

Oracle Database 19c:
Quality of Service Management

Monitoring and Managing Oracle RAC Database Performance

O R A C L E W H I T E P A P E R | F E B R U A R Y 2 0 1 9

 1

Table of Contents

Introduction 2

Datacenter Runtime Management Requirements 3

Runtime Management Best Practices ï The Phases 4

Phase 1: Plan the Deployment 4

Phase 2: Runtime Measure the Deployment 7

Phase 3: Runtime Monitor the Deployment 10

Phase 4: Runtime Manage the Deployment 12

Baselining and Tracking Performance 15

Conclusion 16

Appendix 17

 2

Introduction

The database is no longer the center of the universe. Such a statement would have been heretical

just a short time ago. However, the introduction of the on-premise database cloud and DBaaS has

altered the deployment strategy and database management requirements. It is no longer sufficient

to plan for simply performance, scalability and high availability. These new deployment models must

also consider consolidation, provisioning, patching and quality of service. Oracle Real Application

Cluster databases whether in single node form as RAC One Node or multi-node RAC Cluster,

provide the level of performance, availability and manageability to be the foundation of modern

consolidated on-premise database clouds or Database-as-a-Service deployments.

Figure 1: Evolution of Oracle RAC Database

The ability to manage complex highly available database service deployments in real time is now a

common requirement as enterprises adopt a database service-centric deployment model where

multiple databases share common physical resources and are no longer siloôd on dedicated

hardware. Where resource utilization has improved and IT spend optimized, runtime management

complexity has increased. Oracle has addressed this in the Oracle 18c RAC release with Oracle

Database Quality of Service Management (QoS) functionality to support all deployment types.

 3

Figure 2: On-Premise Database Cloud Runtime Management

This functionality is included in the Oracle RAC and RAC One Node license and its management

interface is integrated into the Enterprise Manager Cloud Control Database Plug-in. Therefore, no

additional management packs are required.

Datacenter Runtime Management Requirements

The basic tenants under which Oracle Database QoS Management was developed can be distilled into three

statements that must be able to be achieved in real time:

» When resources across the datacenter are sufficient they are continuously deployed to ensure performance

and availability objectives will be met.

» When resources are insufficient to meet demand more business-critical objectives will be met at the expense

of less critical ones.

» When load conditions severely exceed capacity, resources remain available.

In order to achieve these goals, specific functionality must be built into the entire software stack to include

accurate measurement of performance, resource bottleneck analysis, resource trade-off evaluation and online

dynamic resource allocation.

In the end, the effectiveness of achieving the above goals is evaluated by each applicationôs performance over

time. When examining modern multi-tier applications, it should not be unexpected that most of a transactionôs

response time is contained in the database tier and its associated storage. This performance can be distilled at a

high level into the following simple equation:

Resource Use + Resource Wait = Application Performance

Itôs important to realize that once an application is deployed, there is almost no ability for online management of

its use of resources, as these were the responsibility of design, development, Q/A, and test teams. However,

 4

there is the potential for the online management of the amount of time needed to wait for resources, whether

these are CPU, memory, or I/O.

Fortunately, the Oracle software stack, especially the database tier, has rich resource management capabilities

that have been enhanced in Oracle 18c to facilitate this when used in concert with QoS Management.

Runtime Management Best Practices ï The Phases

The best practices for runtime management of an Oracle RAC-based on-premise database cloud or Database-

as-a-Service deployment may be applied in discrete phases to gain insight into the actual workloads and their

use of resources as well as confidence in setting realistic service level agreements (SLAs) and the ability to

manage to them. The four phases that will be discussed are as follows:

1. Plan the deployment

2. Runtime measure the deployment

3. Runtime monitor the deployment

4. Runtime manage the deployment

These phases should be implemented serially, and not combined to accelerate deployment as each captures

necessary data that is used in the next phase.

Phase 1: Plan the Deployment

Planning the deployment may start at various points, but for this paper we will assume the deployment is to be a

on-premise database cloud offering database services to applications each of which has an importance or

criticality to the business that may vary due to calendar or events. This paper is not intended to focus on this

particular task, but will introduce its elements.

Since the introduction of Oracle Database 11.2, customers have had a choice of three different cluster database

deployment types ï administrator-managed, policy-managed or a hybrid of the two. While it is beyond the scope

of this paper to explore the pros and cons of each type, as a general rule if the databases to be deployed are

11.2 or greater, then policy-managed should be fully evaluated as it provides the most flexibility as well as

deterministic high availability for on-premise database clouds. Please refer to the Appendix for additional

information resources.

The next high level step is to determine the service groupings and base sizing. This will involve answering such

questions as which services need to run on the same servers, which must be exclusive, or which must be

dispersed as well as services that are required to be singletons.

When sizing a on-premise database cloud or DBaaS deployment, the tendency is to make use of multi-threaded

CPU cores in order to increase the effective number of CPUs that each database sees in the hope that more

databases can be hosted per node. The curves in Figure 3 should be observed as a warning that the level of

requests per CPU is significantly reduced before response time goes to infinity and the system is in overload. It

should also be noted that predicable performance is no longer achievable because the OS scheduler is now

directing database workload scheduling and not the databaseôs resource manager. This results in the CPU cost

per database call rising with utilization instead of staying constant as with a single threaded core.

 5

Figure 3: Consolidation Management Problem

Perhaps the most challenging step is to establish the business criticality of each service, answering such

questions as:

» Which are the services that need to be online first?

» Which are the services that need to be the last standing?

» Which services can I borrow resources from should a workload surge occur?

» Which services can I shut down should a surge or failure occur?

Fortunately, these questions donôt have to have static answers if a policy-managed deployment type is selected,

as different business priorities can be expressed in different policies that can be switched in when appropriate. At

the same time, legacy databases can coexist within their fenced servers within the Generic server pool yet still be

fully supported.

Finally, services need to be group or ñclassifiedò into those that need to be tracked for performance and those

that simply need to be measured. This classification may be performed by using the QoS Management Policy

Editor integrated into Enterprise Manager Cloud Control to create user-defined labels or tags that group

workloads for both measurement and assigning performance objectives that can be monitored or managed to as

will be described in later phases.

Figure 4 shows where the QoS Management functionality can be found in Enterprise Manager Cloud Control.

Note that it is accessed from the Cluster target Administration menu. This is because the scope of management

is currently the entire cluster of RAC databases.

 6

Figure 4: Creating a QoS Management Policy Set

QoS Management generates a default policy set by discovering the entire set of cluster-managed database

services currently registered and creating a performance class for each one. This can be seen in Figure 5. Each

Performance Class has one or more Classifiers which are the Boolean set expressions shown in the figure.

Figure 5: Overview of Performance Classes and Classifiers

In some cases, there may be significantly different types of workloads using the same service. Under this

condition additional performance classes may be created that can differentiate the workloads using the database

 7

session parameters if Module, Action UserName and Program. An example of differentiating browsing users of

the sales service from those who are purchasing is seen in Figure 6 where salescart_pc Performance Class is

being created specifying a different database user. Session Module, Action and Program can be populated in the

same way.

Figure 6: Creating a Performance Class

Should a group of services have similar resource use and performance objectives where it is desired to manage

them together, this can be done by adding additional classifiers to a single performance class.

Phase 2: Runtime Measure the Deployment

Once the planning phase is completed, the measurement phase may begin. This is not the same type of

measurement that occurs in single application Q/A or testing but in either the production environment or a test

one where all databases and these services are running as they would in production. To set up the ability to

perform these actual runtime measurements, a measure-only Performance Policy is created in the same QoS

Management Policy Editor. This is shown in Figure 7. What distinguishes this policy from others is that no

performance objectives are specified and the Measure Only box for each performance class is checked.

 8

Figure 7: Creating a QoS Management - Measure-Only Policy

Once the Policy Editor wizard is completed and the policy set submitted to the QoS Management server with this

measure-only policy activated, the QoS Management Dashboard is displayed as seen in Figure 8. Note that all of

the performance classes are listed and the actual server pools where work is occurring are specified.

Figure 8: QoS Management Runtime Measure Dashboard

 9

Examining the displayed bar graph for each performance class in Figure 9, two important metrics are displayed.

The blue bar shows the actual portion of the response time that represents the use of system resources such as

CPU memory and I/O. When hovered over the value displayed in seconds represents the absolute best

performance that can be achieved with the deployed resource capability. The gray bar shows the actual portion

of the response time that represents the wait for system resources. This time is a function of how busy the

system resources are and may be altered via runtime resource management controls. When added together the

two represent the actual performance which would be the minimum recommended performance objective set for

this performance class given the other workloads.

Figure 9: Runtime Measurement Detail

Moving down the QoS Management Dashboard is a table that breaks down the resource wait time for each

performance class into four categories as shown in Figure 10 ï CPU, Global Cache, IO, and Other.

Figure 10: Resource Wait Detail by Performance Class

These metrics are very useful in understanding whether there are runtime issues beyond simple resource

availability with a workload. For example, if Global Cache wait time was the largest and thus the bottleneck, it is

most likely that the workload doesnôt scale well across more than one instance and its service should be a

singleton or the data should be partitioned. If Other wait is the bottleneck, this means that there are SQL issues

in the database that should be investigated via an AWR report.

Once this phase is run during all the different workload periods, the metrics will provide a baseline set of

minimum performance objective values that may be used in the next phase. It will also provide data that will help

determine if base sizing and resources are sufficient to meet the business objectives and whether multiple

policies may be useful in meeting these.

