ORACLE

SCA: Bringing Modern SOA

Programming to Tuxedo

An Oracle White Paper
March 2010

ORACLE"
Tuxedo

Oracle, BEA, IBM, SAP, IONA, Siebel, and
Sysbase introduced the initial SCA
specifications in November 2005.

In March 2007 version 1.0 of the SCA
standards were published. In April 2007
OASIS took over the ongoing development
of the SCA standards to allow broader
input into their development.

SCA: Bringing Modern SOA Programming to Tuxedo

INTRODUCTION
Oracle Tuxedo is one of the original SOA platforms. Everything in Tuxedo is a

service and invoked as a service. Tuxedo also provides industry leading
performance, scalability, and reliability. What Tuxedo has lacked is a simple
programming model that lends itself to rapid development and easy reuse of
services. By combining Tuxedo’s robust native SOA infrastructure with the SOA
programming model provided by the Service Component Architecture (SCA),
Oracle SALT 10gR3 offers a compelling solution to developing high performance,
scalable, and extremely reliable SOA based applications. This paper provides an
introduction into this new programming model for Tuxedo based on SCA.

SCA - SERVICE COMPONENT ARCHITECTURE

Building SOA based applications has always been a challenge. While there are
many standards defining how setrvices should be invoked, interact, managed, and
monitored, there have been few standards defining how services should be
developed. In November 2005, Oracle, BEA, IBM, SAP, IONA, Siebel, and
Sybase announced a new set of SOA standards focusing on how applications
should be constructed and composed in order to build applications based upon
reusable services. The goal of these standards is to simplify creating SOA based
applications.

SCA Value and Principals

SCA supports the standard SOA principals of abstraction, loose coupling, service
contracts, reusability, and composability. By separating the service definition from
the service implementation and transport, different service implementations and
transports can be chosen based upon the particular requirements such as
performance, robustness, implementation dependencies, or other quality of service
requirements. In the SCA model, the dependency of a service implementation on
other services is described externally to the implementation allowing the choice of
dependent service implementation and transport to be made without changing the

service implementation.

SCA Assembly Model

Many different skills are required to construct large scale SOA based systems.
Business Analysts examine the business processes within an organization and

define business requirements for a system. Software Architects define how those

SCA: Bringing Modern SOA Programming to Tuxedo Page 2

business requirements should be mapped into a software system based upon
existing and new software assets. Software Developers build the underlying
software assets that will realize the business and technical requirements of the

system.

These professionals work with different tools, different languages, and different
processes. One of their major difficulties is in communicating the results of their
work to each other. SCA provides a standard for defining components and how
those components interact, independent of their underlying implementation
technology or infrastructure. Thus a business process defined by a business analyst
and implemented as a BPEL process can be represented and described in the same
manner as web service defined by a software architect. Likewise the same
component definition language can be used by the software developer creating a
component in Java, C, C++, COBOL, or other programming language. This
model is the SCA Assembly Model. Below is a diagram representing an SCA
Assembly Model.

Figure 1 - SCA Assembly Model

Service Reference
- Java interface - Java interface
- WSDL PoriType - WSDL PortType

D—D +—— Properties
/ Composite A = i \

Binding
Web Service
5CA
JCA
Jms
5L5B

Binding
Web Service
SCA
JCA
Jms
5L5E

This diagram shows a composite that consists of two components. Each
component offers a service and uses a service. These are represented by the green
and purple arrows respectively. Component A’s service has been promoted to the
composite, meaning that the service can be called from outside the composite.
Likewise Component B’s reference has been promoted to the composite, meaning
the particular binding technology used to access the actual service is controlled by
the composite’s definition. The diagram also shows settable properties for the

components that can be set externally to the components.

The SCA Assembly Model defines how components are described and related.
Components can be providers of services as well as consumers of setvices and
these relationships along with the service contract information is described in the
Service Component Definition Language (SCDL). Using SCDL components can

be assembled together into larger components or applications. Depending upon

SCA: Bringing Modern SOA Programming to Tuxedo Page 3

SCDL - Service Component Definition
Language is used to describe components,
specify how components are wired
together to form composites, and define
the services offered and used by
composites.

the particular SCA runtime used, these assemblies of components can be built

statically or bound together dynamically at runtime.

Service Component Definition Language

SCDL is used in SCA applications to desctibe components and assemblies of
components called composites. It allows defining such information as the services
referenced by the component, the services offered by the component, settable
properties, and how components are wired together into composites. Composites
in turn can be used as component implementations, thus allowing hierarchical

construction of applications.

A component usually offers one or more services. These services can be defined
using a variety of specification mechanisms such as Java Interfaces, C++ abstract
classes, and WSDL. Access to the service depends upon the binding mechanisms
that are supported by the SCA runtime. A binding in SCA defines how a
component invokes the services of another component, and how the services of a
component are offered. Common binding technologies include SOAP, JCA, and
JMS. As well components usually make use of other services via references to
those services. References also have an interface associated with them, and can be

bound to a service through similar service invocation technologies.

SCA Implementation Models

Many if not most existing SOA standards deal with standardizing the
communication between components. While these standards help ensure
interoperability of components, they do little to help standardize the
implementation of components. As well many distributed computing models tend
to be API centric. This means that much of the model or standard is focused on
defining a set of APIs the application developer can use within their application.
Often these APIs are proprietary, although many such as the Tuxedo ATMI API
have been standardized by various standards organization. All the services,
options, features, capabilities, etc., are all exposed as a set of API calls or

flags/parameters passed in API calls.

This API centric focus has several major drawbacks. While API standards can
help with application portability, that is only true to the extent that the APIs are
truly standardized, that there are multiple implementations of the standard
available from which to choose, and the implementations adhere well enough.
Instead what has typically occurred is that an application becomes tied to a single
platform and becomes a prisoner of that platform requiring a major rewtite to
move to an alternative platform. Good program design and modularity can help
mitigate to some extent the dependence on these middleware APIs, yet the

dependence is still present in some portion of the application.

The SCA specifications include Client and Implementation specifications that
describe how users of SCA based technology can utilize SCA, while minimizing or
eliminating the dependency on the specific platform providing the SCA

SCA: Bringing Modern SOA Programming to Tuxedo Page 4

implementation. This is done partially by shrinking or eliminating where possible
the required APIs that must be used to implement a SOA based application. In
the SALT SCA implementation, the only required API usage for a client is that to
get a reference to the SCA runtime context and from that a reference to a service.
It is possible that even these API calls will be optional in the future with the
introduction of a dependency injection framework. For a service implementation,

there are no APIs required in order to build a usable service.

One of the major advantages of moving the wiring of components out of the
components themselves and into SCDL is that the same implementations can
utilize different bindings without any change to the component. Thus instead of
creating a component that offers a SOAP service creating using a set of SOAP
specific APIs therefore tying the implementation to SOAP, the developer would
create an SCA component implementation and not use any service related APIs.
The decision of what undetlying technology is used to make the service available is
defined by the bindings in the SCDL.

SERVICES ARCHITECTURE LEVERAGING TUXEDO — SALT

SALT was introduced in August 2006 initially as a Web Services gateway product
that allowed SOAP/HTTP clients to invoke Tuxedo ATMI services. A year later
in August 2007 the ability for Tuxedo applications to transpatently invoke external
SOAP/HTTP Web Setvices was added to the product. With the SALT 10gR3
release, SALT has been extended again to now support SCA. Unlike many
products on the market, the support for SCA in SALT includes supportt for the
SCA Assembly Model, the C++ Client and Implementation Model, binding
extensions for Web Services and ATMI, and a robust runtime built on top of the
existing Tuxedo runtime. This combination provides the best of what SCA offers
with the market leading reliability, availability, scalability, and performance that
Tuxedo has traditionally offered.

SALT 10GR3 SCA CONTAINER

The 10gR3 release of SALT includes a new runtime built on top of the standard
ATMI runtime. This runtime effectively acts as a container to host SCA
composites. SCDL is used to define which components and their corresponding
component implementations make up each composite. The diagram below shows
the relationship of the SCA container to the Tuxedo ATMI runtime.

SCA: Bringing Modern SOA Programming to Tuxedo Page 5

SCA Servers in SALT only need to
implement the business logic to provide
the intended service. All implementation
details necessary to support any particular
binding is provided by the SCA container.

Figure 2 SALT SCA Container

SCA Client Generated SCA Wrapper

Generated SCA Proxy

Tuxedo Server

SALT SCA Servers

Developing setrvices using the SCA container is substantially easier and faster than

developing standard ATMI services. This is largely due to the transparent handling
of buffers by the SCA runtime. At a minimum a setvice must have a service
definition or interface in the form of a C++ header file that defines an abstract
base class containing only pure virtual functions. Each of the functions defined
becomes a service. As well a concrete class that implements all of the pure virtual
functions must be created. Together these are built into a component
implementation in the form of a dynamic library using the
buildscacomponent command. Here is an example interface definition for a
simple four function calculator component::

namespace services
{
namespace calc
{
class Calculator
{
public:
virtual float add(const float addendl, const float
addend2) = 0;
virtual float subtract (const float subl, const
float sub2) = 0;
virtual float multiply(const float multiplicand,
const float multiplier) = 0;
virtual float divide(const float dividend, const
float divisor) = 0;
}
}

The concrete class or component implementation file for the interface above is:

SCA: Bringing Modern SOA Programming to Tuxedo Page 6

#include <cctype>
#include "CalculatorServiceImpl.h"
#include "tuxsca.h"
using namespace std;
using namespace osoa::sca;
/**
* Calculator component implementation
*/
namespace services
{
namespace calc

{

float CalculatorServiceImpl::add(const float addendl,

const float addend2)
{ return addendl + addend2; }

float CalculatorServiceImpl::subtract(const float
subl, const float sub2)
{ return subl - sub2; }

float CalculatorServiceImpl::multiply(const float
multiplicand, const float multiplier)
{ return multiplicand * multiplier; }

float CalculatorServiceImpl::divide(const float
dividend, const float divisor)
{ return dividend / divisor; }
}
}

There are no technical APIs in the concrete class. In fact, unless a service
implementation needs to invoke another SCA service, there isn’t a requitement to
use any technical APIs. This dramatically simplifies the task of creating service

implementations.

Once the components have been created, the buildscaserver command is
used to create a Tuxedo server that will host the components. The Tuxedo server
dynamically loads C++ SCA component implementations that make up the
composites specified on the buildscaserver command line.
buildscaserver parses the SCDL files contained in the application directory
and determines which component implementations must be loaded and what

services are to be offered.

Once the SCA server has been built, it can be added to the Tuxedo configuration
as any other server. Upon startup the SCA server will advertise the SCA services
that were defined in the composite used to build the server. Like any other
Tuxedo server, multiple copies of the SCA server can be configured on multiple

machines within a Tuxedo domain to support virtually unlimited scalability.

SCA: Bringing Modern SOA Programming to Tuxedo Page 7

Tuxedo SCA Clients

Clients are also assembled from components and described using SCDL. The

SCA client in SALT invoke services as
though they were local methods. The buildscaclient takes a composite definition written in SCDL, source
binding to a particular service components described in SCDL, and component implementations written in C++

implementation is controlled by the SCDL. and creates a client executable. Below are the relevant snippets of code from a

simple client for the four function calculator:

#include <iostream>

#include <stdlib.h>

#include "tuxsca.h"

#include "CalculatorService.h"
using namespace std;

using namespace osoa::scaj;
using namespace services::calc;

int main(int argc, char* argvl[])

{

try {
// Initialize the SCA context
CompositeContext theContext = CompositeContext::getCurrent();

// Locate the service
CalculatorService* calcService =
(CalculatorService *)theContext.locateService ("CALC");

try {
// Perform the call
float argl = (float) atof(argv[l]);
float arg2 = (float) atof(argv([3]);

char op = argv[2][0];
float result = 0.0;
switch (op) {

case '+': result = calcService->add(argl, arg2);
break;
case '-': result = calcService->subtract (argl, arg2);
break;
case '*': result = calcService->multiply(argl, arg2);
break;
case '/': result = calcService->divide(argl, arg2);
break;
}
cout << "Returned value: " << result << endl;
} catch (...) {
cout << "Failed to locate the service " << endl;

}

return 0;

The client code is neatly free of technical APIs. The first API call to
CompositeContext::getCurrent () gets the current context for the
composite. From that context a pointer to the CALC service can be obtained and
then used to invoke the services simply as function calls. No other APIs are

required to locate and invoke services.

SCA: Bringing Modern SOA Programming to Tuxedo Page 8

SALT 10GR3 BINDINGS

In an SCA based application, components are wired together by way of bindings to
specific transports. SALT 10gR3 supports both a Web Service binding as well as a
bindings based upon the native Tuxedo ATMI infrastructure and Tuxedo
workstation protocol for remote clients. A binding tells the SCA runtime how a
reference or service is mapped to a specific transport. On the reference side a
binding specifies how the method call is to be mapped to a specific transport’s
service client invocation mechanism. On the service side a binding specifies how a
specific transport’s service implementation mechanism is to be mapped to the SCA

service implementation.

Web Service Binding

The Web Setvice binding allows communication for clients and with servers to
occur via SOAP/HTTP. This binding uses the SALT SOAP gateway to handle
the SOAP processing. The buildscaserver generates the required
configuration and metadata information necessary to allow the SALT SOAP
gateway to support the SOAP service as defined by the user provided WSDL. The
client or server in this case may simply be a standard SOAP client or server and

not necessarily an SCA client or service.

ATMI Binding

The ATMI binding allows clients and servers to utilize the native Tuxedo ATMI
infrastructure to make or accept requests. The type of ATMI buffer to be used
can be specified in the binding definition as well as how the parameters of the
service are mapped to the fields of the buffer if appropriate. The example SCDL
file below for the four function calculator client shows the binding specification
for ATMI. In this case the ATMI transport will use Tuxedo FML32 buffers to
carry both the service request and response. The transport will create fields in the

FML32 buffer for each of the service parameters.

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
name="calc.client">
<reference name="CALC">
<interface.cpp header="CalculatorService.h"/>
<binding.atmi>
<inputBufferType target="add">FML32</inputBufferType>
<inputBufferType target="subtract">FML32</inputBufferType>
<inputBufferType target="multiply">FML32</inputBufferType>
<inputBufferType target="divide">FML32</inputBufferType>
<outputBufferType target="add">FML32</outputBufferType>
<outputBufferType target="subtract">FML32</outputBufferType>
<outputBufferType target="multiply">FML32</outputBufferType>
<outputBufferType target="divide">FML32</outputBufferType>
</binding.atmi>
</reference>
</composite>

SCA: Bringing Modern SOA Programming to Tuxedo Page 9

Interoperability with existing ATMI Clients and Servers

SCA components in SALT are Tuxedo components. An option in the ATMI
binding allows normal ATMI clients to call an SCA service as it would call any
other Tuxedo service. Similarly the ATMI binding allows an SCA client to call an
existing Tuxedo ATMI service. This allows the developer to freely mix SCA and
non-SCA components in the same application and reuse their existing ATMI

services.

PULLING IT ALTOGETHER WITH SCDL

Once the service interfaces have been defined and the service implementations
written, the remaining step is to pull everything together in a single description.
This would be the top level composite which often consists of a client component
and a server component. The server component is normally built out of a number
of different components. Here is the top level composite for the simple four

function calculator:
<?xml version="1.0" encoding="UTF-8"7>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
name="calculator.app">

<component name="CalcClient">
<implementation.composite name="calc.client"/>
</component>

<component name="CalcServer">
<implementation.composite name="calc.server"/>
</component>

</composite>

METADATA AND SOURCE DRIVEN DEVELOPMENT

In creating SOA applications, developers often use one of two common
approaches, metadata driven and source driven development. They primarily
differ in the starting point for the definition of a server. In metadata driven
development a developer starts with a service definition created in some form of
metadata repository. This metadata is then used to create the initial artifacts that
are required to develop the service. Source driven development uses a standard
programming language source file as the service definition. This source file is
often in the form of a header file that defines an interface or in C++ an abstract
class that consists only of pure virtual functions. From this source file other

required artifacts are generated including a metadata definition of the service.

Metadata Driven Development with SALT

SALT provides the necessary tools in order to support metadata driven
development. The developer starts with a service definition, usually in the form of
a Tuxedo service metadata repository input file. This file describes the

characteristics and contract for the service. It is a plain text file that contains a

SCA: Bringing Modern SOA Programming to Tuxedo Page 10

number of elements including the name of the service, the types of Tuxedo buffers
to be used for the request, reply, and errors replies, and the names and types of
each of the fields in those buffers. From this file, a developer can use the
tuxscagen command to produce the C++ header files and SCDL files for the
service. The developer then needs to create a concrete implementation classes
associated with the abstract classes contained in the generated C++ header files.
This greatly simplifies the development of SCA services in SALT.

Many organizations have standardized on WSDL as the preferred means of
describing a service contract or interface. SALT supports the development of SCA
services with WSDL as the starting point. Using the wsdlevt command, a
developer can start with a WSDL file, convert the WSDL into a Tuxedo service
metadata repository input file, and then using the procedure described above,
generate the C++ header file and SCDL files and then create the concrete C++

implementation class that implements the interface.

Source Driven Development with SALT

The 11gR1 release of SALT provides supportt for source driven development. The
service developer creates SCDL files containing one or more binding.atmi bindings
defining the services or C++ header files that contain abstract virtual classes
containing only pure virtual functions. These become the starting point for the
definition of the service. Using the new scatuxgen command, the developer
can then generate the metadata input file necessary to populate the Tuxedo service
metadata repository. This is especially helpful when taking existing C++
applications and turning them into SCA and web services. As SCA services, it is
simply a matter of adding binding.ws bindings to the SCDL files to make these

existing C++ applications available as web services.

The diagram below shows the two styles of development. The orange arrows
show the path taken for metadata driven development while the green arrows

show the path for source driven development.
SCDL wxscagen [Metadata %tmwsdlgen—h' WSDL
\ Repository wsdlcwt
scatuxgen

tuxscagen

C++ header scatuxgen

]

SCA: Bringing Modern SOA Programming to Tuxedo Page 11

DYNAMIC OBJECT ORIENTED SCRIPTING LANGUAGES

Application developers are more and more turning to dynamic object oriented
scripting languages such as Python and Ruby to develop applications. These
languages help decrease the development time required to create applications.
New to the SALT 11gR1 release is the suppozt for both Python and Ruby as
component implementation languages. This allows developers to create SCA
clients and setrvices in Python and Ruby. The components developed with these
languages can be used by other SCA components written in C++ as well as any
ATMI based application. Since SALT supports SCA components invoking
standard ATMI services, Python and Ruby components can freely call existing
ATMI services.

Developing SCA Components in Python and Ruby

The creation of SCA components in Python and Ruby is done in much the same
way as the development of C++ SCA components. The developer creates the
SCDL files describing the components and includes either an
implementation.python or implementation.ruby element to indicate that the
component implementation will be in Python or Ruby. These elements define the
Python or Ruby source file that will be used as the implementation of the
component. The developer then creates the appropriate Python or Ruby script
and adds a new system server called SCAHOST to their Tuxedo configuration.
SCAHOST provides the runtime container for Python or Ruby components.

Services developed in Python or Ruby need not be aware they are being called as
SCA services. As in C++ SCA service components, unless there is a need to
invoke another SCA service, no SCA APIs are required. The scripts simply
implement the appropriate business logic. Client components on the other must
use a trivial API to look up a service from the component context before they can

invoke the service.

CONCLUSION
Creating SOA based applications that provide extremely high reliability, availability,

scalability, and performance has never been easier than it is now with SALT. By
providing support for the Service Component Architecture, SALT allows
customers to quickly develop and compose SOA based applications running on
the most robust infrastructure in the industry. The addition of support for Python
and Ruby in the 11gR1 release gives customers the option of leveraging the rapid
development these languages provide, while still allowing near unlimited scalability,

all in a SOA environment.

SCA: Bringing Modern SOA Programming to Tuxedo Page 12

ORACLE

SCA: Bringing SOA Programming to Tuxedo
March 2010

Author: Todd Little

Contributing Authors: Maurice Gamanho

Oracle Corporation

World Headquarters

500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

Copyright © 2010, Oracle. All rights reserved.

This document is provided for information purposes only and the
contents hereof are subject to change without notice.

This document is not warranted to be error-free, nor subject to any

other warranties or conditions, whether expressed orally or implied

in law, including implied warranties and conditions of merchantability

or fitness for a particular purpose. We specifically disclaim any

liability with respect to this document and no contractual obligations

are formed either directly or indirectly by this document. This document
may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

