How Oracle Exadata and Database In-Memory Power Precision Marketing at General Mills

Joshua Moe - Solution Architect
Mark Donohue - DBA

October 28, 2015
Agenda

• General Mills History
• Business Case
• Capabilities delivered
• Oracle Exadata Experience
• Oracle Database In-Memory Experience
• Lessons Learned
Our history
A Heritage of Innovation & Brand Building

- Cadwallader Washburn builds first flour mill (1869)
- Charles Pillsbury invests in first Minneapolis mill (1866)
- Betty Crocker created (1928)
- Cheerio Oats debut (1941)
- General Mills stock trades (1961)
- Häagen-Dazs goes international (Japan) (1984)
- CPW joint venture launched (1990)
- U.S. licensing rights to Yoplait are acquired (2001)
- Yoplait acquisition (2011)
- Annie's Homegrown acquisition (2012)
- General Mills completes purchase of cross-town rival Pillsbury (2013)
- Yoki acquisition (2014)
Who we are Today

- One of the world’s largest food companies
- Products marketed in more than 100 countries on six continents
- 42,000 employees
- $17.6 billion in fiscal 2015 net sales*
We serve the world by making food people love.
Business Case

- In-Source existing Marketing Data Warehouse
- Create a Consumer-Centric Data Warehouse
- Capture consumer driven activity
 - Marketing Campaigns
 - Reporting
- Better Understand Consumer behavior
 - Personalized Campaigns
 - Content Personalization
• Poor Vendor Response
 • Changes were slow and expensive to implement
 • Limited control over our data
• Performance insufficient to make business-driving marketing decisions:
 • While on Exadata, schema design was inefficient
 • Sizing/configuration sub-optimal
 • Server was oversubscribed with many other customer databases
• Business users demanded access to full dataset
• Difficult to add more data sets
• Desire to support more ad-hoc queries
New Capabilities Desired

• Improved overall database performance
• Effective ad-hoc querying
• Full control of our data
• Add more data sources
• Near real-time data ingestion, instead of batch-only
• Develop more effective and efficient marketing campaigns
• Identify consumer preferences
• Statistics-based processing to identify trends for General Mills brands
Original Configuration

Hosted Exadata X2-2
Oracle 11gR2

Bettycrocker.com
Pillsbury.com
Boxtops4education.com
etc

Web Activity
Email Newsletter
Campaign Activity
Internal
Transactional DB’s
Limited Vendor Data

Limited Data Retention due
to data volume constraints

Marketing Campaigns
Reporting & Analytics
Final Configuration

Internal Exadata X4-2 ¾ Rack
Oracle 12c
150 GB IN-MEMORY per node
Capabilities Delivered

- Dedicated development team
- Fast turn-around for changes and adding of new data
- Users querying ad-hoc due to big performance boost
- More complete data model
- Greater data retention
- Near real-time loading
- Foundation of next-generation Marketing capabilities
- More projects planned that were never possible before
Technical Solution

• Migrated to Oracle Database 12c on Exadata X4-2 ¼ Rack (in-house)
 • 2 RAC nodes with 24 core, 512 GB RAM per node
 • 3 storage cells with 144 TB total
• Version: Oracle 12.1.0.2 on Oracle Linux 5
• Oracle Database In-Memory
• Advanced (OLTP) Compression
• Near real-time data loads (vs overnight batch)
• Triple the volume of Data
 • More data (5 TB and growing), but better compression
 • Several fact tables over 10 billion
• **50X** improvement on reports and ad-hoc queries
 • Reports that took days now return in less than 1 hour
• Production as of March 2015
Our Exadata Experience

- First Exadata for General Mills
- Lives up to the hype for Data Warehouse/Mart
- Drastically shortened development cycle
- Minimal performance tuning needed
- Minimal indexing required
- Storage indexes/caching really work
- Excellent Oracle SCP (Strategic Customer Program) engagement – very helpful
Exadata Tips

• Design for success
 • Partitioning – HASH or RANGE-HASH, not too fine-grained
 • Compression – use HCC whenever possible
 • Parallelism – use Auto DOP, Resource Manager if required
• Use good general data mart design practices
• Partition-swap loading, where possible
• HCC for bulk-load only (insert /*+append*/)
• OLTP compression for everything else
Parallelism Challenges

• Tuning Auto DOP for mixed workload (app, batch, ad-hoc)
• When queries don’t fetch all rows
 • Sessions holds on to parallel worker processes
 • Chokes out parallel workload from other sessions
 • Primarily ad-hoc queries
• End user tools:
 • Oracle SQL Developer
 • PL/SQL Developer
 • SQL Workbench
Parallelism Challenges

CONSUME

ALL THE THREADS!

EXADATA

WHY SO SLOW?
Parallelism Tips

• AUTO DOP needed for In-Memory
 • Recommended for Exadata in general
• PARALLEL_DEGREE_LIMIT alleviated some queuing
• Resource Manager gave better control
• User Training! Close session, or run “select 1 from dual”
• Higher degree = more PGA
 • 2 GB per process limit, by default
 • Parallelism helps “unlock” more PGA per query
Database In-Memory

Normal Buffer Cache

SALES
Row Format

New In-Memory Format

SALES
Column Format
Database In-Memory

- In-Memory column store on DB nodes only
- Each node has its own In-Memory column store
- Table data distributed across nodes
 - Requires Parallel Execution
- Similar benefits to Exadata smart scan
 - Access only the columns need for query
 - Storage indexes prune out unnecessary data
 - Scans & filters data in compressed format
In-Memory Challenges

• Partitioned table with 1 partition on only 1 RAC node
 • ALTER TABLE abc.xyz MODIFY PARTITION PART_1 INMEMORY DISTRIBUTED BY ROWID RANGE;

• Still a new product
 • Continued enhancements and bug fixes
 • Partnership with Oracle very beneficial for feedback on improvements

• If join/sort/aggregate spills to TEMP, performance suffers
 • Allocate enough PGA and parallel processes
In-Memory Tips

- HASH partitioning for even distribution across RAC nodes
- Dedicate enough memory to PGA
 - PGA_AGGREGATE_TARGET
- Understand your workload
 - Ad-hoc, batch, applications, etc…
 - Use your in-memory area most effectively
- SQL Monitor reports very helpful for troubleshooting
- In-Memory advisor
 - New advisor from Oracle
 - Recommends which tables benefit most
We used SCD “Type 2” most heavily
 • Start & end dates for records
 • History and current stored in same table

Advantages
 • Precise historical data easily accessible
 • Current state available through simple view (WHERE current_fg='Y')

Disadvantages
 • Complex merge/update loads
 • More complicated when transactions arrive out of chronological order
 • HCC not feasible (OLTP compression instead)
 • Performance on both loads and queries can suffer

Recommendation
 • Use for small dimension tables
 • When data volume too high, look for alternate ways of storing history
• Understand your ETL tools
 • Had poor performance with our chosen ETL tool
 • Reverted to using PL/SQL, external tables, and database links
 • Better bulk-load performance
 • Partition swapping
 • More precise control over loading processes (like SCD)

• Messaging sources where order not guaranteed
 • Duplicates possible when using guaranteed delivery
 • Can receive data out-of-order
 • Re-ordering records complicates loads
Other Development Experiences

- 12c JSON parsing functionality very useful
 - Loading large JSON files via external tables
- 12c online bulk load stats gathering
 - Saves time and simplifies load jobs
- HCC works great, but not for updates
- Parallel DML best only for large loads
- Make sure sequences aren’t NOCACHE
- Do a POC
In-Memory vs Exadata

• Depends on the query and workload
 • With complex aggregate queries over all data, performance similar
 • Queries with selective filter predicates or joins, In-Memory faster
 • In-Memory scans very fast, but storage cells scan extremely fast too
 • Both use similar “tricks”: smart scans, bloom filters, vector group by

• In-Memory excels with higher concurrent workload
 • We expect to have higher concurrency in the future
• Understand your bottlenecks
• Both significantly faster than regular Oracle database
Future Considerations

- Leverage In-Memory for some new workloads
 - Potential solution for planned higher concurrency
 - More standardized reporting
- Extend use of newer Oracle DW features
 - Attribute Clustering
 - Zone Maps
 - Approximate Count Distinct where applicable
- Materialized View out-of-place refresh promising
 - Does the refresh outside and then swapping
 - Minimizes downtime for huge mviews
Conclusion

• Exadata and In-Memory a solid platform for success
• Completed a large, complex project in under 1 year
• Far exceeded performance expectations for users
• Excellent support from Oracle (SCP, Platinum Support)
• Confidently delivering new digital marketing capabilities
Thank You!

Questions?