Technical Report

Disaster Recovery Solution for Oracle Fusion Middleware 11g on Linux

Padmanabhan Sadagopan and Mike Doherty, NetApp
Pradeep Bhat, Oracle

June 2010 | TR-3855
TABLE OF CONTENTS

1 **INTRODUCTION** .. 3
 1.1 ACRONYMS .. 3

2 **DESIGN CONSIDERATIONS** ... 3
 2.1 PROTOCOL CONFIGURATION ... 3

3 **HARDWARE/SOFTWARE USED** ... 4
 3.1 SERVER HOST DEPLOYMENT DETAILS .. 4
 3.2 STORAGE SYSTEM DEPLOYMENT DETAILS .. 4
 3.3 OFM 11G SOFTWARE .. 4

4 **FILE SYSTEM LAYOUT** .. 5
 4.1 DIRECTORY STRUCTURE FOR SOA COMPONENT ... 5
 4.2 VOLUMES FOR SOA .. 6
 4.3 SOA EDG TOPOLOGY ... 7
 4.4 DIRECTORY STRUCTURE FOR IDM COMPONENT ... 8
 4.5 VOLUMES FOR IDM .. 9
 4.6 IDM EDG TOPOLOGY ... 10

5 **CONSISTENCY GROUPS** .. 11
 5.1 CONSISTENCY GROUPS FOR SOA EDG .. 13
 5.2 CONSISTENCY GROUPS FOR IDM EDG .. 13

6 **PLANNED AND UNPLANNED DOWNTIME** .. 14
 6.1 PERFORMING A PLANNED SWITCHOVER ... 14
 6.2 PERFORMING A SWITCHBACK .. 14
 6.3 PERFORMING AN UNPLANNED FAILOVER .. 15

7 **SCREEN CAPTURES** .. 16

8 **CONCLUSION** .. 19

ACKNOWLEDGEMENTS .. 19

APPENDIXES .. 20
 APPENDIX A: REFERENCES ... 20
 APPENDIX B: SCRIPTS .. 20
1 INTRODUCTION

This technical report describes the procedure to deploy Oracle® Fusion Middleware (OFM) 11g on Linux® using NetApp® SnapMirror®, Snapshot™, FlexVol®, and FlexClone® technology. It also describes the configuration and procedure to create a disaster recovery (DR) solution for Oracle Fusion Middleware 11g using a simple, fast, accurate, and cost-effective method.

NetApp disaster recovery (DR) solutions are simple to deploy and recover, and reduce downtime. They are flexible enough to address a broad range of recovery point objectives ranging from zero to one hour to one day. NetApp DR solutions can replicate over long distances, providing protection from both site and regional disasters. Customers have the flexibility to make a tradeoff between cost and data loss exposure.

For all prerequisites and configurations required to deploy this solution, see TR-3672: Oracle Fusion Middleware DR Solution Using NetApp Storage.

This report only covers the OFM 11g specific configuration steps.

1.1 ACRONYMS

Table 1) Acronyms.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFM</td>
<td>Oracle Fusion Middleware</td>
</tr>
<tr>
<td>IDM</td>
<td>Oracle Identity Management</td>
</tr>
<tr>
<td>SOA</td>
<td>Oracle Service-Oriented Architecture</td>
</tr>
<tr>
<td>OID</td>
<td>Oracle Internet Directory</td>
</tr>
<tr>
<td>EDG</td>
<td>Enterprise Deployment Guide</td>
</tr>
<tr>
<td>OEM</td>
<td>Oracle Enterprise Manager</td>
</tr>
</tbody>
</table>

2 DESIGN CONSIDERATIONS

The OFM Disaster Recovery solution relies on NetApp replication technology to replicate OFM’s application and Web tier file system artifacts. At each site these artifacts are on a shared storage system configured for storage replication. For more information on the design considerations, see the OFM Disaster Recovery Guide: http://download.oracle.com/docs/cd/E15523_01/doc.1111/e15250/design_consid.htm#sthref426.

2.1 PROTOCOL CONFIGURATION

This DR solution uses the NFS protocol.

The following is an example of an NFS mount option configuration (sample fstab entry):

```
mount nasfiler:/vol/voll/fmw11shared ORACLE_BASE/wls -t nfs -o rw,bg,hard,nointr,tcp,vers=3,timeo=300,rsize=32768,wsize=32768
```
3 HARDWARE/SOFTWARE USED

This section describes the hardware and software environment used for this design validation. Actual customer deployments might vary.

3.1 SERVER HOST DEPLOYMENT DETAILS

The host system in our environment is configured as follows:

IBM® BladeCenter® H Series
- Processor: Dual-Core Intel® Xeon® 3.0 GHz
- Number of processors: 2
- Memory: 4GB per blade
- Network interface: Gigabyte connection
- Internal Hard Drive: 72GB

3.2 STORAGE SYSTEM DEPLOYMENT DETAILS

- Clustered FAS3050 storage controllers
- NetApp Data ONTAP® 7.3.2

3.3 OFM 11G SOFTWARE

- Oracle Fusion Middleware Enterprise deployments
- Oracle Fusion Middleware 11g R1 SOA suite
- Oracle Fusion Middleware 11g R1 Identity Management suite
- Oracle Access Manager 10g

OFM 11g components:
- Oracle WebLogic Server
- Oracle ADF
- Oracle WebCenter
- Oracle SOA Suite
- Oracle Identity Management
- Oracle portal, forms, reports, and Discoverer
- Oracle Web tier components
4 FILE SYSTEM LAYOUT

This section describes the file system layout for the OFM 11g components. For example, for this validation, the product suites used are the Oracle SOA and the Oracle Identity Management Product suite. The validation is done using the Oracle Enterprise Deployment Guide Topologies.

Similarly, this recommended structure can be used for other components.

4.1 DIRECTORY STRUCTURE FOR SOA COMPONENT

Figure 1 depicts the recommended directory structure for the OFM 11g – SOA component.

![Diagram of directory structure for SOA]

Figure 1) Directory structure for SOA.

In Figure 1, domain_name is a directory with a name that is deployment dependent. Everything in this directory applies to the “application tier” of the EDG. The Weblogic domain is also present under this directory.

Similarly, instance_name is a deployment-dependent directory, and everything in this directory applies to the “Web tier” of the EDG. The Oracle instance resides under this directory. In this case, the Oracle instance includes the Oracle HTTP server.
4.2 VOLUMES FOR SOA

Table 2) SOA volumes.

<table>
<thead>
<tr>
<th>Tier</th>
<th>Volume Name</th>
<th>Mounted on Host</th>
<th>Mountpoint</th>
<th>Volume Used For</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web</td>
<td>VOLWEB1</td>
<td>WEBHOST1</td>
<td>/u01/app/oracle/product/fmw/web</td>
<td>Oracle HTTP Server installation</td>
</tr>
<tr>
<td>Web</td>
<td>VOLWEB2</td>
<td>WEBHOST2</td>
<td>/u01/app/oracle/product/fmw/web</td>
<td>Oracle HTTP Server installation</td>
</tr>
<tr>
<td>Web</td>
<td>VOLWEBINST1</td>
<td>WEBHOST1</td>
<td>/u01/app/oracle/admin/ohs_instance</td>
<td>Oracle HTTP Server instance</td>
</tr>
<tr>
<td>Web</td>
<td>VOLWEBINST2</td>
<td>WEBHOST2</td>
<td>/u01/app/oracle/admin/ohs_instance</td>
<td>Oracle HTTP Server instance</td>
</tr>
<tr>
<td>Web</td>
<td>VOLSTATIC1</td>
<td>WEBHOST1</td>
<td>/u01/app/oracle/admin/ohs_instance/config/static</td>
<td>Static HTML content</td>
</tr>
<tr>
<td>Web</td>
<td>VOLSTATIC2</td>
<td>WEBHOST2</td>
<td>/u01/app/oracle/admin/ohs_instance/config/static</td>
<td>Static HTML content</td>
</tr>
<tr>
<td>Application</td>
<td>VOLFMW1</td>
<td>SOAHOST1</td>
<td>/u01/app/oracle/product/fmw</td>
<td>WebLogic Server and Oracle SOA Suite binaries</td>
</tr>
<tr>
<td>Application</td>
<td>VOLFMW2</td>
<td>SOAHOST2</td>
<td>/u01/app/oracle/product/fmw</td>
<td>WebLogic Server and Oracle SOA Suite binaries</td>
</tr>
<tr>
<td>Application</td>
<td>VOLADMIN</td>
<td>SOAHOST1</td>
<td>/u01/app/oracle/admin/soaDomain/admin</td>
<td>Administration Server domain directory</td>
</tr>
<tr>
<td>Application</td>
<td>VOLSOA1</td>
<td>SOAHOST1</td>
<td>/u01/app/oracle/admin/soaDomain/mng1</td>
<td>Managed Server domain directory</td>
</tr>
<tr>
<td>Application</td>
<td>VOLSOA2</td>
<td>SOAHOST2</td>
<td>/u01/app/oracle/admin/soaDomain/mng2</td>
<td>Managed Server domain directory</td>
</tr>
<tr>
<td>Application</td>
<td>VOLDATA</td>
<td>SOAHOST1, SOAHOST2</td>
<td>/u01/app/oracle/admin/soaDomain/soaCluster/jms /u01/app/oracle/admin/soaDomain/soaCluster/tlogs</td>
<td>Transaction logs and JMS data</td>
</tr>
</tbody>
</table>

The volumes for static HTML data are optional; Oracle Fusion Middleware can operate normally without it.
4.3 SOA EDG TOPOLOGY
Figure 2 depicts the SOA EDG topology for which the above directory structure has been used. The DR solution used in this validation deployed this topology at each site.

Figure 2) SOA EDG topology (graphics supplied by Oracle).
4.4 DIRECTORY STRUCTURE FOR IDM COMPONENT

Figure 3 depicts the directory structure used for the IDM Suite used in the DR validation.

In Figure 3, domain_name and applications are directories under user_projects. The domain_name has a name that is deployment dependent. Everything in this directory applies to the "application tier" of the IDM EDG. The Weblogic domain is present in this directory.

Similarly, instance_name is a deployment-dependent directory, and everything under it applies to the "Web tier" and the "data tier" of the IDM EDG. The Oracle Instance resides under this directory. It includes the Oracle HTTP server in the Web tier and the Oracle Internet Directory and Oracle Virtual Directory in the data tier.
4.5 VOLUMES FOR IDM

Table 3) IDM volumes.

<table>
<thead>
<tr>
<th>Tier</th>
<th>Volume Names</th>
<th>Mounted on Nodes</th>
<th>Mountpoint</th>
<th>Volume Used For</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web</td>
<td>VOLWEB1</td>
<td>WEBHOST1</td>
<td>/u01/app/oracle/product/fmw/web</td>
<td>Volume for Oracle HTTP Server installations</td>
</tr>
<tr>
<td>Web</td>
<td>VOLWEB2</td>
<td>WEBHOST2</td>
<td>/u01/app/oracle/product/fmw/web</td>
<td>Oracle HTTP Server installations</td>
</tr>
<tr>
<td>Web</td>
<td>VOLWEBINST1</td>
<td>WEBHOST1</td>
<td>/u01/app/oracle/admin/ohs_instance</td>
<td>Oracle HTTP Server instances</td>
</tr>
<tr>
<td>Web</td>
<td>VOLWEBINST2</td>
<td>WEBHOST2</td>
<td>/u01/app/oracle/admin/ohs_instance</td>
<td>Oracle HTTP Server instances</td>
</tr>
<tr>
<td>Web</td>
<td>VOLSTATIC1(^1)</td>
<td>WEBHOST1</td>
<td>/u01/app/oracle/admin/ohs_instance/config/static</td>
<td>static HTML content</td>
</tr>
<tr>
<td>Web</td>
<td>VOLSTATIC2(^2)</td>
<td>WEBHOST2</td>
<td>/u01/app/oracle/admin/ohs_instance/config/static</td>
<td>static HTML content</td>
</tr>
<tr>
<td>Application</td>
<td>VOLIDM1</td>
<td>IDMHOST1</td>
<td>/u01/app/oracle/product/fmw</td>
<td>Identity Management Middleware homes</td>
</tr>
<tr>
<td>Application</td>
<td>VOLIDM2</td>
<td>IDMHOST2</td>
<td>/u01/app/oracle/product/fmw</td>
<td>Identity Management Middleware homes</td>
</tr>
<tr>
<td>Application</td>
<td>VOLIDMINST1</td>
<td>IDMHOST1</td>
<td>/u01/app/oracle/admin</td>
<td>Oracle instances</td>
</tr>
<tr>
<td>Application</td>
<td>VOLIDMINST2</td>
<td>IDMHOST2</td>
<td>/u01/app/oracle/admin</td>
<td>Oracle instances</td>
</tr>
<tr>
<td>Application</td>
<td>VOLOAM1</td>
<td>OAMHOST1</td>
<td>/u01/app/oracle/product/fmw/oam</td>
<td>Oracle Access Manager Identity Server and Access Server homes</td>
</tr>
<tr>
<td>Application</td>
<td>VOLOAM2</td>
<td>OAMHOST2</td>
<td>/u01/app/oracle/product/fmw/oam</td>
<td>Oracle Access Manager Identity Server and Access Server homes</td>
</tr>
<tr>
<td>Application</td>
<td>VOLOAMADMIN</td>
<td>OAMADMIN HOST</td>
<td>/u01/app/oracle</td>
<td>Oracle Access Manager administration components</td>
</tr>
<tr>
<td>Directory</td>
<td>VOLOID1</td>
<td>OIDHOST1</td>
<td>/u01/app/oracle/product/fmw/idm</td>
<td>Oracle Internet Directory homes</td>
</tr>
<tr>
<td>Directory</td>
<td>VOLOID2</td>
<td>OIDHOST2</td>
<td>/u01/app/oracle/product/fmw/idm</td>
<td>Oracle Internet Directory homes</td>
</tr>
<tr>
<td>Directory</td>
<td>VOLOIDINST1</td>
<td>OIDHOST1</td>
<td>/u01/app/oracle/admin</td>
<td>Oracle Internet Directory instances</td>
</tr>
<tr>
<td>Directory</td>
<td>VOLOIDINST2</td>
<td>OIDHOST2</td>
<td>/u01/app/oracle/admin</td>
<td>Oracle Internet Directory instances</td>
</tr>
<tr>
<td>Directory</td>
<td>VOLOVD1</td>
<td>OVDHOST1</td>
<td>/u01/app/oracle/product/fmw/idm</td>
<td>Oracle Virtual Directory homes</td>
</tr>
<tr>
<td>Directory</td>
<td>VOLOVD2</td>
<td>OVDHOST2</td>
<td>/u01/app/oracle/product/fmw/idm</td>
<td>Oracle Virtual Directory homes</td>
</tr>
<tr>
<td>Directory</td>
<td>VOLOVDINST1</td>
<td>OVDHOST1</td>
<td>/u01/app/oracle/admin</td>
<td>Oracle Virtual Directory instances</td>
</tr>
<tr>
<td>Directory</td>
<td>VOLOVDINST2</td>
<td>OVDHOST2</td>
<td>/u01/app/oracle/admin</td>
<td>Oracle Virtual Directory instances</td>
</tr>
</tbody>
</table>

\(^1\) This volume for static HTML data is optional. Oracle Fusion Middleware will operate normally without it. See http://download.oracle.com/docs/cd/E15523_01/doc.1111/e15250/creating_sites.htm#sthref588.

\(^2\) See http://download.oracle.com/docs/cd/E15523_01/doc.1111/e15250/creating_sites.htm#sthref589.
Figure 4 represents the IDM EDG topology in which the above directory structure has been used.

Figure 4) IDM EDG topology (graphics supplied by Oracle).
5 CONSISTENCY GROUPS

Consistency Group is a storage-level view of applications data stored in multiple volumes or controllers. Consistency groups are typically used in database applications where logs and database are part of the same consistency group. In this case, the database cannot get ahead of the logs as the writes are all ordered. Consistency groups are collections of objects that allow an administrator to take consistent point in time copies of, for example, volumes today and LUNs, files, block ranges in the future.

There are two levels of consistency:

- **Application Consistency**
 - Consistent copies are created after applications are gracefully shut down, quiesced, or put in hot backup mode
 - Provides application-defined benefits such as media recovery

- **Crash Consistency**
 - Creates point-in-time copy of storage that is usable with crash recovery applications
 - Creates crash consistent copies without coordinating with applications. However, write ordering is maintained for dependent writes in Snapshot copies across volumes.

Consistency Group can be enabled by running the following APIs from any servers where NetApp volumes are mounted:

- **cg-start**
 - Fences all writes for a volume per controller
 - Freezes volume contents during write fencing to prevents writes
 - Returns fencing success or failure
 - If fencing is successful, it continues with Snapshot copy creation based on frozen contents

- **cg-commit**
 - Unfences volumes after start of WAFL® Consistency Point (CP) to create a Snapshot copy
 - Returns success after creating a Snapshot copy
 - Snapshot copies created using the `cg-start` and `cg-commit` commands are replicated the same way as other Snapshot copies. No special handling exists for CG Snapshot copies.
 - Volume SnapMirror maintains a mirror of all Snapshot copies at the destination

Consistency Group (CG) is composed of three parts—Part 1 is the main library of the API, part 2 is the Perl script that calls the API libraries, and part 3 is the configuration file that lists the volumes and storage arrays in which these volumes reside.

It is important to note that part 2 and part 3 should be named to something meaningful and their names should correlate to each other.

Example:

Group 1 – Volumes VOLADMIN, VOLSOA1, VOLSOA2

Group 2 – Volumes VOLDATA

The following example shows the creation of four files, that is—two `create<>`.pl and two `config` files.

Group 1 would consist of `Cg_create_DOMAGROUP.pl` and `DOMAGROUP.cfg`

Group 2 would consist of `Cg_create_DATAGROUP.pl` and `DATAGROUP.cfg`

There is only one item to modify within `Cg_create<>.pl`. If there are multiple files, create multiple consistency groups.
1. To create files, copy the original Cg_create<> .pl:
 For example:

 \[
 \text{cp Cg_create<>.pl Cg_create_DOMAINGROUP.pl}
 \]

2. Modify Cg_create_DOMAINGROUP .pl as follows:
 i. Using VI open Cg_create_DOMAINGROUP .pl
 ii. Edit line #8 to change:

 \[
 \text{open("CFG","cg.cfg" || die "Can't open config file: $!");}
 \]
 to

 \[
 \text{open("CFG"," DATAGROUP.cfg " || die "Can't open config file: $!");}
 \]

3. Change cg .cfg to the configuration file name created:
 \[
 \text{cp cf.cfg DOMAINGROUP.cfg vi DOMAINGROUP.cfg}
 \]

4. Enter the storage and volume information:

<table>
<thead>
<tr>
<th>Config file ...</th>
<th>FilerName</th>
<th>User</th>
<th>Password</th>
<th>Timeout</th>
<th>Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>atlnetapp5</td>
<td>orabk</td>
<td>orabk</td>
<td>relaxed</td>
<td>VOLADMIN, VOLSOA1, VOLSOA2</td>
</tr>
</tbody>
</table>

5. If multiple storage arrays are used, add a second line:

<table>
<thead>
<tr>
<th>Config file ...</th>
<th>FilerName</th>
<th>User</th>
<th>Password</th>
<th>Timeout</th>
<th>Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>atlnetapp5</td>
<td>orabk</td>
<td>orabk</td>
<td>relaxed</td>
<td>VOLADMIN, VOLSOA1</td>
</tr>
<tr>
<td></td>
<td>atlnetapp6</td>
<td>orabk</td>
<td>orabk</td>
<td>relaxed</td>
<td>VOLSOA2</td>
</tr>
</tbody>
</table>

6. To execute from GridControl, cron or any desired scheduler, use the following syntax:
 \[
 \text{perl Cg_create<> .pl <Snapshot copy_name>}
 \]

 [oracle@at146004] [asmdb4] [~/cg]$ perl Cg_create_DOMAINGROUP .pl cgsnap_ `date + m%d%y%H%M`

 Input XML:
 <cg-start>
 <snapshot>snapshot</snapshot>
 <timeout>relaxed</timeout>
 <volumes>
 <volume-name>VOLADMIN</volume-name>
 <volume-name>VOLSOA1</volume-name>
 <volume-name>VOLSOA2</volume-name>
 </volumes>
 </cg-start>

 Output XML1:
 <results status="passed">
 <cg-id>228</cg-id>
 </results>

 Commit XML2:
 <results status="passed"></results>

When you execute Cg_create_DOMAINGROUP .pl it parses the DOMAINGROUP .cfg configuration file and passes the information to NetApp APIs to create a single name Snapshot copy that spans multiple volumes/controllers.
5.1 CONSISTENCY GROUPS FOR SOA EDG

The volumes created earlier are grouped together into consistency groups as shown in Table 4.

Table 4) SOA EDG consistency groups.

<table>
<thead>
<tr>
<th>Tier</th>
<th>Group Name</th>
<th>Members</th>
<th>Consistency Group Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>DOMAINGROUP</td>
<td>VOLADMIN, VOLSOA1, VOLSOA2</td>
<td>Consistency group for the Administration Server, Managed Server domain directory</td>
</tr>
<tr>
<td>Application</td>
<td>DATAGROUP</td>
<td>VOLDATA</td>
<td>Consistency group for the JMS file store and transaction log data</td>
</tr>
<tr>
<td>Application</td>
<td>FMWHOMEGROUP</td>
<td>VOLFMW1, VOLFMW2</td>
<td>Consistency group for the Middleware homes</td>
</tr>
<tr>
<td>Web</td>
<td>WEBHOMEGROUP</td>
<td>VOLWEB1, VOLWEB2</td>
<td>Consistency group for the Oracle HTTP Server Oracle homes</td>
</tr>
<tr>
<td>Web</td>
<td>WEBINSTANCEGROUP</td>
<td>VOLWEBINST1, VOLWEBINST2, VOLSTATIC1, VOLSTATIC2</td>
<td>Consistency group for the Oracle HTTP Server Oracle instances</td>
</tr>
</tbody>
</table>

5.2 CONSISTENCY GROUPS FOR IDM EDG

The volumes created earlier are grouped together into consistency groups as shown in Table 5.

Table 5) IDM EDG consistency groups.

<table>
<thead>
<tr>
<th>Tier</th>
<th>Group Name</th>
<th>Members</th>
<th>Consistency Group Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directory</td>
<td>OIDHOMEGROUP</td>
<td>VOLOID1, VOLOID2</td>
<td>Oracle Internet Directory Oracle homes</td>
</tr>
<tr>
<td>Directory</td>
<td>OIDINSTGROUP</td>
<td>VOLOIDINST1, VOLOIDINST2</td>
<td>Oracle Internet Directory Oracle instances</td>
</tr>
<tr>
<td>Directory</td>
<td>OVDHOMEGROUP</td>
<td>VOLOVD1, VOLOVD2</td>
<td>Oracle Virtual Directory Oracle homes</td>
</tr>
<tr>
<td>Directory</td>
<td>OVDINSTGROUP</td>
<td>VOLOVDINST1, VOLOVDINST2</td>
<td>Oracle Virtual Directory Oracle instances</td>
</tr>
<tr>
<td>Application</td>
<td>IDMMWGROUP</td>
<td>VOLIDM1, VOLIDM2</td>
<td>Middleware homes</td>
</tr>
<tr>
<td>Application</td>
<td>IDMINSTGROUP</td>
<td>VOLIDM1, VOLIDM2</td>
<td>Identity Management instances</td>
</tr>
<tr>
<td>Application</td>
<td>OAMGROUP</td>
<td>VOLOAM1, VOLOAM2</td>
<td>Oracle Access Manager Identity Server and Access Server homes</td>
</tr>
<tr>
<td>Application</td>
<td>OAMADMINGROUP</td>
<td>VOLOAMADMIN</td>
<td>Oracle Access Manager administration host components</td>
</tr>
<tr>
<td>Tier</td>
<td>Group Name</td>
<td>Members</td>
<td>Consistency Group Elements</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Web</td>
<td>WEBHOMEGROUP</td>
<td>VOLWEB1 VOLWEB2</td>
<td>Oracle HTTP Server Oracle homes</td>
</tr>
<tr>
<td>Web</td>
<td>WEBINSTGROUP</td>
<td>VOLWEBINST1 VOLWEBINST2 VOLSTATIC1 VOLSTATIC2</td>
<td>Oracle HTTP Server Oracle instances</td>
</tr>
</tbody>
</table>

6 PLANNED AND UNPLANNED DOWNTIME

6.1 PERFORMING A PLANNED SWITCHOVER

When you plan to take down the production site (for example, to perform maintenance) and make the current standby site the new production site, you must perform a switchover operation so that the standby site takes over the production role.

Follow these steps to perform a switchover operation:

1. Shut down any processes that are still running on the production site. This includes the database instances in the data tier, Oracle Fusion Middleware instances, and any other related processes in the application tier and Web tier.

2. Stop the replication (SnapMirror relationship) between the production site NetApp storage system and the standby site.

3. Use Oracle Data Guard to switch over the database(s).

4. On the standby site hosts, manually start all processes. This includes the database instances in the data tier, Oracle Fusion Middleware instances and any other processes in the application and Web tier.

5. Make sure that all user requests are routed to the standby site by performing a global DNS push or something similar, such as updating the global load balancer.

6. Use a browser client to perform postswitchover application testing to confirm that requests are being resolved and redirected to the standby site.

 At this point, the former standby site is the new production site, and the former production site is the new standby site.

7. Reestablish the replication between the two sites, but configure the replication so that the Snapshot copies go in the opposite direction (from the current production site to the current standby site). Refer to the documentation for your shared storage to learn how to configure the replication so that Snapshot copies are transferred in the opposite direction.

After these steps have been performed, the former standby site is the new production site and the former production site is the new standby. At this point, you can perform maintenance (if any) at the new standby site.

6.2 PERFORMING A SWITCHBACK

After a switchover operation has been performed, a switchback operation can be performed to revert the current production site and the current standby site to the roles they had prior to the switchover operation.

Follow these steps to perform a switchback operation:

1. Shut down any processes running on the current production site. This includes the database instances in the data tier, Oracle Fusion Middleware instances, and any other processes in the application and Web tier.

2. Stop the replication (SnapMirror relationship) between the production site NetApp storage system and the standby site.
3. Use Oracle Data Guard to switch back the databases.

4. On the new production site hosts, manually start all processes. This includes the database instances in the data tier, Oracle Fusion Middleware instances, and any other processes in the application tier and Web tier.

5. Make sure that all user requests are routed to the new production site by performing a global DNS push or something similar, such as updating the global load balancer.

6. Use a browser client to perform postswitchback testing to confirm that requests are being resolved and redirected to the new production site.

7. At this point, the former standby site is the new production site and the former production site is the new standby site.

8. Reestablish the replication between the two sites, but configure the replication so that the Snapshot copies go in the opposite direction (from the new production site to the new standby site). Refer to the documentation for your shared storage to learn how to configure the replication so that Snapshot copies are transferred in the opposite direction.

6.3 PERFORMING AN UNPLANNED FAILOVER

When the production site becomes unavailable unexpectedly, you must perform a failover operation so that the standby site takes over the production role.

Follow these steps to perform a failover operation:

1. Stop the replication (SnapMirror relationship) between the production site NetApp storage system and the standby site. From the standby site, use Oracle Data Guard to fail over the databases.

2. On the standby site hosts, manually start all processes. This includes the database instances in the data tier, Oracle Fusion Middleware instances, and any other processes in the application and Web tier.

3. Make sure that all user requests are routed to the standby site by performing a global DNS push or something similar, such as updating the global load balancer.

4. Use a browser client to perform postfailover testing to confirm that requests are being resolved and redirected to the production site.

5. At this point, the standby site is the new production site. You can examine the issues that caused the former production site to become unavailable.

6. To use the original production site as the current standby site, you must reestablish the replication between the two sites, but configure the replication so that the Snapshot copies go in the opposite direction (from the current production site to the current standby site). Refer to the documentation for your shared storage system to learn how to configure the replication so that Snapshot copies are transferred in the opposite direction.
7 SCREEN CAPTURES

Figures 5 through 8 depict the switchover and failover process.

Figure 5) SOA server is installed and running on the primary site.

Figure 6) All processes up and running in the primary site.
Figure 7) Shutting down all processes running on the primary site.

To Check the Mirror Status

```
bash-3.00$ rsh strecstor02 snapmirror status strecstor02:fmw11gr1vol01 connect to address 139.185.135.217: Connection refused Trying krb4 rsh... connect to address 139.185.135.217: Connection refused trying normal rsh (/usr/bin/rsh) Snapmirror is on.
Source        Destination      State        Lag         Status
strecstor01:fmw11gr1vol01 strecstor02:fmw11gr1vol01 Broken-off 362:20:49 Pending
strecstor02:fmw11gr1vol01 strecstor01:fmw11gr1vol01 Source       171:28:54 Idle
bash-3.00$ 
```
To Resync the Mirror

```
bash-3.00$ rsh stresstor02 snapmirror resync -S stresstor01:fwul1gr1vol14 -u stresstor02:fwul1gr1vol14
cannot connect to address 133.105.135.217: Connection refused
Trying krb4 rsh...
cannot connect to address 133.105.135.217: Connection refused
Trying normal rsh (/usr/bin/rsh)
The resync base snapshot will be: stresstor02(01:35022781).fwul1gr1vol14.4
These older snapshots have already been deleted from the source
and will be deleted from the destination
stresstor02(01:35022781).fwul1gr1vol14.1
Are you sure you want to resync the volume? (yes/no) yes
Volume fwul1gr1vol14 will be briefly unavailable before coming back online.
Resync to resync base snapshot was successful.
Transfer started.
Monitor progress with 'snapmirror status' or the snapmirror log.
Transfer successful.
bash-3.00$
```

To Update the Mirror

```
bash-3.00$ rsh stresstor02 snapmirror update -S stresstor01:fwul1gr1vol14 -u stresstor02:fwul1gr1vol14
cannot connect to address 133.105.135.217: Connection refused
Trying krb4 rsh...
cannot connect to address 133.105.135.217: Connection refused
Trying normal rsh (/usr/bin/rsh)
Transfer started.
Monitor progress with 'snapmirror status' or the snapmirror log.
Transfer successful.
bash-3.00$
```

To Break the Mirror

```
bash-3.00$ rsh stresstor02 snapmirror break stresstor02:fwul1gr1vol14
Cannot connect to address 133.105.135.217: Connection refused
Trying normal rsh (/usr/bin/rsh)
snapmirror break? Destination fwul1gr1vol14 is recoverable.
Volume size is being reduced for potential snapmirror resync. [if you would like to grow the volume and not expect to resync, set vol option fs.size if fixed t]
0 off.
bash-3.00$
```
Start all the processes after the switchover and verify the EM console. The EM console is the Fusion Middleware console that manages Fusion Middleware domains.

![EM console](image.png)

Figure 8 EM console.

8 CONCLUSION

NetApp SnapMirror simplifies the Oracle Fusion Middleware replication process; the use of storage-level mirroring allows the copies to be created quickly, efficiently, and independently of the server. This maximizes the resources on the source server available for production/online use. The mirroring can also be started in advance so that only the last incremental changes need to be transferred during cloning, thus shortening the whole process.

This DR solution provides an optimal process for Oracle Fusion Middleware replication. This in turn enables flexibility in setting the frequency of cloning to satisfy the cloning requirements of the enterprise, be it for development, testing, reporting, or whatever the case may be. SnapMirror is easy to set up, configure, maintain and, most important, is cost-effective as a mirroring solution.

Using NetApp storage systems and SnapMirror in conjunction with Oracle DataGuard greatly simplifies and speeds up the Oracle Fusion Middleware replication process. This provides users with the maximum benefit out of their investment in the overall system.

ACKNOWLEDGEMENTS

Shilpa Shree and Shailesh Dwivedi, Oracle Neto, Bill Heffelfinger, Lynne Thieme, Steve Schuettinger, Generosa Litton, and Esther Smitha, NetApp
APPENDIX A: REFERENCES
High Availability Guide
Disaster Recovery Guide
Enterprise Deployment Guide for Oracle WebCenter
Enterprise Deployment Guide for Oracle SOA Suite
Enterprise Deployment Guide for Oracle Identity Management
http://download.oracle.com/docs/cd/E15523_01/doc.1111/e15250/creating_sites.htm#BABGJFDC

APPENDIX B: SCRIPTS

CREATE_CG_SNAPS
This script creates a consistency group Snapshot copy.

#!/opt/local/bin/perl
use lib "NetApp";
use NaServer;
use NaElement;
sub open_cfg {
 open("CFG","cg.cfg" || die "Can't open config file: $!");
 while(<CFG>) {
 chomp;
 if(!/^#/ || /^FilerName/) {
 next;
 }
 @cfgline = split /s+/;
 push(@FILERLIST,[@cfgline]);
 }
 close(CFG);
}
&open_cfg;
$snapname = shift;
&loop_cgstart;
&loop_cgcommit;
sub loop_cgstart() {
 for $i (0 .. $#FILERLIST) {
 &cg_start @{$FILERLIST[$i]};
 }
}
sub loop_cgcommit() {
 for $i (0 .. $#FILERLIST) {
 &cg_commit @{$FILERLIST[$i]};
 }
}
sub cg_start() {

$filename = $FILERLIST[$i][0];
$username = $FILERLIST[$i][1];
$password = $FILERLIST[$i][2];
$timeout = $FILERLIST[$i][3];
@volumes = split("","$FILERLIST[$i][4]);

cchomp ($filename);
chomp ($username);
chomp ($password);
chomp ($timeout);
chomp ($snapname);
chomp (@volumes);
my $zapicon = NaServer->new($filename, 1, 3);

$zapicon->set_style(LOGIN_PASSWORD);
$zapicon->set_admin_user($username, $password);

if (!defined($zapicon))
{
 print "Connection to $filename failed.\n"
 exit 2;
}

$zapicon->set_transport_type(NA_SERVER_TRANSPORT_HTTP);
if (!defined($zapicon))
{
 print "Unable to set HTTP transport.\n"
 exit 2;
}

my $zapicmd = NaElement->new("cg-start");
$zapicmd->child_add_string("snapshot",$snapname);
$zapicmd->child_add_string("timeout",$timeout);

my $volumecount = @volumes;
chomp (@volumes);
my $zapivols = NaElement->new("volumes");
while ($volumecount > 0) {
 $zapivols->child_add_string("volume-name",shift(@volumes));
 $volumecount--;
}
$zapicmd->child_add($zapivols);

my $zapiin=$zapicmd->sprintf();
print "Input XML:\n$zapiin\n";

my $zapiout = $zapicon->invoke_elem($zapicmd);
my $zapiout=$zapiout->sprintf();
print "Output XML:\n$zapiout\n";
@precgid = split("<cg-id/>","$zapiout");
@cgid = split("</cg-id/>","$precgid[1]);
$cgid = @cgid[0];
$filenames{$i} = $cgid;
&loop_cgcommit;
}
sub cg_commit{
}
$_filename = $FILERLIST[$i][0];
$username = $FILERLIST[$i][1];
$password = $FILERLIST[$i][2];
$timeout = $FILERLIST[$i][3];
@volumes = split("," , $FILERLIST[$i][4]);

chomp ($filename);
chomp ($username);
chomp ($password);
chomp ($timeout);
chomp ($snapname);
chomp (@volumes);

my $zapicon = NaServer->new($filename, 1, 3);
$zapicon->set_style(LOGIN_PASSWORD);
$zapicon->set_admin_user($username, $password);

if (!defined($zapicon))
{
 print "Connection to $filename failed.\n";
 exit 2;
}

$zapicon->set_transport_type(NA_SERVER_TRANSPORT_HTTP);
if (!defined($zapicon))
{
 print "Unable to set HTTP transport.\n";
 exit 2;
}

$cgid = $filenames[$i];
print "\n\n";
my $zapiout = $zapicon->invoke("cg-commit", "cg-id", $cgid);
my $zapiout = $zapiout->sprintf();
print "Commit XML2:\n$zapiout \n";

sub syntax_printer()
{
 print "USAGE: !$ <snapshot name> <config file>\n";
 exit 0;
}
NetApp provides no representations or warranties regarding the accuracy, reliability or serviceability of any information or recommendations provided in this publication, or with respect to any results that may be obtained by the use of the information or observance of any recommendations provided herein. The information in this document is distributed AS IS, and the use of this information or the implementation of any recommendations or techniques herein is a customer’s responsibility and depends on the customer’s ability to evaluate and integrate them into the customer’s operational environment. This document and the information contained herein may be used solely in connection with the NetApp products discussed in this document.

© Copyright 2010 NetApp, Inc. All rights reserved. No portions of this document may be reproduced without prior written consent of NetApp, Inc. NetApp, the NetApp logo, Go further, faster, Data ONTAP, FlexClone, FlexVol, SnapMirror, Snapshot, and WAFL are trademarks or registered trademarks of NetApp, Inc. in the United States and/or other countries. Oracle is a registered trademark of Oracle Corporation. Linux is a registered trademark of Linus Torvalds. Intel and Xeon are registered trademarks of Intel Corporation. All other brands or products are trademarks or registered trademarks of their respective holders and should be treated as such.