Seattle Sounders FC gets data science in the game with Oracle

The Major League Soccer club uses sports analytics to help improve team performance with Oracle Cloud Infrastructure Data Science and OCI’s data lakehouse.

Partajați:

Almost all sports now have huge datasets with unique characteristics. Investing in a secure, stable analytics and data science infrastructure will empower teams like ours to focus on what we’re good at: using our data to deliver more wins.

Ravi RamineniVice President of Soccer Analytics and Research, Seattle Sounders FC

Business challenges

Championship soccer teams need goal scorers and tough defenders, but these days they better have a couple of data scientists on the roster as well.

Today’s top professional sports teams have recognized that their data plays an essential role in building a competitive edge. “We know that analytics can help us increase player performance, optimize team performance, better manage our players’ health, and even improve our fans’ experience,” says Ravi Ramineni, vice president of soccer analytics and research for Seattle Sounders FC. “Seattle Sounders FC aims to become a leader in the use of analytics within Major League Soccer and in world soccer.” 

To achieve that goal, Ramineni and his data science team needed a faster, more powerful data science platform. Their vision was to develop new approaches to influence the team’s tactical strategies, style of play, players’ performance during live games, scouting, and more. To do so, they needed to be able to manage large volumes of data from many different sources and quickly run queries on these datasets to get instant, actionable insights for the coaches and scouting staff. However, an aging on-premises infrastructure was holding the team back.

One important dataset for Sounders FC is very granular player tracking data supplied to teams by Major League Soccer (MLS). With measurements from every player on the field every 25 seconds, tracking data represents a few million rows of data for every match—multiplied by over 400 total MLS matches in a season. “Once we got the tracking data, we quickly realized that we would not be able to do what we wanted without building a new sports analytics infrastructure,” Ramineni says. “Our previous infrastructure just wasn’t built to handle this scale. It would take many hours to run certain queries, which was not viable for our decision-makers.”

Sounders FC came to Oracle with two goals in mind: To upgrade the analytics infrastructure to get fast query responses on very large datasets, and to gain flexibility to scale up the analytics environment when needed and scale down to save money when it’s not.

With OCI’s data lakehouse, we manage 100x more data, generate insights 10x faster, and have reduced database management by 100%.

Ravi RamineniVice President of Soccer Analytics and Research, Seattle Sounders FC

Why Seattle Sounders FC Chose Oracle

Sounders FC chose to build a data lakehouse on Oracle Cloud Infrastructure (OCI) as the foundation for its sports analytics infrastructure. The team is using Oracle Autonomous Data Warehouse to eliminate data management, and Oracle Analytics Cloud to run analyses, along with Oracle Cloud Infrastructure Data Science. Oracle Content Management and Object Storage will manage digital media assets.

“We didn’t just want a database that was faster,” Ramineni says. “We also wanted a flexible data science platform that would let our data scientists do what they do best. With Oracle, we don’t have to worry about backend data infrastructure.”

The team evaluated the Oracle data aggregation capabilities, performance, and usability of Oracle Analytics Cloud and OCI Data Science. After the transition to Oracle, Sounders FC was easily able to connect their data with minimal schema changes and found the data science tools to be straightforward to learn and use.

Another important goal for the team was to eliminate database management activities. “We do not have to worry about patching, updates, and other tasks,” Ramineni says. “With Oracle Autonomous Data Warehouse, all of that is taken care of for us.”

Sounders FC also chose Oracle Content Management to organize their media assets, which include years of video highlights and other marketing assets used to increase fan engagement. These assets represent two-thirds of the team’s total data storage volume. The organization wanted one technology provider that could solve both the sports analytics and content management needs, and Oracle offered the best fit.

Sounders FC sports analytics staff teamed up with Oracle data scientists to build a machine learning model using player tracking data. “One of the primary reasons we chose Oracle was the genuine collaboration between us,” Ramineni says. “Both of our teams were really working for the other one, and we share a passion for using data to drive results on the field.”

 

Sounders FC’s implementation on OCI

Understanding player tracking data and creating a new sports analytic infrastructure is helping the Sounders FC understand how their players can better set themselves up to score on the field. With fast query responses and the ability to scale up or down, OCI has given them a powerful and flexible tool to better understand the action on the field.

Diagram of Sounders FC’s implementation on OCI

This image shows a reference architecture for this use case where data sources flows through a process from discovering and ingesting raw data sources through analytics and insights which can be consumed by data scientists or other applications and acted upon.

The steps to this process are:

  • Discover
  • Ingestion
  • Transformation
  • Curate
  • Analyze, Learn, and Measure

All of this process is built on top of security, identity and access management as well as metadata management solutions.

Results

The proof of concept allowed Ramineni and his team to build confidence in the Oracle technology and demonstrate real value to the coaching staff. Team analysts decided to build a data model for detecting line-breaking passes. Line-breaking passes go through a line of the opposing team’s formation, so they are more likely to set the team up for a score. “We chose this particular machine learning model because it is one that we always wanted to build and knew that we could use it as-is once the proof of concept was complete,” Ramineni says.

MLS champions

The line-breaking pass model helped Sounders FC scout and prepare for their opponents, delivering immediate benefits to the team. Sounders FC used it to evaluate each team member’s playing style against each opponent and build more effective game strategies. The project wrapped up a few weeks before the team reached the 2020 MLS playoffs, and Sounders FC heavily used the model during the team’s successful run to the MLS finals.

Because of COVID-19 travel limitations, the squad had played a limited number of opponents during the 2020 regular season. That meant the team faced many opponents during the playoffs for the first time that season, making sports analytics especially useful to the coaching staff during game preparation. “It was really handy to be able to quickly analyze all 20 of an opponent’s matches to see what types of spaces they attack and how they create their chances,” Ramineni says.

Sounders FC has migrated all performance and sports science data into Oracle Autonomous Data Warehouse, including tracking data, event data, fitness data, and more. Ramineni and his team are now embarking on several high-impact projects.

For example, pattern detection will automate the identification of a player’s “pattern of play” using computer vision on video footage. It will also assess how often each pattern leads to goals scored.

Another project will detect when a player creates space from a defender, and quantify this space creation, so the team can develop new training tactics and game strategies. Also, by calculating goal threat probabilities, the team expects to better predict the likelihood of a goal being scored during the match over a given time window.

Lastly, the team will deliver enhanced tagging that will automatically add metadata tags to the team’s video archive to make historical footage easily searchable and thus more valuable.

The organization also is saving money, thanks to the flexibility of paying for the cloud infrastructure only when it’s being used. In addition, IT staffers are saving time because they are freed from database administration tasks. “More importantly, we are empowered to do things that we just could not do with our previous infrastructure,” Ramineni says.

Publicate:August 31, 2021