How Oracle Exadata and Database In-Memory Power Precision Marketing at General Mills

Joshua Moe - Solution Architect
Mark Donohue - DBA

October 28, 2015
Agenda

• General Mills History
• Business Case
• Capabilities delivered
• Oracle Exadata Experience
• Oracle Database In-Memory Experience
• Lessons Learned
A Heritage of Innovation & Brand Building

1866
Cadwallader Washburn builds first flour mill

1869
Charles Pillsbury invests in first Minneapolis mill

1912
Betty Crocker created

1921
Cheeri Oats debut

1924
General Mills stock trades

1928
Wheaties launches as Whole Wheat Flakes

1941
James Ford Bell Research Center opens

1977
Häagen-Dazs goes international (Japan)

1984
U.S. licensing rights to Yoplait are acquired

1990
CPW joint venture launched

2001
Yoplait acquisition

2011
Yoki acquisition

2012
General Mills completes purchase of cross-town rival Pillsbury

2013
Yoki acquisition

2014
Wheaties launches as Whole Wheat Flakes

1866
Pillsbury's BEST XXXX

1921
Annies's HOMEGROWN

1924
CPW

1941
Häagen-Dazs

1977
Yoplait

1984
IMMACULATE WHEAT FLOUR

2001
JIMMY'S HAPPY SOURDOUGH BREAD
Who we are Today

• One of the world’s largest food companies
• Products marketed in more than 100 countries on six continents
• 42,000 employees
• $17.6 billion in fiscal 2015 net sales*
Business Case

- In-Source existing Marketing Data Warehouse
- Create a Consumer-Centric Data Warehouse
- Capture consumer driven activity
 - Marketing Campaigns
 - Reporting
- Better Understand Consumer behavior
 - Personalized Campaigns
 - Content Personalization
Original Solution Pain Points

• Poor Vendor Response
 • Changes were slow and expensive to implement
 • Limited control over our data
• Performance insufficient to make business-driving marketing decisions:
 • While on Exadata, schema design was inefficient
 • Sizing/configuration sub-optimal
 • Server was oversubscribed with many other customer databases
• Business users demanded access to full dataset
• Difficult to add more data sets
• Desire to support more ad-hoc queries
New Capabilities Desired

• Improved overall database performance
• Effective ad-hoc querying
• Full control of our data
• Add more data sources
• Near real-time data ingestion, instead of batch-only
• Develop more effective and efficient marketing campaigns
• Identify consumer preferences
• Statistics-based processing to identify trends for General Mills brands
Limited Data Retention due to data volume constraints
Final Configuration

Internal Exadata X4-2 ¾ Rack
Oracle 12c
150 GB IN-MEMORY per node

Web Activity
Email Newsletter Campaign Activity
Internal Transactional DB’s
3rd Party & Vendor Data
Additional data & Scoring

Marketing Campaigns
Reporting & Analytics
3rd Party Tools
Experiments
Capabilities Delivered

- Dedicated development team
- Fast turn-around for changes and adding of new data
- Users querying ad-hoc due to big performance boost
- More complete data model
- Greater data retention
- Near real-time loading
- Foundation of next-generation Marketing capabilities
- More projects planned that were never possible before
Technical Solution

- Migrated to Oracle Database 12c on Exadata X4-2 ¼ Rack (in-house)
 - 2 RAC nodes with 24 core, 512 GB RAM per node
 - 3 storage cells with 144 TB total
- Version: Oracle 12.1.0.2 on Oracle Linux 5
- Oracle Database In-Memory
- Advanced (OLTP) Compression
- Near real-time data loads (vs overnight batch)
- Triple the volume of Data
 - More data (5 TB and growing), but better compression
 - Several fact tables over 10 billion
- **50X** improvement on reports and ad-hoc queries
 - Reports that took days now return in less than 1 hour
- Production as of March 2015
Our Exadata Experience

- First Exadata for General Mills
- Lives up to the hype for Data Warehouse/Mart
- Drastically shortened development cycle
- Minimal performance tuning needed
- Minimal indexing required
- Storage indexes/caching really work
- Excellent Oracle SCP (Strategic Customer Program) engagement – very helpful
Exadata Tips

• Design for success
 • Partitioning – HASH or RANGE-HASH, not too fine-grained
 • Compression – use HCC whenever possible
 • Parallelism – use Auto DOP, Resource Manager if required
• Use good general data mart design practices
• Partition-swap loading, where possible
• HCC for bulk-load only (insert /*+append*/)
• OLTP compression for everything else
Parallelism Challenges

- Tuning Auto DOP for mixed workload (app, batch, ad-hoc)
- When queries don’t fetch all rows
 - Sessions holds on to parallel worker processes
 - Chokes out parallel workload from other sessions
 - Primarily ad-hoc queries
- End user tools:
 - Oracle SQL Developer
 - PL/SQL Developer
 - SQL Workbench
Parallelism Challenges

CONSUME
ALL THE THREADS!

EXADATA
WHY SO SLOW?
Parallelism Tips

- AUTO DOP needed for In-Memory
 - Recommended for Exadata in general
- PARALLEL_DEGREE_LIMIT alleviated some queuing
- Resource Manager gave better control
- User Training! Close session, or run “select 1 from dual”
- Higher degree = more PGA
 - 2 GB per process limit, by default
 - Parallelism helps “unlock” more PGA per query
Database In-Memory

Normal Buffer Cache

SALES
Row Format

New In-Memory Format

SALES
Column Format

Row Format

Column Format
• In-Memory column store on DB nodes only
• Each node has its own In-Memory column store
• Table data distributed across nodes
 • Requires Parallel Execution
• Similar benefits to Exadata smart scan
 • Access only the columns need for query
 • Storage indexes prune out unnecessary data
 • Scans & filters data in compressed format
In-Memory Challenges

- Partitioned table with 1 partition on only 1 RAC node
 - `ALTER TABLE abc.xyz MODIFY PARTITION PART_1 INMEMORY DISTRIBUTED BY ROWID RANGE;`

- Still a new product
 - Continued enhancements and bug fixes
 - Partnership with Oracle very beneficial for feedback on improvements

- If join/sort/aggregate spills to TEMP, performance suffers
 - Allocate enough PGA and parallel processes
In-Memory Tips

• HASH partitioning for even distribution across RAC nodes
• Dedicate enough memory to PGA
 • PGA_AGGREGATE_TARGET
• Understand your workload
 • Ad-hoc, batch, applications, etc…
 • Use your in-memory area most effectively
• SQL Monitor reports very helpful for troubleshooting
• In-Memory advisor
 • New advisor from Oracle
 • Recommends which tables benefit most
Slowly Changing Dimensions

- We used SCD “Type 2” most heavily
 - Start & end dates for records
 - History and current stored in same table

- Advantages
 - Precise historical data easily accessible
 - Current state available through simple view (WHERE current_fg='Y')

- Disadvantages
 - Complex merge/update loads
 - More complicated when transactions arrive out of chronological order
 - HCC not feasible (OLTP compression instead)
 - Performance on both loads and queries can suffer

- Recommendation
 - Use for small dimension tables
 - When data volume too high, look for alternate ways of storing history
Other ETL Learnings

• Understand your ETL tools
 • Had poor performance with our chosen ETL tool
 • Reverted to using PL/SQL, external tables, and database links
 • Better bulk-load performance
 • Partition swapping
 • More precise control over loading processes (like SCD)

• Messaging sources where order not guaranteed
 • Duplicates possible when using guaranteed delivery
 • Can receive data out-of-order
 • Re-ordering records complicates loads
Other Development Experiences

- 12c JSON parsing functionality very useful
 - Loading large JSON files via external tables
- 12c online bulk load stats gathering
 - Saves time and simplifies load jobs
- HCC works great, but not for updates
- Parallel DML best only for large loads
- Make sure sequences aren’t NOCACHE
- Do a POC
In-Memory vs Exadata

- Depends on the query and workload
 - With complex aggregate queries over all data, performance similar
 - Queries with selective filter predicates or joins, In-Memory faster
 - In-Memory scans very fast, but storage cells scan extremely fast too
 - Both use similar “tricks”: smart scans, bloom filters, vector group by

- In-Memory excels with higher concurrent workload
 - We expect to have higher concurrency in the future

- Understand your bottlenecks

- Both significantly faster than regular Oracle database
Future Considerations

• Leverage In-Memory for some new workloads
 • Potential solution for planned higher concurrency
 • More standardized reporting

• Extend use of newer Oracle DW features
 • Attribute Clustering
 • Zone Maps
 • Approximate Count Distinct where applicable

• Materialized View out-of-place refresh promising
 • Does the refresh outside and then swapping
 • Minimizes downtime for huge mviews
Conclusion

- Exadata and In-Memory a solid platform for success
- Completed a large, complex project in under 1 year
- Far exceeded performance expectations for users
- Excellent support from Oracle (SCP, Platinum Support)
- Confidently delivering new digital marketing capabilities
Thank You!

Questions?