
 

ADF Code Corner  

052. How-to deploy bounded task flows in an ADF 

library 
 

 

Abstract: 

  Bounded task flow is the reusable process definition in 

Oracle ADF Controller (ADFc) that extends the 

JavaServer Faces page navigation handler to perform 

navigation in ADF Faces applications. ADFc allows 

developers to build navigation definitions for immediately 

use in an application, for remote deployment and access 

and for reuse when deployed in  ADF libraries. ADF 

libraries is a Java Archive (JAR) file concept in ADF that 

contains a specific manifest file that allow Oracle 

JDeveloper to detect and import reusable components so 

they show in the ADF Component palette. One of the 

artifacts that can be deployed in ADF library files are 

bounded task flows - as mentioned - which 

developers deploy with the dependend model definition if 

required. This how-to article explains how to cteate and 

deploy a bounded task flow that contains ADF bound 

page fragments in ADF libraries and how to import and 

use this library in an ADF application. It also shows how to 

customize the name of bounded task flows in an ADF 

library to show user friendly names instead of the 

technical source file names. The latter is a hidden, yet 

undocumented nugget that I am sure developers will 

enjoy.   

 

twitter.com/adfcodecorner  

Author:   Frank  Nimphius, Oracle Corporation  

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html


ADF CODE CORNER How-to deploy bounded task flows in an ADF library 

 

 

2 

 

  

    twitter.com/fnimphiu 
16-FEB-2010 



ADF CODE CORNER How-to deploy bounded task flows in an ADF library 

 

 

3 

Introduction 
The image below shows the runtime view of the use case explored in this article. The area 

surrounded by the red rectangle is a task flow added from an ADF library. Using a task flow input 

parameter, the department ID is passed to the bounded task flow to query the detail rows. In this 

article, I explain the following topics  

¶ Creating View Criteria  

¶ Configuring View Criteria for a View Object instance  

¶ Setting bind variables through a method call activity  

¶ Creating an ADF Library  

¶ Importing an ADF library to the IDE  

¶ Adding an ADF Library to a project  

¶ Configuring the ADF task flow database conection  

¶ Customizing the bounded task flow names in the ADF library   

 

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions 
to real world coding problems. 
 
Disclaimer: All samples are provided as is with no guarantee for future upgrades or error 
correction. No support can be given through Oracle customer support.  
 
Please post questions or report problems related to the samples in this series on the OTN forum 
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83 
 

http://forums.oracle.com/forums/forum.jspa?forumID=83


ADF CODE CORNER How-to deploy bounded task flows in an ADF library 

 

 

4 

The Bounded Task Flow to reuse 

The reusable bounded task flow to deploy in the ADF library consists of a method call activity to set the 

bind variable of the Employees View Object and a page fragment to show the queried employees. You 

may argue that this use case doesn't justify a reusable task flow and that it would be much better if the 

task flow also allows to edit the queried employees records. And right you are - but samples should be 

simple and for what I want to explain this simple use case is just fine. However, keep your idea in mind 

when extending this sample ;-) 

 

 
Note: Before you start. Any content that you plan to deploy in an ADF libray is subject to naming 

conflicts, which is why you should carefully consider a naming strategy for the package structure, 

component names and class names of the objects added to a library.  

 

Query by examples in ADF Business Components can be created in one of two way: i) adding a where 

clause to the View Object query and use a bind variable to pass dynamic values in and ii) create and apply 

a named View Criteria that also uses a bind variable for the dynamic by-Example value passed in. In this 

article I use the latter approach. To create the View Criteria, double click the View Objec and select the 

View Criteria option in the Query panel. Define a bind variable input the department ID from external. 



ADF CODE CORNER How-to deploy bounded task flows in an ADF library 

 

 

5 

 

To set the bind variable from the ADF binding layer, you need to expose a setter method for the bind 

variable on the client interface. Open the View Object and select the Java option. Click the pencil icon to 

open the Java option dialog. Check the "Generate View Object Class" option and ensure the "Include 

bind variable accessors" is selected too. This generates a setter and getter method for the bind variable. 

For this article, I edited the setter method and added this.executeQuery() to make sure the View Object 

is re-queried with the new bind variable value immediately after it is set.  

 

Select the client interface option of the Java panel and shuffle the setter method of the bind variabe to the 

list of selected client methods. This exposes the method as a child operation of the View Object in the 

Data Controls palette.  



ADF CODE CORNER How-to deploy bounded task flows in an ADF library 

 

 

6 

To add a View Criteria to a View Object instance, open the Data Model by a douple click onto the 

Application Module. Select the View Object instance to apply the View Criteria and press the Edit button. 

In the opened dialog, select the View Criteria in the "Available" list and shuffle it to the "Selected" list.  

 

 
 
 

 

This instance of the View Object will alsways have the View Criteria applied. With this, the ADF Business 

Component model is ready and the next step is to build the bounded task flow, which is the reusable 



ADF CODE CORNER How-to deploy bounded task flows in an ADF library 

 

 

7 

component to deploy in the ADF library. 

 

To create the bounded task flow, choose New | JSF | ADF Task Flow  in Oracle JDeveloper. From the 

Data Controls palette, expand the Employees View Object and drag and drop the set method of the bind 

variable as a method call activity to the bounded task flow.  

 

Then, drag and drop the View Object as a read only table and create a control flow case between the two 

activities. To pass the department ID, create an input parameter for the task flow that writes the 

parameter value to a pageFlowScope attribute, for example #{pageFlowScope.deptId}.  

 

When you drag and drop the binding setter method, a dialog is shown for you to enter a value for the 

bind variable. Add the reference to the task flow input parameter as the value: 

 #{pageFlowScope.deptId}. Because the method call activity is the default activity, refreshing the 

bounded task flow re-executes the Employees View Object. 

 

Creating the ADF Library 

To create the ADF library, double click the View project of the reusable component application. Select 

the deployment entry and press the New button to create a new deployment profile. Choose ADF Library 

as the archive type and edit the "Connections" entry. The "Connections" configuration defines how the 

database connection is added to the ADF library. You can add the connection with all the connection 

details - except the password - or just the name. In both cases, the database connection needs to be edited 

in the project that imports the ADF ibrary.   

 

The JAR option is a setting I use later in the advanced topic section, in which I explain how to customize 

the task flow name in the ADF library.  



ADF CODE CORNER How-to deploy bounded task flows in an ADF library 

 

 

8 

 

To deploy the ADF library, select the View layer project that contains the ADF bounded task flow and 

choose the deploy option from the right mouse context menu. Choose the ADF library entry to deploy 

the ADF library as a JAR file. By default the JAR file is created in the deploy folder of the View layer 

object.  

Importing the Task Flow Library to an ADF Faces Web Project 

In this blog article, the bounded task flow in the ADF library is imported to a page that uses a panel 

splitter to layout the master area and the detail area. Because the task flow in the ADF ibrary is created as 

a page fragment, it will be added as an ADF region.  

 



ADF CODE CORNER How-to deploy bounded task flows in an ADF library 

 

 

9 

The image below shows the configuration of the parent application before the ADF library is added. The 

Application Navigator view shows a single database connection and a single Data Control that is shown in 

the Data Controls palette and defined in the DataBindings.cpx file.  

 

Before you can use the ADF library in your application development, you need to add it to the Oracle 

JDeveloper Resource Palette. Open the Resource Palette from the View menu or press ctrl+shift+O. 

Press the folder icon and choose New Connection | File System and point the dialog to the directory 

containing the ADF library JAR file. Don't point to the JAR directly as this wont work. In this example, 

the ADF library was deployed to the "Deploy"  directory of the View Layer project within the bounded 

task flow application. In a real life scenario you may choose a server location to hold all your reusable 

ADF libraries. 



ADF CODE CORNER How-to deploy bounded task flows in an ADF library 

 

 

10 

 

After OK'in the dialog, the ADF library JAR file is added to th Resource Palette. The name 

"TaskFlowLib" is the name I chose for the file system connection I created before. The ADF library, as 

you can see, is added by the name of the JAR file. This is not really user friendly, but I have a good 

solution for this at the end of this article. 

. 

 



ADF CODE CORNER How-to deploy bounded task flows in an ADF library 

 

 

11 

To add the project to a web application, select the View layer project of it and choose "Add to project" 

from the context menu. This creates an ADF Library entry to the project libraries and also sets up the 

Component palette 

The ADF Library that I added in this article contains an ADF Business Components model, a database 

connection and the bounded task flow. As you can see in the image below, the new database connection 

"hrconn" is now listed under the "Connections" entry in the Application Resources accordion. The Data 

Controls panel shows the added Data Control, which is "AppModuleDataControl" in my example (the 

name could be chosen more unique, I agree). Note that the DataBindings.cpx file is not updated because 

the DataBindings.cpx file that is contained in the ADF Library file is automatically detected when adding 

the bounded task flow as a region. 

 



ADF CODE CORNER How-to deploy bounded task flows in an ADF library 

 

 

12 

Looking at the Component Palette, a new entry "MyBoundedTaskFlowLib.jar" becomes available that 

contains the name of the bounded task flow region. Still, both namings are technical source names and 

may not speak to the developer reusing the resource. I will come back to this later and explain how to 

beautify this. 

 

You can drag the Region entry to a JSF page where it is added as an ADF region.  



ADF CODE CORNER How-to deploy bounded task flows in an ADF library 

 

 

13 

 

The bunded task flow is configured with a mandatory input parameter for the department Id, which I 

need to query the detail rows of the Employees View Object. 

 

Using the Expression Builder, the deptId is linked to the DepartmentsId of the parent form. Note that 

the reference is to the DepartmentId.inputValue. 



ADF CODE CORNER How-to deploy bounded task flows in an ADF library 

 

 

14 

 

Next, I edit the database connection that was imported by the ADF library because it either contains no 

connect information - if only the name is deployed - or lacks the password - which is not deployed for 

security reasons. In the Application Resources panel, select the database connection and choose 

"Properties" from the context menu. This opens the database connection editor. 

 

Note: the hrconn connection is not displayed in the database connection navigator in JDeveloper. This is 

because the connection is added as a resource and not as a reusable connection 

 

For the use case of a master / detail scenario between the parent page and the bounded task flow, two 

additional steps are required: 



ADF CODE CORNER How-to deploy bounded task flows in an ADF library 

 

 

15 

¶ Set up partial triggers between the ADF region and the navigation buttons  

¶ Ensure the ADF region is refreshed when a new departments record is navigated to  

To setup partial refresh between the ADF region and the parnt form, select the ADF region and press the 

arrw icon on the PartialTriggers property. Choose "Edit" fromteh context menu and browse the pahe 

hierarchy for the navigation buttons. When creating a navigation button bar in ADF, the command 

buttons have the partialSubmit property set to "true", which means that pressing the button does not lead 

to a full page refresh but just a refresh of the form. So all I need to do is to include the ADF region to the 

partial refresh notification, which is what I do by configuring the PartialTriggers property.  

 

 

 



ADF CODE CORNER How-to deploy bounded task flows in an ADF library 

 

 

16 

 

To ensure the ADF region refreshes when the dependent parent record changes its row currency, press 

the "Bindings" tab on the parent JSPX page to access the ADF binding definition. Select the task flow 

binding in the Executables section and open the Property Inspector. Set the "Refresh" property to 

"ifNeeded" and the "RefreshCondition" to #{bindings.DepartmentId.inputValue} so that a change of the 

Department Id value, which happens when navigating the parent row set, leads to an ADF region refresh. 

The bounded task flow is re-executed when the regio refreshes, which also means that the new 

Departments Id value is read and the Employees View Object executed. 

 

You can now run the application and see the master/detail behavior working.  At least you should be able 

to see it .... to err' is human. 



ADF CODE CORNER How-to deploy bounded task flows in an ADF library 

 

 

17 

Advanced Tip:  Customizing the ADF Task Flow name in the ADF 
libray 

I pointed this out quite frequently in this article that adding an ADF library to an application shows its 

content with technical namings that user friendly strings. At least for task flows this does not beed to be 

the case and user frindly names can be defined in a custom manifest and properties file.  

 

In the View Layer project of the task flow project that you created the ADF library from, create a new file 

choosing New | General | File  from the JDeveloper menu. The name of the manifest is up to you, the 

extension though should be ".mf". 

 

The content of the manifest has a Bundle-Classes attribute, which references a properties file. The 

properties file maps a task flow definition to a user friendly name, a description text and a tooltip. 

Optionally you can hide a task flow from showing in the ADF library, which makes sense for task flows 

that you want to call from another task flow but don't allow developers to use stand alone. In the image 

below, the properties file is referenced from the "Bundle-Classes" attribute and has the name 

"BoundedTaskFlowLibrary" (BoundedTaskFlowLibrary.properties), a name I came up with for this 

example.  

 



ADF CODE CORNER How-to deploy bounded task flows in an ADF library 

 

 

18 

The manifest file needs to be added to the ADF Library deployment configuration, which you do by 

double clicking the View Layer project containing the bounded task flow and choosing the "Deployment" 

entry. Select the ADF library profile and press the "Edit" button. In the JAR Options, press the "Add" 

button to include the manifest file you created. The image below details this steps. Don't forget ! 

 

Important: The manifest file needs to be added to the ADF library deployment profile.  

 

Like creating the manifest file, create a properties file by selecting New | General | File  from the 

JDeveloper menu. Make sure the file name is created with the extension ".properties" and has the same 

name as defined under "Bundle-Classes" in the manifest. The properties file must be stored in the View 

layer project's "src" directory. If the folder does not exit yet - which will be the case if your View Layer 

does not yet have managed beans created - create it. You can create the src directory by browsing to the 

ViewController project and appending "\ src" when creating the properties file.  


