。最後に、網膜スキャン・ストリームのアーティファクトを実装する際、CSV ファイ
ルを使用します。このファイルの中身のサンプル・データと完全なファイルをダウンロードするた
めの URL も付録 A に記載されています。

Oracle Stream Explorer でデータベース表のリファレンスとして使用する 2 つのソースを作成する必
要があることから、データベース接続プールをセットアップしておく必要があります。データベー
ス接続プールをセットアップできるようにするには、Oracle Event Processing Visualizer の管理者ア
クセスが必要です。Oracle Stream Explorer の実行中に、Web ブラウザを開いて URL
（http://host:port/wlevs）にアクセスします。この URL で、host はサーバーが稼働する IP アドレ
スまたはホスト名であり、port は外部アクセス用に構成された HTTP 対応ポートになります。図 6
に Oracle Event Processing Visualizer のログイン画面を示します。

図6.Oracle Event Processing Visualizerのログイン画面

このコンソールを使用するには適切な資格証明が必要です。資格証明がない場合は、Oracle Stream
Explorer 管理者に作成を依頼します。コンソールにログインしたら、Oracle Stream Explorer が稼働

http://host:port/wlevs

11 | Oracle Stream Explorerの概要

するサーバー・インスタンスにアクセスします。ウィンドウが開き、すべてのサーバー情報がタブ
に表示されます。データベース接続プールを作成するには、はじめに「DataSource」タブをクリッ
クします（図 7 を参照）。

図7.コンソールでのデータベース接続プールの作成の開始

DataSource タブには、このサーバーに対してすでに作成済みのデータベース接続がすべて表示され
ます。「Add」ボタンをクリックして新規データベース接続プールを作成します。新規データソー
ス作成ウィザードが開始されます。図 8 のように Name フィールドと JNDI Name フィールドの両
方に"jdbc/minorityReport"と入力します。

図8.データベース接続プールの作成の開始

図 8 に示したとおり、Global Transaction Protocol フィールドで「None」を選びます。これは非常
に重要です。ここでの目的はデータベース表のデータを読み取るだけであるため、このフィールド
に"None"を設定することでデータベースのオーバーヘッドを軽減できます。次に、「Global
Transaction Protocol」タブをクリックして、データベースの JDBC 接続情報を入力します。

12 | Oracle Stream Explorerの概要

図9.データベースのJDBC接続情報の入力

この実装に必要な 2 つの表を含むデータベースについて必要な JDBC 接続情報を入力します。使用
するデータベースの種類にかかわらず、Use XA フィールドの値に false を設定します。データベー
スの JDBC 接続情報の設定が終わったら、「Save」ボタンをクリックしてデータベース接続プール
の作成を終了します。図 9 に構成の例を示しています。

データベース接続プールが正しく作成されたら、アーティファクトの開発を開始します。URL
（http://host:port/sx）から Oracle Stream Explorer アプリケーションにアクセスします。ホストと
ポートは Oracle Event Processing Visualizer へのアクセスで使用したものと同じであり、資格証明
も同じものを使用できます。図 10 に Oracle Stream Explorer のログイン画面を示します。

図10.Oracle Stream Explorerのログイン画面

http://host:port/sx

13 | Oracle Stream Explorerの概要

Oracle Stream Explorer に対する認証が完了すると、ホーム画面が表示されます。ホーム画面には
ウェルカム・メッセージが示され、イベント処理アプリケーションが使用される可能性がある一般
的なビジネス・ドメインを表す枠内に、それぞれ趣向を凝らしたイメージが表示されます。いずれ
かのイメージをクリックするとビジネス・ドメインのタグが設定され、カタログ画面に直接移動し
ます。ホーム画面の右上に表示される Catalog ボタンを使用すると、ビジネス・ドメイン・タグを
設定せずにカタログ画面にアクセスできます。

Oracle Stream Explorer のアーティファクトを作成および保守するのは、このカタログ画面です。こ
れまでに作成されたすべてのアーティファクトが画面中央のメイン表内部に表示され、エクスプロ
レーションやストリーム、リファレンスなどの特定のアーティファクトに対するフィルタリングを
実行できます。アーティファクトを作成するには、Create New Item コンボ・ボックスを使用して
新しいアーティファクトの作成をリクエストします（図 11 を参照）。

図11.Oracle Stream Explorerでの新規アーティファクトの作成リクエスト

最初に作成するアーティファクトは顧客リファレンスです。図 11 に示したとおり、リストから
「Reference」を選んで新規リファレンスの作成をリクエストします。新規リファレンス作成ウィ
ザードが開始されます。Name フィールドに"CustomerData"と入力します。Tags フィールドに
"customer"と入力し、Source Type コンボ・ボックスで「Database Table」を選択します。図 12 に
ウィザードの最初のステップを示します。

14 | Oracle Stream Explorerの概要

図12.新規リファレンス作成ウィザードの最初のステップ

「Next」ボタンをクリックして、2 番目のウィザード・ステップに進みます。データベース・サー
バーへの接続に使用するデータベース接続プールの名前を入力します。図 13 に示すとおり、Data
Source Name コンボ・ボックスで「jdbc/minorityReport」を選択します。「Next」ボタンをクリッ
クして、3 番目のステップに進みます。

図13.新規リファレンス作成ウィザードの2番目のステップ

最後になる 3 番目のステップで、リファレンスが参照するデータベース表の名前を入力します。図
14 に示すとおり、Select Shape コンボ・ボックスで「CUSTOMER_DATA」を選択します。
「Create」ボタンをクリックして、新規リファレンス作成ウィザードを終了します。

15 | Oracle Stream Explorerの概要

図14.新規リファレンス作成ウィザードの3番目のステップ

ウィザードが終了すると、"CustomerData"という名前の新しいシェイプが画面中央の表に表示され
ます。次に、同じ手順を使用して 2 番目のリファレンスを作成します。2 番目のリファレンスを作
成 す る と き 、 Name フ ィ ー ル ド に "CustomGreeting" を 入 力 し 、 Select Shape で は
「CUSTOM_GREETING」データベース表を選択します。図 15 に、リファレンスを 2 つ作成した後
のカタログ画面を示します。

図15.作成された2つのリファレンスを表示したOracle Stream Explorer

ここで 3 番目のソースを作成しますが、今回はリファレンスではなくストリームを作成します。こ
のストリームは網膜スキャンの受信フローを表し、対象人物の網膜データとその位置を含みます。
図 11 に示したとおり、リストから「Stream」を選んで新規ストリームの作成をリクエストします。
新規ストリーム作成ウィザードが開始されます。

16 | Oracle Stream Explorerの概要

Name フィールドに"EyeScanStream"と入力します。Tags フィールドに"customer"と入力し、
Source Type コンボ・ボックスで「CSV File」を選択します。すべてのエクスプロレーションを順番
に作成するため、「Create Exploration with this Source」チェック・ボックスはオフのままにしま
す。「Next」ボタンをクリックして、2 番目のウィザード・ステップに進みます。ソース・タイプ
として CSV を選んだため、CSV ファイルのソース・パスを入力する必要があります。「Upload
File」ボタンをクリックして CSV ファイルを選択し、Oracle Stream Explorer にアップロードします。

「Next」ボタンをクリックして、3 番目のステップに進みます。Name フィールドにもう一度
"EyeScanStream"と入力します。ファイルのアップロード・プロセス中にウィザードは CSV ファイ
ルを解析し、属性名とデータ型を検出して、3 番目のウィザード・ステップで表示できます。この
ため、「Manual Mapping」フィールドが選択されており、表示された属性が図 16 に示すものと一
致することを確認します。「Create」ボタンをクリックして、新規ストリーム作成ウィザードを終
了します。

図16.新規ストリーム作成ウィザードの3つのステップ

ここまでに、事例の実装開始に必要なすべてのソースを作成しました。次に、エクスプロレーショ
ンの作成を開始します。エクスプロレーションは期待される動作を提供するアーティファクトです。
最初に構築するエクスプロレーションは店舗に近づいた人物を検出し、顧客リファレンスと照合し
ます。このエクスプロレーションには"All Customers Near the Store"（店舗近くの全顧客）という
名前を付けます。図 11 に示したとおり、リストから「Exploration」オプションを選んで新規エク
スプロレーションの作成をリクエストします。新規エクスプロレーション作成ウィザードが開始さ
れます。Name フィールドに"All Customers Near the Store"と入力します。図 17 に示すとおり、
Tags フィールドに"customer"と入力し、Source コンボ・ボックスで「EyeScanStream」を選択しま
す。「Create」ボタンをクリックして、新規エクスプロレーション作成ウィザードを終了します。
図 18 に示すとおり、エクスプロレーション・エディタに新しく作成したエクスプロレーションが
表示されます。

17 | Oracle Stream Explorerの概要

図17.新規エクスプロレーション作成ウィザードでのソースの設定

エクスプロレーション・エディタで最初に目に留まるのは、Live Output Stream セクションと
Charts セクションであり、ソースから取得した結果（ここでは網膜スキャン・ストリーム）がリア
ルタイムで表示されます。ここで興味深いのは、エクスプロレーションが変化すると、これらのセ
クションもリアルタイムで更新されることです。そのため、出力結果がどうなるかについてユー
ザーは把握しやすくなります。図 18 に示す新しく作成したエクスプロレーションでは、ソースか
ら取得したデータがリアルタイムで表示されます。

図18.新しく作成したエクスプロレーションによる、ソースから取得したデータのリアルタイム表示

18 | Oracle Stream Explorerの概要

このエクスプロレーションは店舗近くにいる人物のみを検出する必要があるため、対象となる人物
のみを選び出すフィルタを作成する必要があります。Filters セクションの「Add a Filter」リンクを
クリックします。新しく作成されたフィルタ・エントリで、処理対象の属性と使用する演算子を選
び、求める出力結果を制限する値を設定します。このエクスプロレーションでは、フィルタによっ
て位置の latitude 属性が"20.00"以上で、longitude 属性が"60.00"以下である人物のみが返されます。
図 19 に、Oracle Stream Explorer で作成中の 2 つのフィルタを示します。

図19.Oracle Stream Explorerでの位置のフィルタリング

これらのフィルタを設定すると、Live Output Stream セクションで基準を満たさないイベントが自
動的に削除され、Charts セクションのグラフがより平坦になります。これは、latitude 属性と
longitude 属性の近似値のみがライブ出力ストリームに表示されるためです。

人物を特定するには、網膜スキャン・ストリームから取得したイベントに顧客情報を含む顧客リ
ファレンスを関連付ける必要があります。はじめに、エクスプロレーションの Sources セクション
を変更して、シェイプをもう 1 つ含めます。「Sources」セクションをクリックし、ドロップダウ
ン・リストから「CustomerData」を選択します。1 つのエクスプロレーション内で複数のシェイプ
が使用されると、Correlations という新しいセクションがエクスプロレーション・エディタ内に表
示されます。

「Add a Correlation」リンクをクリックして、ソース間に新しい相関を作成します。左側で
「eyeScan」属性を選び、右側で「scan_entry」属性を選びます。相関の構成が完了したら、図 20
に示すように Live Output Stream セクションに 2 つのソースから取得した属性が表示されます。

19 | Oracle Stream Explorerの概要

図20.網膜スキャン・ストリームと顧客リファレンス間のイベント相関の結果

エクスプロレーションが完了したと見なされるためには、期待される出力結果を提供する必要があ
ります。これは、いったん公開されたエクスプロレーションは別のエクスプロレーションでソース
のリストで使用される可能性があるためです。Oracle Stream Explorer では、Properties リンクから
出力結果を変更できます。「Properties」リンクをクリックし、"last_name"属性と"gender"属性の
みを選択した状態にして、これらの属性が properties セクションで 1 番上と 2 番目になるように順
序を変更します。次に、カスタム表示名を入力するために「last_name」属性をダブルクリックし、
値を"customerName"に設定します（図 21 を参照）。

図21.公開前のエクスプロレーションに対する出力結果のカスタマイズ

20 | Oracle Stream Explorer の概要

以上で、エクスプロレーションを公開する準備が整いました。エクスプロレーション・エディタの
右上にある「Actions」ボタンをクリックすると、エクスプロレーションで実行できるアクションに
関連するボタンを含むメニューが表示されます。図 22 に示すように「Publish」ボタンをクリック
します。

図22.ストリームとして使用できるようにするためのエクスプロレーションの公開

最初のエクスプロレーションを正しく公開したら、2 番目のエクスプロレーションの構築を始めま
す。2 番目のエクスプロレーションは店舗近くにいる顧客に対してメッセージを作成し、人物の性
別に基づいて、使用すべき適切なメッセージを決定します。このエクスプロレーションには
"Greetings for All Customers Near"（店舗近くの全顧客向けメッセージ）という名前を付けます。図
11 に示したとおり、リストから「Exploration」オプションを選んで新規エクスプロレーションの作
成をリクエストします。新規エクスプロレーション作成ウィザードが開始されます。

Name フィールドに"Greetings for All Customers Near"と入力します。Tags フィールドに"customer"
と入力し、Source コンボ・ボックスで「All Customers Near the Store」を選択します。「Create」
ボタンをクリックして、新規エクスプロレーション作成ウィザードを終了します。エクスプロレー
ション・エディタに新しく作成したエクスプロレーションが開き、Live Output Stream セクション
に 1 番目のエクスプロレーションによる出力結果が表示されます。「Sources」セクションをク
リックし、ドロップダウン・リストから「CustomGreeting」を選択します。エクスプロレーショ
ン・エディタに Correlations セクションが表示されたら、「Add a Correlation」リンクをクリック
してソース間に新しい相関を作成します。左側で「gender」属性を選び、右側でも「gender」属
性を選びます。相関の構成が完了したら、図 23 に示すように Live Output Stream セクションに 2
つのソースから取得した属性が表示されます。

21 | Oracle Stream Explorer の概要

図23.相関が適用された2番目のエクスプロレーション

不要なメッセージを顧客に表示しないようにするため、フィルタを作成して"Welcome back to the
GAP"メッセージのみが使用されるようにします。Filters セクションで「Add a Filter」リンクをク
リックして新しいフィルタ・エントリを作成し、"greeting_code"属性の値が"WBACK"に等しくなる
ように設定します。

最初のエクスプロレーションと同様に、2 番目のエクスプロレーションでも出力結果をカスタマイ
ズ す る 必 要 が あ り ま す 。 「 Properties 」 リ ン ク を ク リ ッ ク し 、 "ice_break_message" 、
"customerName"、"custom_message"属性のみを選択した状態にして、これらの属性が properties
セクションで 1 番上から 3 番目になるように順序を変更します。引き続き Properties リンクで、3
つの属性にそれぞれカスタム表示名を設定します。図 24 に示すとおり、最初の属性には
"iceBreakMessage"を、2 番目の属性には"customerName"を、3 番目の属性には"customMessage"を
指定します。

22 | Oracle Stream Explorer の概要

図24.出力結果を適切にカスタマイズした2番目のエクスプロレーション

図 22 に示した方法で 2 番目のエクスプロレーションを公開します。ここまでで事例の実装は完了
しました。店舗に近づいた人がいると、Oracle Stream Explorer がリアルタイムでこれを検出し、カ
スタム・メッセージで出迎えます。また、自動化アプローチは人物の性別を使って男性か女性か見
分けることで、顧客の名前の前に"Mr."や"Mrs."などの英語の敬称を付けます。

Oracle Stream Explorer のエクスプロレーション・エディタに正しい出力結果を表示することは興味
深いことですが、挨拶メッセージを伝える外部システムにこの出力結果を送信できないとしたら、
使いものにならないと言えるでしょう。Oracle Stream Explorer では Configure a Target ボタンを使
用して、エクスプロレーションの出力結果を外部システムに送信できます。Oracle Stream Explorer
で現在サポートされているターゲットは次のとおりです。

» CSV File：出力結果を CSV ファイルに書き出します。コンテンツを追加できます。
» HTTP Publisher：OEP からアウトバウンド HTTP チャネルに対して出力結果を公開します。
» Event-Driven Network：SOA Suite の EDN 対応サブスクライバに対して出力結果を送信し

ます。
» Java Message Service：javax.jms.MapMessage を作成して JMS 宛先に送信します。
» REST Endpoints：REST エンドポイントに対して出力結果を指定した HTTP POST を実行し

ます。

どのターゲット・タイプを選んだ場合も、設定されたターゲットに対して生成された出力結果が連
続的に送信されます。つまり、Oracle Stream Explorer で新しい出力結果が使用可能になり次第、遅
延なしで即座にこれが送信されます。このアプローチでは、該当する状況になったその瞬間に行動
を起こせるため、真にイベント駆動型のアプローチが実現します。

たとえば、Java で実装された音声対応システムが JMS 経由で挨拶リクエストをリスニングし、
MDB（Message-Driven Bean）を使用して JMS 宛先からのメッセージを消費し、Java Speech API を
介して挨拶スピーチを実行するとしましょう。図 25 に示すようにターゲット・タイプに JMS を構
成することで、エクスプロレーションによる出力結果を簡単に JMS 経由で送信できます。

23 | Oracle Stream Explorer の概要

図25.出力結果を送信するためのJMSベース・ターゲットの構成

本書は Oracle Stream Explorer の基礎とイベント処理アプリケーションの構築方法に焦点を合わせ
ているため、Java を使用した音声対応システムの完全な実装については、言うまでもなく対象外に
なります。ただし、Java Speech API を介して人声を使用した挨拶を合成する MDB の実装方法を付
録 B に記載しています。

結論

バックミラーだけを見ながら自動車を運転することを想像できますか。数多くの企業はこの方法で
事業を運営し、従来のデータウェアハウスとビジネス・インテリジェンス・テクノロジーを使用し
て知見を得ようとしています。過去の情報を見るだけでは必ずしも適切な対応を取ることはできま
せん。この場合、重要な機会を見過ごしたり、脅威となる存在が認識不足につけ込んだりする可能
性があります。

Web ベースのアプリケーションである Oracle Stream Explorer は、Oracle Event Processing の機能
を活用して、イベント・ストリームをリアルタイムに分析するためのツールをビジネス・ユーザー
に提供します。これにより、ビジネス・ユーザーは知見を獲得し、必要に応じて対策を講じること
ができます。本書では Oracle Stream Explorer の基礎を紹介するとともに、イベント処理ベースの
アプリケーション開発方法を事例の詳しい実装ステップを通じて説明しました。

付録A：事例で使用したスクリプトとサンプル

本書に記載した事例を実装できるようにするには、2 つのデータベース表を作成する必要がありま
す。リスト 1 に示すスクリプトは 2 つのデータベース表を作成してサンプル・データを移入します。
このスクリプトは Oracle データベースに対して正しく動作することがテストされていますが、その
他のデータベースでも動作する場合があります。表の構造と列名を変更しない限り、必要に応じて
スクリプトを調整することができます。

--
-- DDL for the table CUSTOMER_DATA
--

CREATE TABLE "CUSTOMER_DATA"
("CUSTOMER_ID" INTEGER NOT NULL PRIMARY KEY,
 "SCAN_ENTRY" VARCHAR2(255) NOT NULL,
 "FIRST_NAME" VARCHAR2(20) NOT NULL,
 "LAST_NAME" VARCHAR2(20) NOT NULL,
 "GENDER" VARCHAR2(1) NOT NULL
)

24 | Oracle Stream Explorer の概要

--

-- DDL for the table CUSTOM_GREETING

--

CREATE TABLE "CUSTOM_GREETING"

("GREETING_ID" INTEGER NOT NULL PRIMARY KEY, "GREETING_CODE" VARCHAR2(5) NOT

NULL, "GENDER" VARCHAR2(1) NOT NULL, "ICE_BREAK_MESSAGE" VARCHAR2(50) NOT

NULL, "CUSTOM_MESSAGE" VARCHAR2(100) NOT NULL

);

--

-- Loading data into the table CUSTOMER_DATA

--

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (1,'CB281A82-EBF9-247F-8D4C-632F2CD4DC9E','Gregory','Berger','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (2,'B7C841D6-DC7D-0C32-1402-58E0E06F0C74','George','Griffith','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (3,'0028CF68-2264-D591-C3F8-EECF78E3635F','Damian','Key','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (4,'B5C9DA94-6AF7-9BFF-19F5-9EECC4797417','Scott','Bridges','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (5,'1EB943F4-C7B3-29D8-D0D3-042507CCDD50','Colton','Kinney','F');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (6,'B71E107F-DD89-76EC-497B-9F3BB81CC790','Brody','Goodman','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (7,'AF25D32D-0870-7C79-5ECE-A8D88E63A099','Simon','Park','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (8,'EA712817-9B59-042A-F952-4BD9B2621FE7','Addison','Medina','F');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (9,'27AFC1DC-74D6-D988-9E7E-35522FD65CAC','Charles','Sutton','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (10,'45D8A1B8-72DB-A6EE-7725-4AA8F379FA2E','Vaughan','Lawson','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (11,'3FAB4B01-AA8C-CA14-03B7-69F75670D0C2','Felix','Haley','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (12,'F6C6D0BC-5772-97BA-2EB3-E0A6DE91D64B','Mason','Mclean','F');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (13,'096458CC-3F58-0CFC-08B9-08E2134AFCB7','Brent','Faulkner','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (14,'95005563-5DFB-2F6D-5B12-1BB0DEE71492','Kasimir','Fitzgerald','F');

25 | Oracle Stream Explorer の概要

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (15,'F812B9FD-0EC3-30FE-3D3D-37ECB7A5B012','Zahir','Savage','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (16,'5F8F72F2-48DF-2507-6D34-AA2E6FD663B8','Jin','Wilcox','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (17,'C54C5779-7BB8-4B02-D78E-153879C9876A','Chadwick','Snyder','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (18,'D1EB489E-3FA6-C4CC-F923-CFB6005447F6','Chaim','Moses','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (19,'50035120-B48A-4904-5498-591F6F15A1FD','Lester','Fitzgerald','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (20,'F35FB6B7-6B68-4E9E-5D1F-7EE852A11F8A','Otto','Dixon','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (21,'DBA752B4-5ABE-BEB5-360C-572E52F02B4B','Reese','Gross','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (22,'23E5896B-9F6C-1E18-E671-3BABD8E41E05','Griffith','Fields','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (23,'480ED76A-D8DC-3C45-1304-EC7EECD18B25','Erasmus','Cobb','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (24,'FF7A36A3-C8B4-4305-9911-64F61FEC0CA7','Cooper','Barrett','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (25,'E083DDBE-282B-2CCF-7D8A-0C1D77D93E5A','Stephen','Rivas','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (26,'B7E4A6AD-6331-09F1-43D8-CA849A2FD796','Steven','Kramer','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (27,'3BB44589-FD5E-8CAB-5E76-7640897ACCBE','Kirsten','Malone','F');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (28,'D929DC13-0616-A3EC-0191-8CE9B725F37F','Perry','Bender','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (29,'B441636D-CDE4-A840-E848-B650635129C3','Alfonso','Velez','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (30,'B8D4A245-67F0-9386-7AAE-11F0E30C582C','Brody','Craft','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (31,'BFD9B89D-08E3-6DB9-8F76-A9499A2B50D8','Trevor','Hinton','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (32,'FC1E3D87-3955-7F7C-F865-EDD637D0558C','Nasim','Allison','F');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (33,'60473650-8AB0-12F4-9C91-84B9E3B86DE7','Ali','Solomon','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (34,'F44E0BF6-2F46-29D4-D9BC-4D35009C0D3B','Kennan','Schneider','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (35,'77F7D210-C655-21DA-B8EC-869ED54F820D','Andrea','Santos','F');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (36,'2DE41CE6-4298-109C-5598-4D74B8BEF432','Dillon','Cooke','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)
values (37,'0A4B9BF9-BA50-5B21-7CFD-82CBE0F7D9F7','Dante','Maxwell','M');

26 | Oracle Stream Explorer の概要

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (38,'B71A0D5DD-544E-718B-EEFE1-A9F171ECFCF738','Damianan','Craig','M'M');

Insert into CUSTOMER_DATAA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (39,'208CB1C1-5B8D-DB0E-C434-071866F99570','Baker','Sears','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (40,'8873F976-89FC-24A3-71B5-A1AB6FE9D30E','Kelly','Briggs','F');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (41,'3E4F0B65-7445-1CD8-8A31-B5BAEED5CFA7','Eric','Rice','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (42,'7DDBFAD6-D16B-F6A2-9F52-6320A0B9C06F','Ashton','Mack','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (43,'1858CB09-1E4C-9272-1C10-F46F7D49BA6F','Maxwell','Mejia','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (44,'BF81BB52-7111-B70F-78B8-F83A19F58E82','Marta','Winters','F');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (45,'CA2582D4-40A0-C718-0F34-12AD26AAEB3B','Harlan','Wilcox','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (46,'0D333238-D10C-8FF9-B2EB-BCC1B1876767','Drew','Lynch','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (47,'656D6A68-7C70-02BC-32A8-240E5B48332D','Felix','Cash','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (48,'7158556F-CF03-05EA-D43F-AF2B2DA28BEE','Clayton','Chambers','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (49,'EA620BA5-CD44-2487-87EA-9CD352172BCC','Keaton','Woodward','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (50,'DD5FF2F5-ADE0-18F6-1E86-5E98C039D9B5','Ricardo','Ferreira','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (51,'7DBF9ABB-4979-6BE6-2BBE-A782512D6AF5','Oliver','Hurst','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (52,'F83662D2-BC5A-1E00-4910-53AE7FFB85C4','Channing','Hubbard','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (53,'4BA48031-B489-21BE-3EAD-C2E245AEDC21','Peter','Frazier','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (54,'CBD8BCD1-0385-C7F0-6D94-DAF8674087FA','Kieran','Farley','F');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (55,'617E92EB-DDA0-3200-C13C-CBAC5523526C','Monica','Atkins','F');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (56,'935F0E85-9F11-3B2C-25B5-D0D8AC849427','Sharon','Wilkinson','F');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (57,'FB077D06-281F-C64C-99C4-46149A8555AB','Owen','Mccullough','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (58,'E003CE4B-6AE8-046D-E0FB-9BEB6B991D33','Hayden','Wood','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (59,'B645957B-4C28-7F54-29FB-7AD81627CB96','Mitsuko','Yakamoto','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (60,'A0617356-3C2A-32B5-FC0D-6170EE4E8D16','Garrison','Pugh','M');

27 | Oracle Stream Explorer の概要

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (61,'FC53DD7B-393D-933D-B6B6-0AEF570E1E14D3','Salvadador','Holman','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (62,'D4256448-B609-A58A-42B4-B5AB0C7826FE','Tyrone','Phelps','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (63,'5AF682E5-C189-E083-FE2D-919DAB0EAE96','Ryan','Molina','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (64,'C86B21AA-2789-A441-577A-0A9D586011A7','Paul','Mcintosh','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (65,'07AB86D5-195F-85D0-2765-3FEEA7D2C666','Ralph','Perez','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (66,'20832A21-D4E9-6549-973A-1FD322C7C710','Jennifer','Conelly','F');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (67,'EC4EFB21-AFC6-A079-4FAE-9B6BE9EA62AC','Raymond','Gould','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (68,'12A4FECC-3BA8-1D1C-2B35-BB478BDAD662','George','Morse','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (69,'BF2D39C3-6030-6938-EEEA-4863600E7519','Matthew','Cole','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (70,'13E4712C-463F-BAA7-8537-A657BEB01D28','Blake','Benson','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (71,'830373DE-038B-95C5-467C-2573DFE51586','Debbie','Howell','F');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (72,'0D562E79-16B8-B81D-6144-913CA61DA166','Nataly','Shaffer','F');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (73,'BE643FCC-5F3B-E220-3670-FA99F7A1E507','Chandler','Dillon','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (74,'FD4483E9-928B-91C9-BDB1-A1A62FE2CA24','Hamilton','Rodriquez','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (75,'18555BC9-0B99-2F86-8FBB-9ED4B5FBF1FC','Jeff','Mcdaniel','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (76,'C32D18A2-85AA-F3A3-5FD1-8520D7892D40','Alfonso','Salazar','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (77,'EAB26AAA-DD16-0B56-4A6B-7BA332BCFB52','Calvin','Underwood','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (78,'375FC126-B176-AC8D-D31D-A589AA9B40EC','Maria','Nieves','F');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (79,'45BB2865-CAA5-29E4-3E9B-BE4010A3F9E2','Jonas','Sawyer','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (80,'B4D9B9DE-5912-CE87-235C-6CB165AD0FA0','Devin','Harper','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (81,'B1EBF0B6-F7C1-3DC4-3214-35E7F5238C47','Aquila','Hatfield','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (82,'5B69FE1B-2B9E-3919-F988-10E4298CF4F4','Derek','Richard','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (83,'FCFC70E9-6334-8B6C-D538-7161AFA80739','Chaney','Pratt','M');

28 | Oracle Stream Explorer の概要

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (84,'471AF640-42B5-2D28-F0057-9F3CFE2072A2','Malik','Beard','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (85,'332BF106-9B6B-C30C-1426-349909637024','Nathaniel','Cox','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (86,'6345109E-26FD-198B-F11F-410C93E52651','Elaine','Vargas','F');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (87,'8B111703-04FD-D5B6-1F9B-A1C5A5077241','Nissim','Macias','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (88,'1C7FBB69-266F-1F8D-902A-4F987115CABC','Hu','Stein','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (89,'95906C59-DA47-5700-55C9-8FBE929B09FD','Pamela','Hatfield','F');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (90,'BFBE734E-C80D-35C5-B441-139B7296712E','Cyrus','Gay','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (91,'B577A64A-C1ED-18C4-01CF-8F72EC65FA8C','Fletcher','Wiley','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (92,'FAFCE8D2-1500-8712-38A6-710BDE770A4A','Fitzgerald','Hughes','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (93,'4ED62A82-FDCE-445C-F12F-335745870917','Diane','Reese','F');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (94,'C89BD428-8B10-933B-CC58-5B01DDA827EA','Ingrid','Harrell','F');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (95,'1B5C67BF-33F1-9F7B-D94A-11560C15617C','Kenyon','Boyer','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (96,'1829958B-0CC7-0B93-B804-8F023188DC2F','Emerson','Mcgowan','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (97,'ECA02944-0A5F-023B-A292-223016BA2B3C','Berk','Simon','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (98,'4E8DEBDD-2E3E-B59E-D785-234767DC8522','Chancellor','Sears','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (99,'0519C7FC-3292-0B00-BB97-E0464F7D64ED','Grant','Williamson','M');

Insert into CUSTOMER_DATA (CUSTOMER_ID,SCAN_ENTRY,FIRST_NAME,LAST_NAME,GENDER)

values (100,'47CCF80B-46A0-66C8-BA1A-2DA5FB862AEE','Judah','Salazar','M');

--

-- Loading data into the table CUSTOMER_DATA

--

Insert into CUSTOM_GREETING

(GREETING_ID,GREETING_CODE,GENDER,ICE_BREAK_MESSAGE,CUSTOM_MESSAGE) values

(1,'TSAMP','M','Good Morning Mr. ',', would you be interested in trying out our

Samples?');

Insert into CUSTOM_GREETING

(GREETING_ID,GREETING_CODE,GENDER,ICE_BREAK_MESSAGE,CUSTOM_MESSAGE) values

29 | Oracle Stream Explorer の概要

(2,'TSAMP','F','Good Morning Mrs. ',', would you be interested in trying out our
Samples?');
Insert into CUSTOM_GREETING
(GREETING_ID,GREETING_CODE,GENDER,ICE_BREAK_MESSAGE,CUSTOM_MESSAGE) values
(3,'WBACK','M','Hello Mr. ',', welcome back to the GAP.');
Insert into CUSTOM_GREETING
(GREETING_ID,GREETING_CODE,GENDER,ICE_BREAK_MESSAGE,CUSTOM_MESSAGE) values
(4,'WBACK','F','Hello Mrs. ',', welcome back to the GAP.');
Insert into CUSTOM_GREETING
(GREETING_ID,GREETING_CODE,GENDER,ICE_BREAK_MESSAGE,CUSTOM_MESSAGE) values
(5,'BWELC','M','Hello Mr. ',', be welcome to our GAP Store!');
Insert into CUSTOM_GREETING
(GREETING_ID,GREETING_CODE,GENDER,ICE_BREAK_MESSAGE,CUSTOM_MESSAGE) values
(6,'BWELC','F','Hello Mrs. ',', be welcome to our GAP Store!');

リスト 1. データベース表を作成して移入するための SQL スクリプト

網膜スキャン・ストリームを実装するには、サンプル・データが移入された CSV ファイルを使用す
る必要があります。リスト 2 に示すのはファイルの一部であり、最初の 10 行のみが含まれていま
す。この CSV ファイルは、3 つのフィールド（人物の網膜データ、位置の緯度および経度）が指定
された各行で構成されます。

eyeScan,latitude,longitude

C86B21AA-2789-A441-577A-0A9D586011A7,30.831086,-81.460571 CB281A82-EBF9-247F-

8D4C-632F2CD4DC9E,30.425764,-81.975556 0A4B9BF9-BA50-5B21-7CFD-

82CBE0F7D9F7,30.425764,-81.975556 E003CE4B-6AE8-046D-E0FB-9BEB6B991D33,-

13.843414,-55.371094 B645957B-4C28-7F54-29FB-7AD81627CB96,-13.843414,-55.371094

B7C841D6-DC7D-0C32-1402-58E0E06F0C74,30.674122,-81.862946 0028CF68-2264-D591-

C3F8-EECF78E3635F,30.674122,-81.862946

5AF682E5-C189-E083-FE2D-919DAB0EAE96,-13.843414,-55.371094 C86B21AA-2789-A441-

577A-0A9D586011A7,-13.843414,-55.371094 1B5C67BF-33F1-9F7B-D94A-

11560C15617C,30.674122,-81.862946

リスト2.網膜スキャン・ストリームで使用されるCSVファイルの例

Oracle Stream Explorer を使用したテストでは、リスト 2 に示した例ではなく完全版のファイルを使
用することを強く推奨します。完全版の CSV ファイルは次の URL からダウンロードできます。
http://www.ateam-oracle.com/wp-content/uploads/2015/02/EyeScanStream.csv.

付録B：挨拶用Message-Driven Beanの作成

Oracle Stream Explorer を使用するとエクスプロレーションの出力結果を外部システムに送信できる
ため、この機能を使用してコンテキストに基づく方法で検知と反応を行うソリューションを考案す
ると面白いでしょう。たとえば、本書で実装した事例では、店舗近くを歩く人物に向けてカスタマ
イズした挨拶メッセージを作ることができます。しかし、エクスプロレーションによる出力結果を
実際の挨拶に変換するとしたらどうなるでしょうか。

Java Speech API を使用すると、テキスト・メッセージを読み上げる音声ベース・システムを作成で
きます。当初は Sun Microsystems によって開発され、Apple、AT&T、IBM などの企業との協力を通
じて完成した Java Speech API 仕様の最初のバージョンは 1998 年 10 月 26 日にリリースされまし
た。技術的な面から見ると、Java Speech API は JDK 実装に含まれていないため、独自の実装を提
供するサードパーティのスピーチ・ベンダーからの入手が必要です。もっとも一般的な実装の 1 つ
は、完全に Java で書かれたオープンソース・スピーチ・シンセサイザの FreeTTS です。

http://www.ateam-oracle.com/wp-content/uploads/2015/02/EyeScanStream.csv

30 | Oracle Stream Explorer の概要

FreeTTS の実装を使用して、JMS 経由で挨拶リクエストをリスニングする音声ベース・システムを
構築する方法を示すために、リスト 3 に、Java Speech API を介して人声を使用した挨拶を合成す
る MDB の例を示します。

package com.oracle.fmw.ateam.fastdata;

import javax.annotation.PostConstruct; import javax.annotation.PreDestroy;

import javax.ejb.ActivationConfigProperty; import javax.ejb.EJBException;

import javax.ejb.MessageDriven; import javax.jms.MapMessage; import

javax.jms.Message;

import javax.jms.MessageListener;

import com.sun.speech.freetts.Voice;

import com.sun.speech.freetts.VoiceManager;

@MessageDriven(activationConfig = {

@ActivationConfigProperty(

propertyName = "destinationType", propertyValue = "javax.jms.Queue"),

@ActivationConfigProperty(

propertyName = "connectionFactoryJndiName", propertyValue =
"jms/connFact"),

@ActivationConfigProperty(

propertyName = "destinationJndiName", propertyValue =
"jms/greetingQueue")})

public class GreetingListener implements MessageListener {

private Voice voice;

@PostConstruct

private void allocateVoice() {

VoiceManager voiceManager = VoiceManager.getInstance(); voice =

voiceManager.getVoice("kevin16"); voice.allocate();

}

@PreDestroy

private void deallocateVoice() {

if (voice != null) {

31 | Oracle Stream Explorer の概要

voice.deallocate();

}

}

@Override

public void onMessage(Message message) {

if (message instanceof MapMessage) {

MapMessage mapMessage = null; String iceBreakMessage = null;

String customerName = null; String customMessage = null;

String greeting = null;

try {

mapMessage = (MapMessage) message;

iceBreakMessage =

mapMessage.getString("iceBreakMessage");

customerName = mapMessage.getString("customerName");

customMessage =

mapMessage.getString("customMessage");

greeting = iceBreakMessage + customerName +

customMessage; voice.speak(greeting);

} catch (Exception ex) {

throw new EJBException(ex);

}

}

}

}

リスト3.Java Speech APIを使用したMDBの実装

リ ス ト 3 に 示 し た onMessage() メ ソ ッ ド の 実 装 で は 、 受 信 し た メ ッ セ ー ジ が
javax.jms.MapMessage に変換されています。これは、JMS ベースのターゲットを使用する場合
に Oracle Stream Explorer が出力結果を送信するメッセージ・タイプだからです。また、図 24 に示
したように、メッセージから取得した属性とエクスプロレーションで生成された属性が一致してい
ます。

32 | Oracle Stream Explorer の概要

コンパイルの面から言うと、クラスパスで利用できる必要のある FreeTTS 実装のライブラリは
$FREETTS/lib/freetts.jar ライブラリのみです。ただし、デプロイの面ではその他の FreeTTS 実装ライ
ブラリもデプロイする必要があります。MDB と一緒に（EAR を使用してパッケージ化する場合）、
または Java EE アプリケーション・サーバーのクラスパスに直接インストールします。デプロイ対
象のライブラリは次のとおりです。

» $FREETTS/lib/cmulex.jar
» $FREETTS/lib/cmu_us_kal.jar
» $FREETTS/lib/en_us.jar
» $FREETTS/lib/freetts.jar

Oracle Corporation, World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065, USA

海外からのお問い合わせ窓口

電話：+1.650.506.7000

ファクシミリ：+1.650.506.7200

CONNECT WITH US

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

Copyright © 2014, Oracle and/or its affiliates.All rights reserved.本文書は情報提供のみを目的として提供されており、

ここに記載される内容は予告なく変更されることがあります。本文書は一切間違いがないことを保証するものではなく、さらに、

口述による明示または法律による黙示を問わず、特定の目的に対する商品性もしくは適合性についての黙示的な保証を含み、いか

なる他の保証や条件も提供するものではありません。オラクル社は本文書に関するいかなる法的責任も明確に否認し、本文書に

よって直接的または間接的に確立される契約義務はないものとします。本文書はオラクル社の書面による許可を前もって得ること

なく、いかなる目的のためにも、電子または印刷を含むいかなる形式や手段によっても再作成または送信することはできません。

Oracle および Java は Oracle およびその子会社、関連会社の登録商標です。その他の名称はそれぞれの会社の商標です。

Intel および Intel Xeon は Intel Corporation の商標または登録商標です。すべての SPARC 商標はライセンスに基づいて使用され

る SPARC International, Inc.の商標または登録商標です。AMD、Opteron、AMD ロゴおよび AMD Opteron ロゴは、Advanced

Micro Devices の商標または登録商標です。UNIX は、The Open Group の登録商標です。0115

Oracle Stream Explorer の概要

2015 年 3 月

著者：Ricardo Ferreira

レビュー担当者：Peter Farkas、Prabhu Thukkaram

	はじめに
	シェイプ、ストリーム、リファレンス、エクスプロレーション
	シェイプ
	ストリームとリファレンス
	エクスプロレーションとパターン

	事例：「マイノリティ・リポート」における買い物シーンの実装
	第1部：シナリオ用ソリューション設計の作成
	第2部：Oracle Stream Explorerでのアーティファクトの実装

	結論
	付録A：事例で使用したスクリプトとサンプル
	付録B：挨拶用Message-Driven Beanの作成

