
 

 
 

An Oracle White Paper 

July 2012 

Load Balancing in Oracle Tuxedo 
 ATMI Applications 
 

 



Load Balancing in Oracle Tuxedo ATMI Applications 

 

Introduction ....................................................................................... 2 

Tuxedo Routing ................................................................................. 2 

How Requests Are Routed ............................................................ 2 

Goal of Load Balancing ................................................................. 3 

Where Load Balancing Takes Place .............................................. 3 

Load Balancing Algorithm .................................................................. 5 

Server Location ............................................................................. 5 

Server State .................................................................................. 6 

Work Queued Updating ................................................................. 6 

Role of BBL in Load Balancing ...................................................... 7 

Known Issues in Tuxedo Load Balancing Algorithm ...................... 8 

Parameters Affecting Load Balancing ................................................ 8 

Enhanced Tuxedo Load Balancing .................................................. 10 

Server Configuration Patterns ......................................................... 11 

Single thread or Multi-thread ....................................................... 11 

SSSQ or MSSQ ........................................................................... 12 

Conclusion ...................................................................................... 12 



Load Balancing in Oracle Tuxedo ATMI Applications 

 

2 

Introduction 

This paper is intended for the following audiences:  

 Designers and programmers knowledgeable about Oracle Tuxedo Application-to-

Transaction Monitor Interface (ATMI) and who want to write Tuxedo ATMI applications.  

  Designers and programmers knowledgeable about Oracle Tuxedo CORBA and who want to 

write Tuxedo CORBA applications.  

  Tuxedo system administrators who deploy, troubleshoot and diagnose Tuxedo Applications.  

Both Oracle Tuxedo CORBA and Oracle Tuxedo ATMI inherently provide transparent load 

balancing, although Oracle Tuxedo CORBA and Oracle Tuxedo ATMI achieve routing and load 

balancing differently due to the fundamental differences between objects and procedures. 

Meanwhile, since Oracle Tuxedo CORBA is built on top of Oracle Tuxedo ATMI, they share 

the same concept and implementation at ATMI service level load balancing. So, although this 

paper is focusing on the load balancing in Oracle Tuxedo ATMI application, it also helps for 

Oracle Tuxedo CORBA programmers to understand the load balancing in Oracle Tuxedo 

CORBA applications. There is a dedicated white paper “Load Balancing in Oracle Tuxedo 

CORBA Applications” describing the load balancing in Oracle Tuxedo CORBA applications. 

The first part of this paper describes the fundamentals needed to understand load balancing in 

Oracle Tuxedo ATMI. It describes the load balancing algorithm and factors affecting load 

balancing. The second part of this paper provides several server configuration patterns which 

play roles in load balancing in the application system. 

Tuxedo Routing 

How Requests Are Routed  

Oracle Tuxedo ATMI services are stateless, so requests may be routed to any available server.  

 Workstation client  

Workstation clients join Tuxedo application through workstation Listener/Handler (WSL/WSH). 

Environment variable WSNADDR=”//host:port” is used to locate the WSL/WSH. Accordingly, 

workstation client’s service request routing consists of two stages:  



Load Balancing in Oracle Tuxedo ATMI Applications 

 

3 

 Service request is sent from workstation client to WSH.   

 WSH routes the service request to appropriate server on behalf of the workstation client. WSH 

acts as a native client at this stage.  

 Native client  

If Data Dependent Routing (DDR) is specified, candidate server groups are screened out first; then the 

best server is chosen within the candidate server groups. Otherwise, the service request will be routed 

to the best server selected from all the server groups where the qualified servers are configured.   

Goal of Load Balancing  

The goal of Tuxedo Load Balancing is to perform a quick set of calculations that will give a good 

distribution of workload between servers in OLTP applications, which typically require short response 

time and high throughput. In the situation that multiple servers on a machine are idle, any of these 

servers can be chosen without causing a request to wait. In fact, it is better to choose the same servers 

over and over in such a situation rather than cycling between all such servers, since this will minimize 

the amount of OS process switching that must occur. These goal and principle will be reflected in the 

load balancing algorithm design as described in following paragraphs.     

Where Load Balancing Takes Place  

The objective of load balancing is to choose the least busy server from all available servers so as to 

distribute the service requests evenly in the whole system to gain best system response time and 

throughput. In Oracle Tuxedo, load balancing takes place on the client side. For request/response 

service, tpcall/tpacall invokes load balancing algorithm to choose the least busy server; for 

conversational service, tpconnect invokes load balancing algorithm to choose the least busy server. 

Whereas for /WS clients, the tpcall/tpacall/tpconnect just send the service request to WSH and do not 

perform load balancing in /WS clients. WSH calls native client routine to achieve the load balancing 

task on behalf of /WS clients. To achieve the load balancing between /WS clients and WSL servers, 

multiple WSL access points can be configured by WSNADDR. This feature can assign the /WS clients 

evenly to different WSL servers to balance the work load between WSL/WSH in the system.   

Native clients and WSH are able to get the full knowledge to route the service request by retrieving the 

local Bulletin Board (BB). From the request service name, client process can retrieve the service entry 

from the BB, and then the servers and their request queues. Each request queue is associated with a 

parameter wkqueued, which indicates the current work load in the queue. For Single Server Single 

Queue (SSSQ) configuration, wkqueued is used; for Multiple Server Single Queue (MSSQ) 

configuration, wkqueued/n (n is the number of servers on the queue) is used by client process to make 

choice between candidate servers. The higher the value, the heavier the server’s work load. Tuxedo 

load balancing choose the server with lowest wkqueued value as the best server if they are both idle or 

both busy.  

By default, load balancing takes place locally. It means in MP configuration, the load balancing criteria 

(wkqueued and server state) are updated locally on each node, and the nodes do not exchange the 



Load Balancing in Oracle Tuxedo ATMI Applications 

 

4 

wkqueued and the server state information. The client processes make choice of best server only based 

on the local BB information. For instance, figure-1 describes the following configuration:  

 

 machines MACH_1 and MACH_2 are configured in the MP mode application   

 simpserv_1 runs on MACH_1 and simpserv_2 runs on MACH_2, they both provide the service 

“TOUPPER”  

Consider the following executing scenario (To simplify the case, we suppose the net load is small and 

can be omitted):  

 

 simpcl_1 call TOUPPER on MACH_1 and choose simpserv1 as the best server and update the 

wkqueued to 50 in local BB.  

 At the same time, simpcl_2 call TOUPPER on MACH_2 and also choose simpserv_1 because 

current wkqueued of simpserv_2 is 50 and it is higher than that of simpserv_1 with value 0. simpcl_2 

is not aware of the fact simpcl_1 on MACH_1 is also invoking simpserv_1.  Hence it will update 

the wkqueued of simpserv_1 to 50 in local BB, although the actual work load of simpserv_1 is actually 

growing up to 100.  

 

 

   
 



Load Balancing in Oracle Tuxedo ATMI Applications 

 

5 

Figure-1 Load Balancing Take Place on Client Side Locally  

In order to solve this issue and achieve more accurate load balancing in MP mode, TSAM 12c enhances 

the load balancing by broadcasting the wkqueued information within the whole domain. Refer to 

Enhanced Tuxedo Load Balancing for details. 

Load Balancing Algorithm 

The load balancing algorithm implemented in Tuxedo use the bubble sort approach to choose the best 

server among the set of candidate servers. The winner of each round of comparison survives and 

continues to next round of comparison. The rule of winner choosing between a pair of candidates can 

be summarized as following points:  

 

 Local idle server first  

 Remote servers are always treated as busy server  

 If both servers are busy or idle, compare their wkqueued value, choose the server with lower value.  

 If both servers are the same in term of above criteria, choose the first one as the winner of this 

round of comparison.  

To understand above algorithm, the involved concepts should be understood firstly:  

Server Location  

LOCAL – the server is on the same machine as the native client process.  

REMOTE – the server is on the different machine from the native client process.  

MACH_2  

MACH_1  

wkqueued = 50  

Simpserv2  

(TOUPPER)  

TOUPPER  

Load =50  

wkqueued = 0  

simpcl_2  

simpserv1  

(TOUPPER) 

TOUPPER  

Load =50  

wkqueued = 0  

simpcl_1  

simpserv1  

(TOUPPER)  

MP Tuxedo Application  

wkqueued = 0  



Load Balancing in Oracle Tuxedo ATMI Applications 

 

6 

Simpserv2  

(TOUPPER) 

Server State  

IDLE – the state that a server stays between two successive executions of service routine. Please note 

that a server stays in IDLE state does not imply the request queue of this server is empty. There is a 

tiny time window between when server finishes current service request and when it fetches the next 

request from the queue. The server stays in IDLE state within the tiny time window although there is 

still backlog in its request queue.  

BUSY – the state that a server stays when it is executing the service routine, i.e. serving the client.  

Work Queued Updating  

In Oracle Tuxedo, there are two different strategies of calculating work queued of server according to 

different models of application and the load balancing parameters setting:  

 Periodic Accumulative Updating  

wkqueued is increased by LOAD value of the service when the service request is added to the server’s 

request queue; it’s not decreased when the request is completed by the server. The wkqueued value 

grows up linearly during the sanity scan period until BBL reset it to 0 at sanity scan. The resetting is 

necessary because it prevents the load balancing heuristic from being affected by the stale historical 

work queued information. 

This updating method will see the service requests to be spread to the servers evenly in round-robin 

style. So we also refer to load balancing algorithm which applies this approach of updating wkqueued as 

Round-Robin (RR) algorithm.   

 Real-Time Updating  

wkqueued is increased by LOAD value of the service when service request is added to the request 

queue; it’s decreased by LOAD value of the service upon the request is completed by the server.  

This updating method maintains wkqueued in a real-time mode and reflects the current work queued 

more accurate than prior approach.  

Specially, in an unloaded system, the values of wkqueued of queues keep 0 during most of the running 

time. In this situation, you may observe one or two servers do most of work in an unloaded system, 

rather than an even distribution of work among all servers. This is because load balancing algorithm 

always chooses the first server when two servers are equal in work load. Therefore, the second server 

will not be chosen until a new request arrives while the first server is busy. The third server will not be 

chosen until a new request arrives while the first and second servers are both busy, and so on. This 

kind of behavior is reasonable because it optimize the chance that the server’s working set is already in 

the cache.   

We also refer to the load balancing algorithm which applies this approach of updating wkqueued as Real-

Time (RT) algorithm.   



Load Balancing in Oracle Tuxedo ATMI Applications 

 

7 

Figure-2 illustrates the difference between these two updating approaches.  

 

 
 

Figure-2 Two Approaches of Updating Work Queued  

Role of BBL in Load Balancing  

As mentioned in previous chapter, BBL is responsible for resetting the wkqueued parameter of all the 

server request queues in the system at interval of sanity scan. This operation is necessary because of the 

potential inaccuracy of wkqueued due to the race condition in updating wkqueued in BB by multiple 

processes, and the sync operation is able to eliminate the negative influence of the stale work queued 

information on the load balancing.   

The operation is performed in a little different way for Round-Robin and Real-Time load balancing 

algorithm:  

 Round-Robin  

If CORBA stateless service  

If servers on the request queue are all idle and the queue is empty  

Then   

    Reset wkqueued to 0  

Else   

    Do nothing;  



Load Balancing in Oracle Tuxedo ATMI Applications 

 

8 

Else   

    Reset wkqueued to 0.  

  

 Real-Time  

If servers on the request queue are all idle and the queue is empty  

Then   

    Reset the wkqueued to 0  

Else  

    Do nothing.  

Known Issues in Tuxedo Load Balancing Algorithm  

Load balancing algorithm does its best efforts to distribute the service request evenly among the 

available servers, but due to following potential problems it may not work as perfectly as you expected:   

 Doubtable IDLE server state  

As explained in previous “Server State” section, server in idle state does not necessarily mean its 

request queue is empty. Idle state is just a transient state server stays between it finish current service 

request and pick up next request. Since Tuxedo applies local-idle-first strategy in choosing the best 

server, it may inappropriately choose an idle server with high backlog in its request queue, rather than a 

currently busy server but without backlog in its request queue.    

 BBL sync wkqueued   

BBL help to eliminate stale statistic information by sync wkqueued parameter of each request queue 

periodically. On the other side, the sync operation may do harm to load balancing. Suppose Real-Time 

load balancing algorithm is used, there are two servers with wkqueued 100 and 50 separately and they are 

both in idle state when BBL sync wkqueued for them. If a client issues the service request at the very 

moment, the higher work load server may be mistakenly chosen to serve the new request because the 

sync by BBL removes the load difference of these servers.   

 Inaccuracy of wkqueued   

If service cache is enabled, update of work load counters in BB will not be protected by lock. Even if 

service cache is disabled, decreasing of wkqueued (by servers upon service is done) is still not protected 

by BB lock unless ACCSTATS option is specified in SHM model. Slight inaccuracies in load balancing 

can occur in high load application systems when load balancing statistics are updated without a lock. 

For most applications, the additional overhead incurred in waiting for a lock to update statistics would 

slow the system more than any load balancing inaccuracies that are likely to result from not waiting for 

the lock.   

Parameters Affecting Load Balancing    

Several UBBCONFIG parameters affect load balancing within an Oracle Tuxedo ATMI application. 

They are:  

 LDBAL   



Load Balancing in Oracle Tuxedo ATMI Applications 

 

9 

 MODEL   

 LOAD   

 NETLOAD  

 SCANUNIT  

 SANITYSCAN  

 SICACHEENTRIESMAX  

 ACCSTATS  

LDBAL is specified in the RESOURCE section of Tuxedo configuration file. Its value can be Y or N.  

From literal understanding, it specifies whether or not load balancing is performed. However, it is not 

true in real application - Tuxedo always do load balancing for each service request whatever LDBAL is 

set, but its value determines the way load balancing works. Table-1 illustrates how LDBAL together 

with MODEL affects the load balancing. If LDBAL is not specified, the default is Y.   

MODEL is specified in the RESOURCE section of Tuxedo configuration file. Its value can be SHM 

or MP, indicating single machine or multiple-machine application. Its setting together with LDBAL 

determines how load balancing works:  

 
 

TABLE 1. LDBAL CONFIGURATION 

 LDBAL = Y LDBAL = N 

SHM Real-Time, BBL sync 

wkqueued periodically 

Real-Time, BBL does not sync 

MP Round-Robin, BBL 

sync wkqueued 

periodically 

Real-Time, BBL does not sync 

 

As above table illustrates, BBL does not play its role of sync wkqueued if LDBAL is set to N. In a SHM 

model application, this should not be a problem. Because all the servers are on the same machine and 

there is only one BB in the system, real-time update of wkqueued can reflect servers’ work load 

correctly. So in SHM model, setting LDBAL to Y or N does not affect the load balancing much.   

However, in MP model application, lake of sync wkqueued operation implies load balancing between 

servers across multiple machines will not work. From this point of view, the statement “No load 

balance when LDBAL is set to N” makes sense to some extent. The reason is that Tuxedo takes the 

local-BB-only strategy to update work load counters. Using figure-1 as an example, consider 

TOUPPER service requests are initiated from MACH_1, if remote simpserv_2 is chosen as the best 

server by load balancing algorithm, its wkqueued is increased locally in MACH_1 BB ,  after the service 

is done by simpserv_2, the wkqueued is decreased by simpserv_2 locally on MACH_2 BB. Therefore, 



Load Balancing in Oracle Tuxedo ATMI Applications 

 

10 

wkqueued of simpserv_2 in MACH_1 BB will never get decreased and it will eventually grow up to a 

large enough value to make it lose the load competition against local server simpserv_1. Hence the load 

balancing between the local server and remote server will not work.   

LOAD is specified in the SERVICES section of Tuxedo configuration file and it specifies a relative 

load factor associated with a service instance. If not specified, the default is 50. A greater number 

indicates higher load. Load balancing algorithm uses this value to update the wkqueued parameter of the 

request queues.  

NETLOAD is specified in the MACHINES section of Tuxedo configuration file and it specifies the 

additional load to be added when computing the cost of sending a service request from this machine to 

another machine. TMNETLOAD is the environment variable counterpart of the parameter and its 

setting takes precedence over the UBBCONFIG setting. Load balancing take this value into account 

when determine if route a service request to a remote server. If you prefer local server to handle the 

request, you may set this parameter to a very high value.  

SCANUNIT and SANITYSCAN are specified in the RESOURCES section of Tuxedo configuration 

file. They multiplied together determine the interval BBL sync the work load parameters for each 

queue in the system.  

SICACHEENTRIESMAX is specified in the MACHINES section of Tuxedo configuration file and 

it specifies the maximum number of service cache entries any process is to hold on this machine. If it is 

not specified, the default value is 500. If it is set to 0, no service caching will be performed by any 

process on this machine. SICACHEENTRIESMAX can also be specified in SERVERS section for 

individual servers. It takes precedence over the setting in MACHINES section. 

TMSICACHEENTRIESMAX is the environment variable counterpart of the parameter and its setting 

takes precedence over the UBBCONFIG setting. From load balancing point of view, service cache on 

or off determine if the calculation of wkqueued and candidate server choosing procedure is protected by 

BB lock or not. If service cache is on, the procedure will not be protected by BB lock and the load 

balancing will be less accurate, but the system gain more performance; otherwise, it’s protected by BB 

lock and the load balancing will be more accurate, but cost the system performance.  

ACCSTATS means accurate statistics on work load counters. It only works in SHM model. This 

feature can be enabled by setting attribute TA_OPTIONS in class T_DOMAIN to ACCSTATS in 

TMIB, or via tmadmin subcommand shmstats ex. But ACCSTATS alone can’t guarantee the 

accuracy, only when it’s enabled together with service cache disabled, can the accuracy be assured. On 

the other side, since the accuracy is assured by exclusive access to BB, performance is lost at the same 

time, especially in a high load system.   

Enhanced Tuxedo Load Balancing 

TSAM 12c enhances the load balancing algorithm of Tuxedo by leveraging the real-time performance 

metrics collected by TSAM. It can solve the following limitations in transitional Tuxedo load balancing 

algorithm: 

 The LOAD and NETLOAD values must be pre-configured in UBBCONFIG as a constant value. 



Load Balancing in Oracle Tuxedo ATMI Applications 

 

11 

 Client cannot get the accurate wkqueued value of remote servers 

TSAM collects the following performance metrics which are used for enhanced load balancing: 

 Network time: time takes to transmit the message from the requester machine to the service 

provider machine and the corresponding reply transmitted back to the originating machine, 

including the possible delay on the BRIDGE. 

 Queue wait time: time waiting in the server queue before the request gets served. 

 Service execution time: time the server takes to serve the request. 

All these performance metrics are broadcasted within the whole domain. 

In the enhanced load balancing algorithm: 

 The service response time is the sum of the Network time, Queue wait time, and the Service 

execution time. 

 The Average service execution time replaces the constant service LOAD.  

 The Average network time replaces the constant NETLOAD.  

 The Queue wait time replaces the wkqueued. 

Server Configuration Patterns  

As aforementioned, Tuxedo load balancing algorithm is performed at the client side to distribute the 

system load evenly among the service providers. Once the least busy server is chosen and the request is 

routed the request queue of the server, server side configuration can also play important role in 

balancing the system load.   

Single thread or Multi-thread  

 Single thread server  

Single thread server cannot handle the next request until it finishes current one. In other words, single 

thread server can’t handle two or more service request simultaneously. For typical OLTP applications, 

since the execution time of the service function is supposed to be very short, single threaded server can 

fulfill most OLTP application requirement with short response time.  

A single threaded server is run if the buildserver –t option is not specified or 

MAXDISPATCHTHREADS is not specified or is 1 for a multi-thread server built with –t option.  

 Multi-thread server  

Tuxedo will create a pool of working threads for the multi-thread server when booted. The size of the 

thread pool is determined by server configuration parameter MINDISPATCHTHREADS in 

UBBCONFIG. There is a dedicated dispatcher thread within the server responsible for dispatching the 

service requests to the working threads. It’s the load balancing within the multi-thread server. The 

dispatcher thread always picks up an idle thread to handle the incoming request. If all the working 



Load Balancing in Oracle Tuxedo ATMI Applications 

 

12 

threads are busy, new working threads are spawned to handle the request until reach the maximum 

thread pools size specified by MAXDISPATCHTHREADS. If all working threads are still busy under 

this condition, new service requests will be queued in the request queue.  

Since multi-thread server can handle multiple service requests simultaneously, it helps improve the 

system response time if the service function take relatively long time to complete and multiple 

concurrent service requests are dispatched to the same server.    

A multi-thread server is run if the server is built with “-t” option and MAXDISPATCHTHREADS is 

greater than 1.   

SSSQ or MSSQ   

 Single Server Single Queue (SSSQ)  

This is the default setting of application servers. Each server has its own request queue. Or in other 

words, the request queue has only one server to serve it. This configuration totally depends on the 

Tuxedo load balancing to distribute the service requests evenly to servers in the system. The accuracy 

of load balancing affects the system response time and throughput significantly. 

 Multiple Sever Single Queue (MSSQ)  

This configuration enables two or more servers to service the same request queue. When multiple idle 

servers contending on the same request queue to get the next request, which server will get the next 

message depends on the operating system. In other words, there are two stages in load balancing in this 

configuration:  

 Tuxedo load balancing algorithm chooses the set of MSSQ servers as the targets and request is 

queued into the shared request queue  

 OS distributes the request messages to the servers.  

MSSQ can help resolve the potential inaccuracy of Tuxedo load balancing and enhance the response 

time and throughput of the application system.  

Conclusion  

In a distributed computing environment, decision on the load balancing strategy is a tradeoff between 

performance and accuracy.  Higher accuracy means more exchange of load information, more critical 

sections, hence lower performance and vice versa. There is no perfect solution from the view of both 

angles. Tuxedo load balancing do its best effort to distribute the work load evenly among the system, 

but it does not guarantee the 100% accuracy. Application designers should not make such assumption 

that Tuxedo can do load balancing perfectly and put the stake on the improper assumption. 

TSAM 12c enhances the load balancing algorithm of Tuxedo by leveraging the real-time performance 

metrics collected by TSAM. Even though it may introduce slight performance impact (which is 

imperceptible in most situations) because of the monitoring overhead, it is a good choice for Tuxedo 

applications which appreciate the accuracy of load balancing. 



Load Balancing in Oracle Tuxedo ATMI Applications 

 

13 

Multi-thread server and MSSQ configuration on the server side can help resolve the side effect of the 

potential inaccuracy of load balancing in certain situations.



 

 

 

  

Load Balancing in Oracle Tuxedo ATMI 

Applications 

July 2012 

 

Oracle Corporation 

World Headquarters 

500 Oracle Parkway 

Redwood Shores, CA 94065 

U.S.A. 

Worldwide Inquiries: 

Phone: +1.650.506.7000 

Fax: +1.650.506.7200 

oracle.com 

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and the 

contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other 

warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or 

fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are 

formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any 

means, electronic or mechanical, for any purpose, without our prior written permission. 

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.  

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and 

are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are 

trademarks or registered trademarks of Advanced Micro Devices.  UNIX is a registered trademark of The Open Group. 0612 

 

 


