

 ADF Code Corner

069. how-to create a custom LOV using bounded

task flows

Abstract:

 Model driven list of values in ADF Business Components

allow developers to build searchable select lists that open

in a lightweight DHTML dialog. However, what if the list of

value dialog is a multi step proces or needs a special

layout or functionality? In this blog article I show how to

create a custom list of value using a bounded task flow

that opens in a dialog using the external dialog framework.

This article also shows how to globally remove the the

close icon from those list fo value dialogs so users must

exit the dialog using the command provided in the dialog.

twitter.com/adfcodecorner

Author:

Frank Nimphius, Oracle Corporation
twitter.com/fnimphiu
18-JAN-2011

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

ADF CODE CORNER [ADF CODE CORNER:]

2

Introduction
Recent builds of Oracle JDeveloper 11g provide the option to declaratively configure bounded

task flows that use JSPX documents for their views to open in a lightweight dialog using the ADF

Faces external dialog framework. This feature allows developers to create custom list of values

that may run as multi step processes. The user selected value is passed back to the calling view

in a bounded or unbounded task flow to update and refresh an input field. This ADF Code Corner

article shows you

- How to create a bounded task flow driven list of value

- How to suppress the default close dialog

- How to refresh an input field if the dialog is opened by a command that has its immediate

property set to true

- How to create a custom version of the default "All Queriable Attribute" View Criteria that

searches in committed and uncommitted data and also executes its query when the LOV

launches

In the example built for this blog article, the Employee form shows a LOV command link next to

the DepartmentId field. Clicking onto the link opens a dialog displaying a list of departments to

choose from.

Oracle ADF Code Corner is a loose blog-style series of how-to documents that provide solutions
to real world coding problems.

Disclaimer: All samples are provided as is with no guarantee for future upgrades or error
correction. No support can be given through Oracle customer support.

Please post questions or report problems related to the samples in this series on the OTN forum
for Oracle JDeveloper: http://forums.oracle.com/forums/forum.jspa?forumID=83

http://forums.oracle.com/forums/forum.jspa?forumID=83

ADF CODE CORNER [ADF CODE CORNER:]

3

The LOV dialog content is defined in a bounded task flow and consists of an af:query form that

queries a result table for the user to select a department.Selecting a table row and pressing the

Select button navigates to the bounded task flow return activity, which returns the DepartmentId

to the calling page. Though the sample only uses a single view, you can imagine that there is no

linit for the number of views you can display in this LOV.

The update of the employee form is handled in the command link that may run as multi step

processes. The user selected value is passed back to the calling view ReturnListener handler.

How-to build LOV from bounded task-flows

Bounded task flows that are exposed in lightweight dialogs must use JSPX documents for rendering the

views. The dialog configuration is defined on the task flow call activity that is created when dragging the

ADF CODE CORNER [ADF CODE CORNER:]

4

bounded task flow into the calling task flow diagram. The control flow case – lov in the sample – is called

from a command link and points to the task flow call activity.

On task flow return, the dialog is closed and the return listener on the "LOV" link component is called

for the developer to read the returned data and update the employee DepartmentId field. Note that the

Dialog Return Value references the bounded task flow return parameter that should be delivered within

the return value listener defined on the command link launching the dialog.

By default the LOV dialog has a close icon in the header for users to close the dialog. However, the close

icon does not invoke the return listener, which is why developers want to hide it. To hide the close icon, a

managed bean configuration in the adfc-config.xml file can be used as shown below.

<managed-bean>

 <managed-bean-name>

 oracle$adfinternal$view$rich$dailogInlineDocument

 </managed-bean-name>

 <managed-bean-class>java.util.TreeMap</managed-bean-class>

 <managed-bean-scope>application</managed-bean-scope>

ADF CODE CORNER [ADF CODE CORNER:]

5

 <map-entries>

 <key-class>java.lang.String</key-class>

 <value-class>java.lang.String</value-class>

 <map-entry>

 <key>MODE</key>

 <value>withoutCancel</value>

 </map-entry>

 </map-entries>

</managed-bean>

Note: The managed bean name has a misspelling "dailogInlineDocument", which Oracle is aware of.

This is not a type in this how-to document.

Note: The above configuration is an Oracle JDeveloper 11.1.1.4 feature

The image below shows the content of the bounded task flow that is exposed in the LOV dialog. The

bounded task flow default activity is a view displaying the search form and result table. Selecting a table

row and pressing the Select button stores the department id of the selected row to a page flow scope

attribute that is referenced from the bounded task flow output parameters.

The query form is built from a View Criteria in ADF Business Components. In the provided example, the

LOV is immediately executed when the LOV dialog opens. For this the query form is built from a custom

View Criteria definition shown below.

In the UI Hints tab the View Criteria is configured to execute the query when the LOV opens and to

read the data from memory and the database, which also is not what the default View Criteria does.

ADF CODE CORNER [ADF CODE CORNER:]

6

To create the LOV query form, the custom View Criteria is dragged to the dialog page and dropped as an

ADF Query Panel with Table. To close the dialog, two buttons are added below the table. Both button

navigate to the bounded task flow return activity.

The managed bean method referenced from the Select button is shown below. It accesses the result table

DCIteratorBinding to read the selected row's DepartmentId value.

The value is written to the page flow memory scope where it is looked up from the bounded task flow

Return Value Definition.

public class DepartmentsLovBean {

 private RichTable employeeTable;

 public DepartmentsLovBean() {

 super();

 }

 public String onValueSelect() {

 //get collection model from table JSF component binding reference.

 //This also grants access to the DCIteratorBinding that is

 //synchronized with the selected table row

 CollectionModel model = (CollectionModel) employeeTable.getValue();

 JUCtrlHierBinding tableBinding =

 (JUCtrlHierBinding) model.getWrappedData();

ADF CODE CORNER [ADF CODE CORNER:]

7

 //table synchronizes row selection with current binding row

 DCIteratorBinding tableIterator

 tableBinding.getDCIteratorBinding();

 if (tableIterator.getCurrentRow() != null) {

 Object departmentIdValue =

 tableIterator.getCurrentRow().getAttribute("DepartmentId");

 //copy value into the pageFlowScope, which is returned in an task

 //flow param output

 ADFContext adfCtx = ADFContext.getCurrent();

 Map pageFlowScope = adfCtx.getPageFlowScope();

 pageFlowScope.put("departmentId", departmentIdValue);

 }

 return "return";

 }

 public void setEmployeeTable(RichTable employeeTable) {

 this.employeeTable = employeeTable;

 }

 public RichTable getEmployeeTable() {

 return employeeTable;

 }

}

The LOV bounded task flow returns two values, the selected DepartmentId and a flag indicating

whether the LOV dialog was closed pressing the Select or the Cancel dialog.

ADF CODE CORNER [ADF CODE CORNER:]

8

The LOV link that launches the dialog is configured to open it in an inlineDocument. The LOV width

and height is defined on the command link. Upon dialog return, the ReturnListener is invoked to read

the returned DepartmentId and update the DepartmentId field.

public class BrowseEmployeesBean {

 private RichInputText departmentIdToUpdate;

 public BrowseEmployeesBean() {}

 public void onDialogReturn(ReturnEvent returnEvent) {

 ADFContext adfCtx = ADFContext.getCurrent();

 Map pageFlowScope = adfCtx.getPageFlowScope();

 //only update the field if the LOV select option was used,

 //ignore for cancel

 Object cancelFlag = pageFlowScope.get("submitOrCancelFlag");

 if(cancelFlag!=null){

 if (((String)cancelFlag).equalsIgnoreCase("submit")) {

 Object departmentId = returnEvent.getReturnValue();

 //call reset value on field that you update with the

 //LOV return value if dialog is launched by a command

ADF CODE CORNER [ADF CODE CORNER:]

9

 //item having immediate=true set. This enforces the

 //input component to re-read its value

 departmentIdToUpdate.resetValue();

 departmentIdToUpdate.setValue(departmentId);

 AdfFacesContext adfFacesContext =

 AdfFacesContext.getCurrentInstance();

 adfFacesContext.addPartialTarget(departmentIdToUpdate);

 }

 }

 }

 //input field JSF component binding

 public void setDepartmentIdToUpdate(

 RichInputText departmentIdToUpdate) {

 this.departmentIdToUpdate = departmentIdToUpdate;

 }

 public RichInputText getDepartmentIdToUpdate() {

 return departmentIdToUpdate;

 }

}

Note that because the LOV command link opens the LOV dialog having its immediate property set to

true, the DepartmentId field must be reset – calling resetValue – before update. This also is an important

information in this how-to document,

Sample Download

The Sample can be downloaded as sample #069 on the ADF Code Corner website at

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

Configure the sample database connection to point to a database with the HR schema installed and

unlocked. Select the EmployeesForm.jspx page and run the sample. Press the LOV link next to the

DepartmentId field and search and select a new value. Press the select or cancel button to copy the

selected value or dismiss the selection. Note that the LOV dialog does not show the native close icon.

RELATED DOCOMENTATION

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html

