

SCA: Bringing Modern SOA
Programming to Tuxedo
An Oracle White Paper

March 2010

Tuxedo

SCA: Bringing Modern SOA Programming to Tuxedo Page 2

SCA: Bringing Modern SOA Programming to Tuxedo

INTRODUCTION

Oracle Tuxedo is one of the original SOA platforms. Everything in Tuxedo is a

service and invoked as a service. Tuxedo also provides industry leading

performance, scalability, and reliability. What Tuxedo has lacked is a simple

programming model that lends itself to rapid development and easy reuse of

services. By combining Tuxedo’s robust native SOA infrastructure with the SOA

programming model provided by the Service Component Architecture (SCA),

Oracle SALT 10gR3 offers a compelling solution to developing high performance,

scalable, and extremely reliable SOA based applications. This paper provides an

introduction into this new programming model for Tuxedo based on SCA.

SCA – SERVICE COMPONENT ARCHITECTURE

Building SOA based applications has always been a challenge. While there are

many standards defining how services should be invoked, interact, managed, and

monitored, there have been few standards defining how services should be

developed. In November 2005, Oracle, BEA, IBM, SAP, IONA, Siebel, and

Sybase announced a new set of SOA standards focusing on how applications

should be constructed and composed in order to build applications based upon

reusable services. The goal of these standards is to simplify creating SOA based

applications.

SCA Value and Principals

SCA supports the standard SOA principals of abstraction, loose coupling, service

contracts, reusability, and composability. By separating the service definition from

the service implementation and transport, different service implementations and

transports can be chosen based upon the particular requirements such as

performance, robustness, implementation dependencies, or other quality of service

requirements. In the SCA model, the dependency of a service implementation on

other services is described externally to the implementation allowing the choice of

dependent service implementation and transport to be made without changing the

service implementation.

SCA Assembly Model

Many different skills are required to construct large scale SOA based systems.

Business Analysts examine the business processes within an organization and

define business requirements for a system. Software Architects define how those

Oracle, BEA, IBM, SAP, IONA, Siebel, and

Sysbase introduced the initial SCA

specifications in November 2005.

In March 2007 version 1.0 of the SCA

standards were published. In April 2007

OASIS took over the ongoing development

of the SCA standards to allow broader

input into their development.

SCA: Bringing Modern SOA Programming to Tuxedo Page 3

business requirements should be mapped into a software system based upon

existing and new software assets. Software Developers build the underlying

software assets that will realize the business and technical requirements of the

system.

These professionals work with different tools, different languages, and different

processes. One of their major difficulties is in communicating the results of their

work to each other. SCA provides a standard for defining components and how

those components interact, independent of their underlying implementation

technology or infrastructure. Thus a business process defined by a business analyst

and implemented as a BPEL process can be represented and described in the same

manner as web service defined by a software architect. Likewise the same

component definition language can be used by the software developer creating a

component in Java, C, C++, COBOL, or other programming language. This

model is the SCA Assembly Model. Below is a diagram representing an SCA

Assembly Model.

Figure 1 - SCA Assembly Model

This diagram shows a composite that consists of two components. Each

component offers a service and uses a service. These are represented by the green

and purple arrows respectively. Component A’s service has been promoted to the

composite, meaning that the service can be called from outside the composite.

Likewise Component B’s reference has been promoted to the composite, meaning

the particular binding technology used to access the actual service is controlled by

the composite’s definition. The diagram also shows settable properties for the

components that can be set externally to the components.

The SCA Assembly Model defines how components are described and related.

Components can be providers of services as well as consumers of services and

these relationships along with the service contract information is described in the

Service Component Definition Language (SCDL). Using SCDL components can

be assembled together into larger components or applications. Depending upon

SCA: Bringing Modern SOA Programming to Tuxedo Page 4

the particular SCA runtime used, these assemblies of components can be built

statically or bound together dynamically at runtime.

Service Component Definition Language

SCDL is used in SCA applications to describe components and assemblies of

components called composites. It allows defining such information as the services

referenced by the component, the services offered by the component, settable

properties, and how components are wired together into composites. Composites

in turn can be used as component implementations, thus allowing hierarchical

construction of applications.

A component usually offers one or more services. These services can be defined

using a variety of specification mechanisms such as Java Interfaces, C++ abstract

classes, and WSDL. Access to the service depends upon the binding mechanisms

that are supported by the SCA runtime. A binding in SCA defines how a

component invokes the services of another component, and how the services of a

component are offered. Common binding technologies include SOAP, JCA, and

JMS. As well components usually make use of other services via references to

those services. References also have an interface associated with them, and can be

bound to a service through similar service invocation technologies.

SCA Implementation Models

Many if not most existing SOA standards deal with standardizing the

communication between components. While these standards help ensure

interoperability of components, they do little to help standardize the

implementation of components. As well many distributed computing models tend

to be API centric. This means that much of the model or standard is focused on

defining a set of APIs the application developer can use within their application.

Often these APIs are proprietary, although many such as the Tuxedo ATMI API

have been standardized by various standards organization. All the services,

options, features, capabilities, etc., are all exposed as a set of API calls or

flags/parameters passed in API calls.

This API centric focus has several major drawbacks. While API standards can

help with application portability, that is only true to the extent that the APIs are

truly standardized, that there are multiple implementations of the standard

available from which to choose, and the implementations adhere well enough.

Instead what has typically occurred is that an application becomes tied to a single

platform and becomes a prisoner of that platform requiring a major rewrite to

move to an alternative platform. Good program design and modularity can help

mitigate to some extent the dependence on these middleware APIs, yet the

dependence is still present in some portion of the application.

The SCA specifications include Client and Implementation specifications that

describe how users of SCA based technology can utilize SCA, while minimizing or

eliminating the dependency on the specific platform providing the SCA

SCDL – Service Component Definition

Language is used to describe components,

specify how components are wired

together to form composites, and define

the services offered and used by

composites.

SCA: Bringing Modern SOA Programming to Tuxedo Page 5

implementation. This is done partially by shrinking or eliminating where possible

the required APIs that must be used to implement a SOA based application. In

the SALT SCA implementation, the only required API usage for a client is that to

get a reference to the SCA runtime context and from that a reference to a service.

It is possible that even these API calls will be optional in the future with the

introduction of a dependency injection framework. For a service implementation,

there are no APIs required in order to build a usable service.

One of the major advantages of moving the wiring of components out of the

components themselves and into SCDL is that the same implementations can

utilize different bindings without any change to the component. Thus instead of

creating a component that offers a SOAP service creating using a set of SOAP

specific APIs therefore tying the implementation to SOAP, the developer would

create an SCA component implementation and not use any service related APIs.

The decision of what underlying technology is used to make the service available is

defined by the bindings in the SCDL.

SERVICES ARCHITECTURE LEVERAGING TUXEDO – SALT

SALT was introduced in August 2006 initially as a Web Services gateway product

that allowed SOAP/HTTP clients to invoke Tuxedo ATMI services. A year later

in August 2007 the ability for Tuxedo applications to transparently invoke external

SOAP/HTTP Web Services was added to the product. With the SALT 10gR3

release, SALT has been extended again to now support SCA. Unlike many

products on the market, the support for SCA in SALT includes support for the

SCA Assembly Model, the C++ Client and Implementation Model, binding

extensions for Web Services and ATMI, and a robust runtime built on top of the

existing Tuxedo runtime. This combination provides the best of what SCA offers

with the market leading reliability, availability, scalability, and performance that

Tuxedo has traditionally offered.

SALT 10GR3 SCA CONTAINER

The 10gR3 release of SALT includes a new runtime built on top of the standard

ATMI runtime. This runtime effectively acts as a container to host SCA

composites. SCDL is used to define which components and their corresponding

component implementations make up each composite. The diagram below shows

the relationship of the SCA container to the Tuxedo ATMI runtime.

SCA: Bringing Modern SOA Programming to Tuxedo Page 6

Figure 2 SALT SCA Container

SALT SCA Servers

Developing services using the SCA container is substantially easier and faster than

developing standard ATMI services. This is largely due to the transparent handling

of buffers by the SCA runtime. At a minimum a service must have a service

definition or interface in the form of a C++ header file that defines an abstract

base class containing only pure virtual functions. Each of the functions defined

becomes a service. As well a concrete class that implements all of the pure virtual

functions must be created. Together these are built into a component

implementation in the form of a dynamic library using the

buildscacomponent command. Here is an example interface definition for a

simple four function calculator component::

The concrete class or component implementation file for the interface above is:

SCA Servers in SALT only need to

implement the business logic to provide

the intended service. All implementation

details necessary to support any particular

binding is provided by the SCA container.

namespace services
{
 namespace calc
 {
 class Calculator
 {
 public:
 virtual float add(const float addend1, const float
addend2) = 0;
 virtual float subtract(const float sub1, const
float sub2) = 0;
 virtual float multiply(const float multiplicand,
const float multiplier) = 0;
 virtual float divide(const float dividend, const
float divisor) = 0;
 }
 }
}

SCA: Bringing Modern SOA Programming to Tuxedo Page 7

There are no technical APIs in the concrete class. In fact, unless a service

implementation needs to invoke another SCA service, there isn’t a requirement to

use any technical APIs. This dramatically simplifies the task of creating service

implementations.

Once the components have been created, the buildscaserver command is

used to create a Tuxedo server that will host the components. The Tuxedo server

dynamically loads C++ SCA component implementations that make up the

composites specified on the buildscaserver command line.

buildscaserver parses the SCDL files contained in the application directory

and determines which component implementations must be loaded and what

services are to be offered.

Once the SCA server has been built, it can be added to the Tuxedo configuration

as any other server. Upon startup the SCA server will advertise the SCA services

that were defined in the composite used to build the server. Like any other

Tuxedo server, multiple copies of the SCA server can be configured on multiple

machines within a Tuxedo domain to support virtually unlimited scalability.

#include <cctype>
#include "CalculatorServiceImpl.h"
#include "tuxsca.h"
using namespace std;
using namespace osoa::sca;
/**
* Calculator component implementation
*/
namespace services
{
 namespace calc
 {
 float CalculatorServiceImpl::add(const float addend1,
const float addend2)
 { return addend1 + addend2; }

 float CalculatorServiceImpl::subtract(const float
sub1, const float sub2)
 { return sub1 - sub2; }

 float CalculatorServiceImpl::multiply(const float
multiplicand, const float multiplier)
 { return multiplicand * multiplier; }

 float CalculatorServiceImpl::divide(const float
dividend, const float divisor)
 { return dividend / divisor; }
 }
}

SCA: Bringing Modern SOA Programming to Tuxedo Page 8

Tuxedo SCA Clients

Clients are also assembled from components and described using SCDL. The

buildscaclient takes a composite definition written in SCDL, source

components described in SCDL, and component implementations written in C++

and creates a client executable. Below are the relevant snippets of code from a

simple client for the four function calculator:

The client code is nearly free of technical APIs. The first API call to

CompositeContext::getCurrent() gets the current context for the

composite. From that context a pointer to the CALC service can be obtained and

then used to invoke the services simply as function calls. No other APIs are

required to locate and invoke services.

SCA client in SALT invoke services as

though they were local methods. The

binding to a particular service

implementation is controlled by the SCDL.

#include <iostream>
#include <stdlib.h>
#include "tuxsca.h"
#include "CalculatorService.h"
using namespace std;
using namespace osoa::sca;
using namespace services::calc;

int main(int argc, char* argv[])
{
 try {
 // Initialize the SCA context
 CompositeContext theContext = CompositeContext::getCurrent();
 // Locate the service
 CalculatorService* calcService =
 (CalculatorService *)theContext.locateService("CALC");
 try {
 // Perform the call
 float arg1 = (float) atof(argv[1]);
 float arg2 = (float) atof(argv[3]);
 char op = argv[2][0];
 float result = 0.0;
 switch (op) {
 case '+': result = calcService->add(arg1, arg2);
 break;
 case '-': result = calcService->subtract(arg1, arg2);
 break;
 case '*': result = calcService->multiply(arg1, arg2);
 break;
 case '/': result = calcService->divide(arg1, arg2);
 break;
 }
 cout << "Returned value: " << result << endl;

 } catch (...) {
 cout << "Failed to locate the service " << endl;
 }
 return 0;
}

SCA: Bringing Modern SOA Programming to Tuxedo Page 9

SALT 10GR3 BINDINGS

In an SCA based application, components are wired together by way of bindings to

specific transports. SALT 10gR3 supports both a Web Service binding as well as a

bindings based upon the native Tuxedo ATMI infrastructure and Tuxedo

workstation protocol for remote clients. A binding tells the SCA runtime how a

reference or service is mapped to a specific transport. On the reference side a

binding specifies how the method call is to be mapped to a specific transport’s

service client invocation mechanism. On the service side a binding specifies how a

specific transport’s service implementation mechanism is to be mapped to the SCA

service implementation.

Web Service Binding

The Web Service binding allows communication for clients and with servers to

occur via SOAP/HTTP. This binding uses the SALT SOAP gateway to handle

the SOAP processing. The buildscaserver generates the required

configuration and metadata information necessary to allow the SALT SOAP

gateway to support the SOAP service as defined by the user provided WSDL. The

client or server in this case may simply be a standard SOAP client or server and

not necessarily an SCA client or service.

ATMI Binding

The ATMI binding allows clients and servers to utilize the native Tuxedo ATMI

infrastructure to make or accept requests. The type of ATMI buffer to be used

can be specified in the binding definition as well as how the parameters of the

service are mapped to the fields of the buffer if appropriate. The example SCDL

file below for the four function calculator client shows the binding specification

for ATMI. In this case the ATMI transport will use Tuxedo FML32 buffers to

carry both the service request and response. The transport will create fields in the

FML32 buffer for each of the service parameters.

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
 name="calc.client">
 <reference name="CALC">
 <interface.cpp header="CalculatorService.h"/>
 <binding.atmi>
 <inputBufferType target="add">FML32</inputBufferType>
 <inputBufferType target="subtract">FML32</inputBufferType>
 <inputBufferType target="multiply">FML32</inputBufferType>
 <inputBufferType target="divide">FML32</inputBufferType>
 <outputBufferType target="add">FML32</outputBufferType>
 <outputBufferType target="subtract">FML32</outputBufferType>
 <outputBufferType target="multiply">FML32</outputBufferType>
 <outputBufferType target="divide">FML32</outputBufferType>
 </binding.atmi>
 </reference>
</composite>

SCA: Bringing Modern SOA Programming to Tuxedo Page 10

Interoperability with existing ATMI Clients and Servers

SCA components in SALT are Tuxedo components. An option in the ATMI

binding allows normal ATMI clients to call an SCA service as it would call any

other Tuxedo service. Similarly the ATMI binding allows an SCA client to call an

existing Tuxedo ATMI service. This allows the developer to freely mix SCA and

non-SCA components in the same application and reuse their existing ATMI

services.

PULLING IT ALTOGETHER WITH SCDL

Once the service interfaces have been defined and the service implementations

written, the remaining step is to pull everything together in a single description.

This would be the top level composite which often consists of a client component

and a server component. The server component is normally built out of a number

of different components. Here is the top level composite for the simple four

function calculator:

METADATA AND SOURCE DRIVEN DEVELOPMENT

In creating SOA applications, developers often use one of two common

approaches, metadata driven and source driven development. They primarily

differ in the starting point for the definition of a server. In metadata driven

development a developer starts with a service definition created in some form of

metadata repository. This metadata is then used to create the initial artifacts that

are required to develop the service. Source driven development uses a standard

programming language source file as the service definition. This source file is

often in the form of a header file that defines an interface or in C++ an abstract

class that consists only of pure virtual functions. From this source file other

required artifacts are generated including a metadata definition of the service.

Metadata Driven Development with SALT

SALT provides the necessary tools in order to support metadata driven

development. The developer starts with a service definition, usually in the form of

a Tuxedo service metadata repository input file. This file describes the

characteristics and contract for the service. It is a plain text file that contains a

<?xml version="1.0" encoding="UTF-8"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
 name="calculator.app">

 <component name="CalcClient">
 <implementation.composite name="calc.client"/>
 </component>

 <component name="CalcServer">
 <implementation.composite name="calc.server"/>
 </component>

</composite>

SCA: Bringing Modern SOA Programming to Tuxedo Page 11

number of elements including the name of the service, the types of Tuxedo buffers

to be used for the request, reply, and errors replies, and the names and types of

each of the fields in those buffers. From this file, a developer can use the

tuxscagen command to produce the C++ header files and SCDL files for the

service. The developer then needs to create a concrete implementation classes

associated with the abstract classes contained in the generated C++ header files.

This greatly simplifies the development of SCA services in SALT.

Many organizations have standardized on WSDL as the preferred means of

describing a service contract or interface. SALT supports the development of SCA

services with WSDL as the starting point. Using the wsdlcvt command, a

developer can start with a WSDL file, convert the WSDL into a Tuxedo service

metadata repository input file, and then using the procedure described above,

generate the C++ header file and SCDL files and then create the concrete C++

implementation class that implements the interface.

Source Driven Development with SALT

The 11gR1 release of SALT provides support for source driven development. The

service developer creates SCDL files containing one or more binding.atmi bindings

defining the services or C++ header files that contain abstract virtual classes

containing only pure virtual functions. These become the starting point for the

definition of the service. Using the new scatuxgen command, the developer

can then generate the metadata input file necessary to populate the Tuxedo service

metadata repository. This is especially helpful when taking existing C++

applications and turning them into SCA and web services. As SCA services, it is

simply a matter of adding binding.ws bindings to the SCDL files to make these

existing C++ applications available as web services.

The diagram below shows the two styles of development. The orange arrows

show the path taken for metadata driven development while the green arrows

show the path for source driven development.

SCA: Bringing Modern SOA Programming to Tuxedo Page 12

DYNAMIC OBJECT ORIENTED SCRIPTING LANGUAGES

Application developers are more and more turning to dynamic object oriented

scripting languages such as Python and Ruby to develop applications. These

languages help decrease the development time required to create applications.

New to the SALT 11gR1 release is the support for both Python and Ruby as

component implementation languages. This allows developers to create SCA

clients and services in Python and Ruby. The components developed with these

languages can be used by other SCA components written in C++ as well as any

ATMI based application. Since SALT supports SCA components invoking

standard ATMI services, Python and Ruby components can freely call existing

ATMI services.

Developing SCA Components in Python and Ruby

The creation of SCA components in Python and Ruby is done in much the same

way as the development of C++ SCA components. The developer creates the

SCDL files describing the components and includes either an

implementation.python or implementation.ruby element to indicate that the

component implementation will be in Python or Ruby. These elements define the

Python or Ruby source file that will be used as the implementation of the

component. The developer then creates the appropriate Python or Ruby script

and adds a new system server called SCAHOST to their Tuxedo configuration.

SCAHOST provides the runtime container for Python or Ruby components.

Services developed in Python or Ruby need not be aware they are being called as

SCA services. As in C++ SCA service components, unless there is a need to

invoke another SCA service, no SCA APIs are required. The scripts simply

implement the appropriate business logic. Client components on the other must

use a trivial API to look up a service from the component context before they can

invoke the service.

CONCLUSION

Creating SOA based applications that provide extremely high reliability, availability,

scalability, and performance has never been easier than it is now with SALT. By

providing support for the Service Component Architecture, SALT allows

customers to quickly develop and compose SOA based applications running on

the most robust infrastructure in the industry. The addition of support for Python

and Ruby in the 11gR1 release gives customers the option of leveraging the rapid

development these languages provide, while still allowing near unlimited scalability,

all in a SOA environment.

SCA: Bringing SOA Programming to Tuxedo

March 2010

Author: Todd Little

Contributing Authors: Maurice Gamanho

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

oracle.com

Copyright © 2010, Oracle. All rights reserved.

This document is provided for information purposes only and the

contents hereof are subject to change without notice.

This document is not warranted to be error-free, nor subject to any

other warranties or conditions, whether expressed orally or implied

in law, including implied warranties and conditions of merchantability

or fitness for a particular purpose. We specifically disclaim any

liability with respect to this document and no contractual obligations

are formed either directly or indirectly by this document. This document

may not be reproduced or transmitted in any form or by any means,

electronic or mechanical, for any purpose, without our prior written permission.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

Other names may be trademarks of their respective owners.

