

 ADF Code Corner

022. How-to extend the default ADF Faces

Component Message Bundle

Abstract:

 When working with ADF Faces RC, many component

uses default labels, tool tips and validation messages that

are not customizable through their properties. To

customize the default labels, developers need to

implement a custom skin, which for this usecase does not

have to define a custom look and feel. To change the

default messages, like the initial "Loading..." message

shown with the splash screen, you need to know about

the message keys used by the components. The keys, as

well as skinning guides, are available online at

otn.oracle.com/products/jdev, but for the special usecase

of changing the default messages, this how-to is all you

need.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
21-Sep-2008

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER
How-to extend the default ADF Faces Component
Message Bundle

 2

Introduction
The first experience users get with a new web application is the user interface. No matter how

good the application's codeline quality is, how many Java EE design patterns and object oriented

principles developers were able to built in, if the user interface doesn't pass the first impression,

users wont like the application as a whole. While this statement greatly expresses the primary

responsibility of skinning in ADF Faces RC, there is a second functionality in skinning:

customizing the default component strings.

Configuring Custom Skins

To apply a custom skin to an ADF Faces RC application, you

 create a styles sheet file (CSS) containing ADF Faces RC component selectors

 create a file trinidad-skins.xml located in the WEB-INF directory of the view layer

 change the configuration in trinidad-config.xml to points to the new skin

The trinidad-skins.xml file is a registry file of all custom skins available to an application. The file doesn't

exist by default as it is not needed when using the Oracle look and feel. To create this file, choose New

from the project's context menu and create a new XML document in the view layer WEB-INF directory.

In the first releases of JDeveloper 11 there doesn't exist a dialog to help creating this document, which is

why a copy and paste approach from an existing trinidad-skins.xml file is best practice to do.

The following code snippet shows a custom skin entry in the trinidad-skins.xml file

<?xml version="1.0" encoding="ISO-8859-1"?>

<skins xmlns="http://myfaces.apache.org/trinidad/skin">

 <skin>

 <id>coffee_sample.desktop</id>

 <family>coffee_sample</family>

 <render-kit-id>

 org.apache.myfaces.trinidad.desktop

 </render-kit-id>

 <style-sheet-name>skins/coffee_sample.css</style-sheet-name>

 <bundle-name>

 fnimphiu.sample.skin.StringBundleOverride

 </bundle-name>

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER
How-to extend the default ADF Faces Component
Message Bundle

 3

 <extends>blafplus-rich.desktop</extends>

 </skin>

</skins>

The custom skin is defined by the style sheet referenced through the style-sheet-name element. The CSS

file must be located relative to the view layer project's public_html directory. In the above example, the

file is in the public_html\skins directory. If only the message bundle should be changed then the CSS file

is empty, otherwise it contains the ADF FAces RC component selectors with the custom style definitions.

The skinning framework doesn't work with the file directly but accesses it through its id and family

element. The id element is used when referencing existing skins that the custom skin is supposed to

extend. For the usecase to only customize some or all default messages, the look and feel should be kept

to the default. The extends element in trinidad-skins.xml thus references blafplus-rich.desktop, the id

element value of the Oracle default skin. The family name is used to configure the custom skin so it gets

applied to the running application. This can be done as a static configuration or dynamically using

Expression Language.

The bundle-name element is key to the usecase explained in this how-to. The bundle-name element

points to a custom Java class that extends ListBundle to provide the desired customization of the default

strings.

The custom skin is configured in the trinidad-config.xml file as

<?xml version="1.0" encoding="windows-1252"?>

<trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">

 <skin-family>cofee_sample</skin-family>

</trinidad-config>

Lets assume and showcase an online coffee shop that wants to have their tag line "Got time? Get goffee"

shown with the splash screen while the ADF Faces RC application loads. The splash screen is a

functionality of the af|document component, which has the following message keys defined:

af_document.LABEL_SKIP_LINK_TEXT
Text written out as part of link in screenreader mode to skip to the content

on the page.

af_document.LABEL_SPLASH_SCREEN
The label for the splash screen that is displayed the first time a page is

shown.

af_document.MSG_FAILED_CONNECTION
The error text brought up in an alert box when a connection to the server

fails.

The message key highlighted in bold is the key to reference in the custom messagebundle,

fnimphiu.sample.skin.StringBundleOverride used above. The String bundle used with this example looks as

follows

package fnimphiu.sample.skin;

import java.util.ListResourceBundle;

public class StringBundleOverride extends ListResourceBundle{

 public StringBundleOverride() {

 }

 @Override

 public Object[][] getContents() {

 return _CONTENTS;

 }

ADF CODE CORNER
How-to extend the default ADF Faces Component
Message Bundle

 4

 private static final Object[][] _CONTENTS =

 {

 {"af_document.LABEL_SPLASH_SCREEN", "Got time? Get coffee!"}

 };

}

As you can see, only a single component key is defined in the resource bundle, in opposite to all the 200.

The other strings are taken from the default definition. This brings up the splash screen as

Extending a List bundle that extends the default bundle

No a common usecase, but doable: There already exists a customization of the messages contained in the

Oracle component default list. To extend this bundle to customize the customized strings, you need to

read the custom messages first before applying the changes. Using this technique comes with a bit of an

overhead that plays in minimal when starting the application. The String bundle code in this case looks as

follows

package com.oracle.adcs;

import java.util.HashMap;

import java.util.Iterator;

import java.util.Set;

import oracle.adfinternal.view.faces.bi.renderkit.resource.RichBundle;

 public class PartialOverrideBundle extends SingleStringBundle {

 public PartialOverrideBundle(){

 super();

 }

 @Override

 public Object[][] getContents() {

 return getCustomKeys();

 }

ADF CODE CORNER
How-to extend the default ADF Faces Component
Message Bundle

 5

 private Object[][] getCustomKeys(){

 Object[][] messages = super.getContents();

 // my overrides

 HashMap hm = new HashMap();

 for (int i = 0; i < messages.length;i++){

 hm.put(messages[i][0],messages[i][1]);

 }

 // add custom strings

 hm.put("af_document.MSG_FAILED_CONNECTION", "Crash Boom Bang");

 //renew

 messages = new Object[hm.size()][2];

 Set keySet = hm.keySet();

 Iterator keyIter = keySet.iterator();

 for (int i = 0; i < hm.size(); i++) {

 String keyStr = (String) keyIter.next();

 messages[i] = new Object[]{keyStr,hm.get(keyStr)};

 }

 return messages;

 }

}

The above code keeps the custom Splash screen message, but adds "Crash Boom Bang" as the message

shown for a failed server connection during the initial loading time. Of course, this message too could

have gone into the first example, but keep in mind that this is a simplified example and the extended

message bundle may not be available in source code.

RELATED DOCOMENTATION

