ORACLE

Tech: Project Kit

Using Java with MySQL Heatwave & Lakehouse

Lightning Talk

Tony Darnell

Principal Solutions Engineer MySQL

MySQL: An extremely popular database

MySQL is the #1 Open Source Database

Rank					
Mar 2024	Feb 2024	Mar 2023	DBMS	Database Model	Mar 2024
1.	1.	1.	Oracle 🚹	Relational, Multi-model 🔞	1221.06
2.	2.	2.	MySQL 🚹	Relational, Multi-model 📆	1101.50
3.	3.	3.	Microsoft SQL Server 🖽	Relational, Multi-model 🔞	845.81
4.	4.	4.	PostgreSQL 🚹	Relational, Multi-model 🔞	634.91
5.	5.	5.	MongoDB 🚹	Document, Multi-model 👔	424.53

Innovative organizations across many industries run MySQL - Do you?

Social

facebook

Linked in

Pinterest

E-Commerce

Booking.com

UBER

Tech

GitHub

zendesk

Finance

J.P.Morgan

Manufacturing

MySQL powers Open Source applications

Custom Apps Development

django

Content management and eCommerce

Learning platforms

What do I need to connect to MySQL with Java?

MySQL Java Connector – Connector/J

Download at MySQL Community Downloads page:

https://dev.mysql.com/downloads/connector/j/

Add connector location to CLASSPATH in your config file:

• export CLASSPATH=/usr/local/mysql/java/mysql-connector-j-8.3.0.jar:\$CLASSPATH

Example Java – Select Records

```
import java.sql.*;
public class JdbcSelectTest {
 public static void main(String[] args) {
  try (
    Connection conn = DriverManager.getConnection(
       "jdbc:mysql://localhost:3306/database", "user", "password");
    Statement stmt = conn.createStatement();
    String strSelect = "select id_employee, name_first, name_last from employee";
    System.out.println("The SQL statement is: " + strSelect + "\n");
    ResultSet rset = stmt.executeQuery(strSelect);
```


Example Java – Select Records

```
System.out.println("The records selected are:");
    int rowCount = 0;
    while(rset.next()) {
     String id_employee = rset.getString("id_employee");
     String name_first = rset.getString("name_first");
      String name_last = rset.getString("name_last");
      System.out.println(id_employee + ", " + name_first + ", " + name_last);
      ++rowCount;
    System.out.println("Total number of records = " + rowCount);
  } catch(SQLException ex) {
    ex.printStackTrace();
  } } }
```


Other DML Commands - Examples

```
String sqlDelete = "delete from books where id >= 3000 and id < 4000";
String sqlinsert = "insert into books values (3001, 'Gone Fishing', 'Kumar', 11.11, 11)";
sqlinsert = "insert into books values "
       + "(3002, 'Gone Fishing 2', 'Kumar', 22.22, 22),"
       + "(3003, 'Gone Fishing 3', 'Kumar', 33.33, 33)";
sqlinsert = "insert into books (id, title, author) values (3004, 'Fishing 101', 'Kumar')";
String strUpdate = "update books set price = price*1.07, qty = qty+1 where id = 1001";
```


Challenges for developers and DBAs...

...And how MySQL HeatWave uniquely addresses them

What we've heard from customers

Complex and costly to use separate systems for transactions and analytics

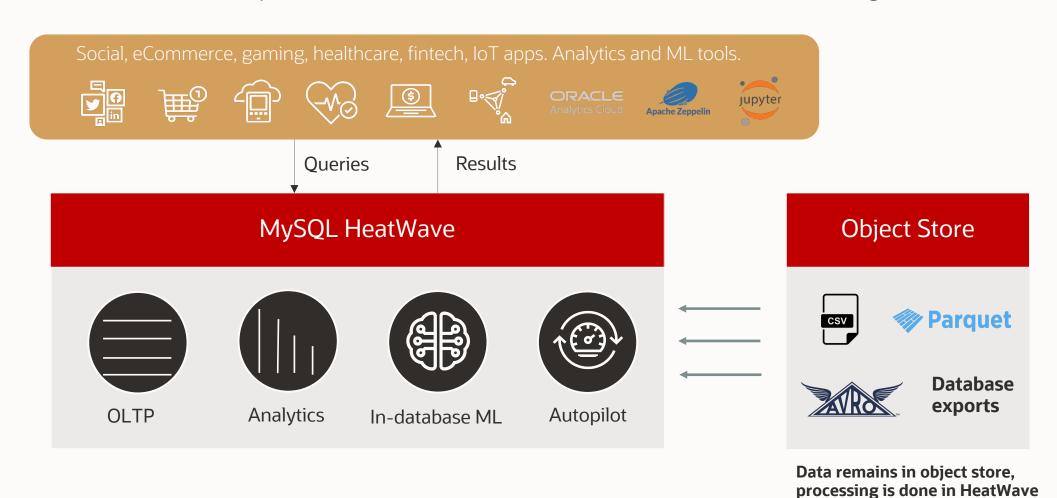
We provide one MySQL cloud database service for OLTP and real-time analytics across data warehouses and data lakes—without ETL duplication

Want to leverage ML and generative AI on all their data

We provide automated in-database ML with an explanation of models and results, without ETL, plus generative Al with Vector store (private preview)

Spend too much time on manual management tasks

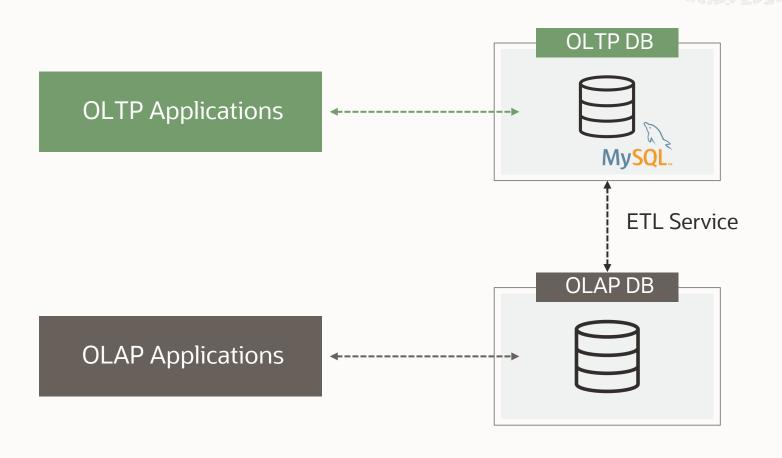
We provide a fully managed database service with machine learning-powered automation and built-in advanced security features


Want to use multiple clouds

MySQL HeatWave is available on OCI, AWS, and Azure.

MySQL HeatWave overview

Transactions, real-time analytics across data warehouse and data lake, and machine learning in one database service

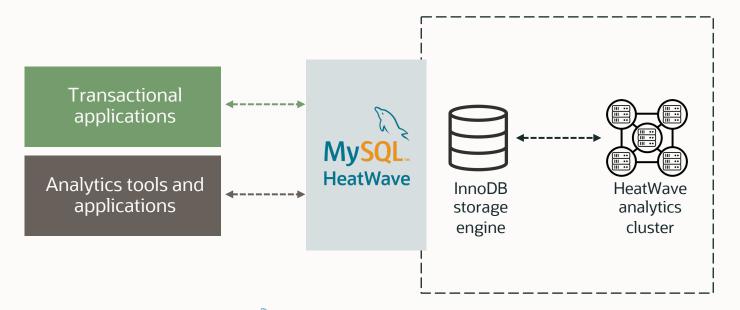


For both non-MySQL and MySQL workloads

Challenge: Organizations need to use separate systems for transactions and analytics

MySQL is optimized for OLTP, not designed for analytic processing

Separate analytics database


Complex ETL

No real-time analytics

Security & compliance risks

Increased costs

One database is better than two

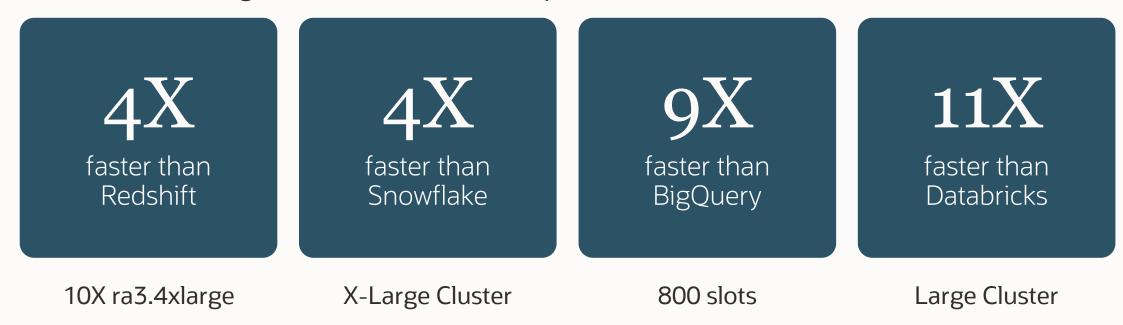
1>2 with MySQL HeatWave

One service for OTLP & OLAP

No ETL duplication

Unmatched performance, at a fraction of the cost

Real-time analytics


Improved security

Applications work without changes

Best performance in industry for data warehouse TPC-H 10TB

Faster time to insights = faster business response to market trends

Get answers in hours, not days

According to 10 TB TPC-H benchmarks as of May 23, 2023. Redshift, Snowflake, Databricks and BigQuery numbers for 10TB TPC-H numbers are provided by a third party.

Benchmark queries are derived from the TPC-H benchmarks, but results are not comparable to published TPC-H benchmark results since these do not comply with the TPC-H specifications.

Lowest cost in industry for data warehouse

Price performance comparison 10TB TPC-H

10X

better than Redshift

1 year reserved, paid upfront

15X

better than Snowflake

Standard Edition

20X

better than BigQuery

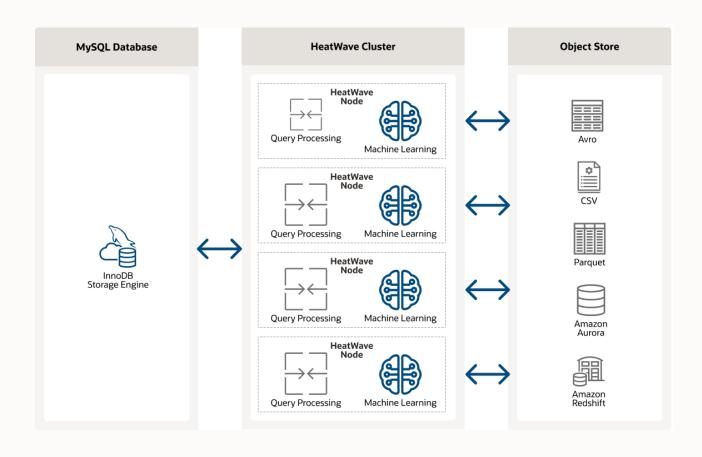
1 year reserved

37X

better than Databricks

1 year reserved

Much less expensive


According to 10 TB TPC-H benchmarks as of May 23, 2023. Redshift, Snowflake, Databricks and BigQuery numbers for 10TB TPC-H numbers are provided by a third party.

Benchmark queries are derived from the TPC-H benchmarks, but results are not comparable to published TPC-H benchmark results since these do not comply with the TPC-H specifications.

MySQL HeatWave Lakehouse

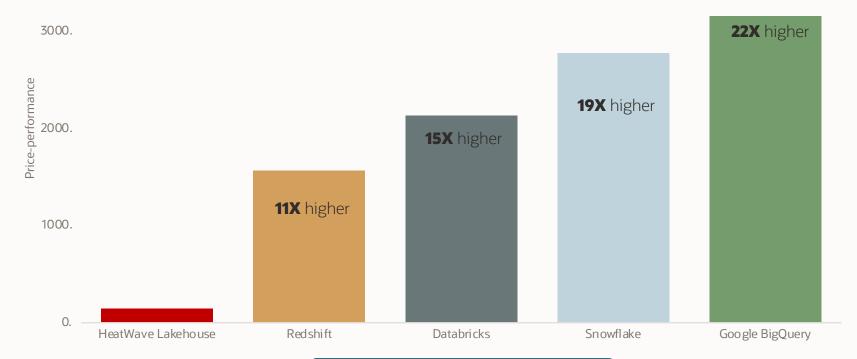
Query half a PB data in the object store—in a variety of file formats

- Query data in MySQL, in the object store, or across both—using standard SQL syntax
- Up to 500 TB of data—the HeatWave cluster scales to 512 nodes
- Querying the data in the object store is as fast as querying the database – an industry first!
- Scale out data processing in the object store, data is not copied to the MySQL Database: for both MySQL and non-MySQL workloads

Query performance of HeatWave Lakehouse

15X faster than Redshift, 18X faster than Snowflake, 18X faster than Databricks, 35X faster than BigQuery

Significantly reduces time-to-insights



Query price-performance of HeatWave Lakehouse

11X better than Redshift, 15X better than Databricks, 19X better than Snowflake, 22X faster than BigQuery

4000.

Significantly reduces costs

Configuration: MySQL HeatWave Lakehouse: 512 nodes; Snowflake: 4X-Large Cluster; Databricks: 3X-Large Cluster; Amazon Redshift: 20-ra3.16xlarge; Google BigQuery: 6400 slots
Benchmark queries are derived from the TPC-H benchmarks, but results are not comparable to published TPC-H benchmark results since these do not comply with the TPC-H specifications.

Thanks.