
Integrating Application Express
with PayPal Payments Pro

An Oracle White Paper
September 2007

Integrating Application Express with PayPal Payments Pro

Introduction ... 3
How Application Express Can Integrate with PayPal 4
Prerequisites ... 4

PayPal Sandbox... 5
Wallet for SSL Interaction... 5

Create Tables ... 5
Create Standalone Procedure for Redirect .. 6
Create Package to Handle Communication with PayPal............................. 7
Create Application to Accept Payment.. 13

Create an Application... 13
Define Substitutions for PayPal Sandbox... 13
Create an Application Item for PayPal TOKEN................................... 14
Create Purchase Tickets Form.. 15
Add Javascript to the Form... 17
Add Page Processing for Purchase Tickets Form 18
Create Confirmation Page ... 19
Create Purchase Confirmed Page... 23
Create Pay By Credit Card Page ... 25
Create Purchase Confirmed Page for Pay By Credit Card 27

Testing The Ticketing Application ... 29
Conclusion ... 30

Integrating Application Express with PayPal Payments Pro Page 2

Integrating Application Express with PayPal Payments Pro

INTRODUCTION
Oracle Application Express – a feature of the Oracle Database – is a powerful and easy
to use web application development platform. With Oracle Application Express, you
can quickly develop and deploy applications in a matter of hours, often without writing
a single line of code.

A common scenario for a Web application is to accept payment for goods or services.
A popular payment acceptance company is PayPal. PayPal provides an API and process
to allow Web sites to accept payments from its users. PayPal provides a standard
payment acceptance offering which involves embedding an HTML form that posts and
redirects to PayPal. PayPal also provides a Payment Pro offering which allows a Web
site to accept both PayPal payments by a redirect method as well as credit card
payments directly on the partnering Web site. The integration is achieved through a
name value pair API in which URLs are constructed and posted to a service hosted by
PayPal.

This whitepaper describes how to build an Application Express Application to integrate
with PayPal’s Website Payments Pro1 offering. The paper will describe how to integrate
with the PayPal Sandbox2 which is the test environment provided by PayPal.
Integrating with the live environment is simply a matter of changing the API URL, and
your API credentials, to use a live PayPal account and service.

1 https://www.paypal.com/cgi-bin/webscr?cmd=_wp-pro-overview-outside

2 https://www.paypal.com/IntegrationCenter/ic_sandbox.html

Integrating Application Express with PayPal Payments Pro Page 3

https://www.paypal.com/cgi-bin/webscr?cmd=_wp-pro-overview-outside
https://www.paypal.com/IntegrationCenter/ic_sandbox.html

HOW APPLICATION EXPRESS CAN INTEGRATE WITH PAYPAL
The PayPal Name Value Pair (NVP) API accepts HTTP posts and responds using NVP
parameters. The Oracle Database includes a supplied PL/SQL package, UTL_HTTP,
which allows you to programmatically post information and get responses from URLs.
Through the use of PL/SQL processes in an Application Express application, you can
call a procedure that uses UTL_HTTP to interact with the PayPal NVP.

With PL/SQL processes on a page, Application Express can interact with either the
PayPal Direct Payment API or the PayPal Express Checkout API. Both are required as
options when you use PayPal Website Payments Pro solution.

In the case of the Direct Payment API, you accept a credit card number, expiration
date, and card holder information and use a PL/SQL process that uses UTL_HTTP to
post that information over HTTPS to PayPal. You receive a response that indicates if
the transaction was successful.

Integrating with the Express Checkout is a little more involved and requires calling
three distinct APIs. You first establish with PayPal that you want to start an express
checkout transaction by calling SetExpressCheckout. PayPal responds with a token
which you will need for subsequent API calls and a redirect. In the call to
SetExpressCheckout you pass a URL as a parameter to tell PayPal where to redirect
back to. You then redirect to PayPal and pass the token you received.

The consumer then chooses their payment option on the PayPal site and can optionally
change their shipping address. Once they finalize the transaction at PayPal, they are
redirected to the URL you provided in the call to SetExpressCheckout. Two
parameters are passed with the URL you provide, token and payerid.

You create a PL/SQL procedure that has exactly two parameters, token and payerid.
This procedure is the URL you pass in SetExpressCheckout to let PayPal know where
to redirect to once the transaction is done. The procedure looks up the Application
Express session for your application using the token.

Now that the consumer is back at your site, you will make a call to the second API,
GetExpressCheckoutDetails. This retrieves information from PayPal about the
consumer, such as their name, email, phone number, and shipping address. Your
application can use that information to display a summary page and a Pay Now button.

Finally, when the consumer clicks the Pay Now button, you call the third API,
DoExpressCheckoutPayment. PayPal responds with an acknowledgement and
transaction details which your application can store in a local table.

PREREQUISITES
This paper describes interacting with PayPal’s NVP API in the sandbox. You will need
PayPal Sandbox credentials. Since the PayPal NVP API requires the use of SSL
through HTTPS, you will also need to configure a wallet on your Oracle database
server.

Integrating Application Express with PayPal Payments Pro Page 4

PayPal Sandbox
The PayPal Sandbox is an environment where developers can test and prototype the
PayPal APIs. The purpose is to allow the developer to work out any deficiencies in
their application prior to actually interacting with the live PayPal API. The Sandbox
mirrors live interactions with PayPal as closely as possible. This paper describes
interaction with the PayPal Sandbox.

Follow the instructions at the URL below to obtain a PayPal Sandbox account and
create your test users:

https://www.paypal.com/IntegrationCenter/ic_sandbox.html#resources

Once you have your test users (a personal account type and a business account type),
you will need to login to the PayPal sandbox using the business user you created. You
will need to accept and complete the billing agreement before you can interact with the
Direct Payment API.

Wallet for SSL Interaction
In order for UTL_HTTP to interact with an SSL enabled URL, HTTPS, a wallet needs
to be created and accessible to the database server where Application Express is
installed. A wallet is a password protected container used to store certificates needed by
SSL.

To create a wallet you use the Oracle Wallet Manager. Start the wallet manager and
follow the instructions to create a new wallet in the Oracle Database Advanced Security
Administrator’s Guide:

http://download.oracle.com/docs/cd/B28359_01/network.111/b28530/asowalet.htm
#BABGGBIG

Be sure to note the file system path where the wallet is stored and the password for the
wallet. You will need both pieces of information to configure Application Express to
use the wallet you created above. Follow the instructions in the Application Express
User’s Guide to configure Application Express to use a wallet:

http://download.oracle.com/docs/cd/B28359_01/appdev.111/b32258/adm_wrkspc.
htm#BABHEHAG

CREATE TABLES
You will need two tables for an application to interact with the PayPal APIs. The first
table will contain a token to session mapping so that when PayPal redirects back to your
standalone procedure, that procedure will know what Application Express application,
page, and session to redirect to. The second table is used for recording the results of
transactions with PayPal including the unique transaction id. The SQL for the create
table statements is below.

Integrating Application Express with PayPal Payments Pro Page 5

create table paypal_session_map(
 session_id number not null,
 app_id number not null,
 page_id number not null,
 payer_id_item varchar2(4000),
 session_token varchar2(255)
)
/

create table paypal_transactions(
 session_id number not null,
 session_token varchar2(255),
 transaction_id varchar2(30),
 order_time varchar2(30),
 amount number,
 fee_amount number,
 settle_ammount number,
 payment_status varchar2(30),
 pending_reason varchar2(30),
 reason_code varchar2(30)
)
/

Create both of these tables using the Application Express SQL Workshop.

CREATE STANDALONE PROCEDURE FOR REDIRECT
A standalone procedure is necessary for the redirect from PayPal, because PayPal
appends two parameters to the query string of whatever URL you provide to
SetExpressCheckout. For that reason you need to create a standalone procedure that
matches the signature of the two parameters passed by PayPal, token and payerid. The
SQL for the stand alone procedure is below:

create or replace procedure paypal_accept
 (token in varchar2,
 PayerId in varchar2)
as
begin

 for c1 in (select session_id, app_id,
 page_id, payer_id_item
 from paypal_session_map
 where session_token = token) loop

owa_util.redirect_url('f?p='||c1.app_id||':'||c1.page_id||'
:'||c1.session_id||'::::'||c1.payer_id_item||':'||PayerId);
 exit;
 end loop;

end paypal_accept;
/

Then grant execute on this procedure to public:
grant execute on paypal_accept to public
/

Execute the code above using the Command Processor in the Application Express SQL
Workshop.

Integrating Application Express with PayPal Payments Pro Page 6

CREATE PACKAGE TO HANDLE COMMUNICATION WITH PAYPAL
Handling the communication with the PayPal NVP API using UTL_HTTP is the main
thrust of this paper. The package has one procedure that handles all the UTL_HTTP
communication with PayPal. Then, there is a procedure for each API interaction with
PayPal and also a function that parses out the response. Below is the SQL for the
package specification and body.

create or replace package paypal_api
as

function do_post(
 p_api_url in varchar2,
 p_api_username in varchar2,
 p_api_password in varchar2,
 p_signature in varchar2,
 p_wallet in varchar2,
 p_wallet_pwd in varchar2,
 p_method in varchar2,
 p_parm01 in varchar2,
 p_parm02 in varchar2 default null,
 p_parm03 in varchar2 default null,
 p_parm04 in varchar2 default null,
 p_parm05 in varchar2 default null,
 p_parm06 in varchar2 default null,
 p_parm07 in varchar2 default null,
 p_parm08 in varchar2 default null,
 p_parm09 in varchar2 default null,
 p_parm10 in varchar2 default null)
 return varchar2;

function get_parameter(
 p_response in varchar2,
 p_parameter in varchar2)
 return varchar2;

procedure set_express_checkout(
 p_api_url in varchar2,
 p_api_username in varchar2,
 p_api_password in varchar2,
 p_signature in varchar2,
 p_wallet in varchar2,
 p_wallet_pwd in varchar2,
 p_session_id in varchar2,
 p_return_page in varchar2,
 p_payerid_item in varchar2,
 p_redirect_url in varchar2,
 p_return_url in varchar2,
 p_cancel_url in varchar2,
 p_amount in varchar2,
 p_description in varchar2,
 p_token_item out varchar2);

procedure get_express_checkout_details(
 p_api_url in varchar2,
 p_api_username in varchar2,
 p_api_password in varchar2,
 p_signature in varchar2,
 p_wallet in varchar2,
 p_wallet_pwd in varchar2,
 p_token in varchar2,
 p_email_item out varchar2,
 p_fname_item out varchar2,
 p_mname_item out varchar2,
 p_lname_item out varchar2,

Integrating Application Express with PayPal Payments Pro Page 7

 p_shiptoname_item out varchar2,
 p_shiptostreet_item out varchar2,
 p_shiptostreet2_item out varchar2,
 p_shiptocity_item out varchar2,
 p_shiptocc_item out varchar2,
 p_shiptozip_item out varchar2,
 p_phonenum_item out varchar2);

procedure do_express_checkout_payment(
 p_api_url in varchar2,
 p_api_username in varchar2,
 p_api_password in varchar2,
 p_signature in varchar2,
 p_wallet in varchar2,
 p_wallet_pwd in varchar2,
 p_session_id in varchar2,
 p_token in varchar2,
 p_payerid in varchar2,
 p_amount in varchar2,
 p_description in varchar2);

procedure do_direct_payment(
 p_api_url in varchar2,
 p_api_username in varchar2,
 p_api_password in varchar2,
 p_signature in varchar2,
 p_wallet in varchar2,
 p_wallet_pwd in varchar2,
 p_session_id in varchar2,
 p_ip_address in varchar2,
 p_amount in varchar2,
 p_creditcardtype in varchar2,
 p_account in varchar2,
 p_expire_date in varchar2,
 p_first_name in varchar2,
 p_last_name in varchar2,
 p_description in varchar2,
 p_tran_id_item out varchar2);

end paypal_api;
/

set define off

create or replace package body paypal_api
as

function do_post(
 p_api_url in varchar2,
 p_api_username in varchar2,
 p_api_password in varchar2,
 p_signature in varchar2,
 p_wallet in varchar2,
 p_wallet_pwd in varchar2,
 p_method in varchar2,
 p_parm01 in varchar2,
 p_parm02 in varchar2 default null,
 p_parm03 in varchar2 default null,
 p_parm04 in varchar2 default null,
 p_parm05 in varchar2 default null,
 p_parm06 in varchar2 default null,
 p_parm07 in varchar2 default null,
 p_parm08 in varchar2 default null,
 p_parm09 in varchar2 default null,
 p_parm10 in varchar2 default null)
 return varchar2
is
 l_http_req utl_http.req;

Integrating Application Express with PayPal Payments Pro Page 8

 l_http_resp utl_http.resp;
 l_response varchar2(4000);
 l_post varchar2(4000);
begin

 l_post :=
'USER='||p_api_username||'&PWD='||p_api_password||'&SIGNATURE='||p
_signature||
 '&'||p_parm01;

 if p_parm02 is not null then
 l_post := l_post||'&'||p_parm02;
 end if;
 if p_parm03 is not null then
 l_post := l_post||'&'||p_parm03;
 end if;
 if p_parm04 is not null then
 l_post := l_post||'&'||p_parm04;
 end if;
 if p_parm05 is not null then
 l_post := l_post||'&'||p_parm05;
 end if;
 if p_parm06 is not null then
 l_post := l_post||'&'||p_parm06;
 end if;
 if p_parm07 is not null then
 l_post := l_post||'&'||p_parm07;
 end if;
 if p_parm08 is not null then
 l_post := l_post||'&'||p_parm08;
 end if;
 if p_parm09 is not null then
 l_post := l_post||'&'||p_parm09;
 end if;
 if p_parm10 is not null then
 l_post := l_post||'&'||p_parm10;
 end if;

 l_post := l_post||'&VERSION=2.6&METHOD='||p_method;

 utl_http.set_proxy(apex_application.g_proxy_server, NULL);
 utl_http.set_persistent_conn_support(TRUE);
 utl_http.set_transfer_timeout(300);
 utl_http.set_wallet(p_wallet, p_wallet_pwd);
 l_http_req := utl_http.begin_request(p_api_url, 'POST');
 utl_http.set_header(l_http_req, 'Proxy-Connection', 'Keep-
Alive');
 utl_http.set_header(l_http_req, 'Content-Type',
'application/x-www-form-urlencoded; charset=utf-8');
 utl_http.set_header(l_http_req, 'Content-Length',
length(l_post));
 utl_http.write_text(l_http_req, l_post);
 l_http_resp := utl_http.get_response(l_http_req);
 utl_http.read_text(l_http_resp, l_response);

 return utl_url.unescape(l_response);

end do_post;

function get_parameter(
 p_response in varchar2,
 p_parameter in varchar2)
 return varchar2
is
 l_start number;
 l_end number;

begin

Integrating Application Express with PayPal Payments Pro Page 9

 if instr(p_response,p_parameter||'=') = 0 then
 return null;
 end if;

 l_start := instr(p_response,p_parameter||'=') +
length(p_parameter) + 1;
 l_end := instr(p_response,'&',l_start);

 if l_end != 0 then
 return substr(p_response,l_start,l_end - l_start);
 else
 return substr(p_response,l_start);
 end if;

end get_parameter;

procedure set_express_checkout(
 p_api_url in varchar2,
 p_api_username in varchar2,
 p_api_password in varchar2,
 p_signature in varchar2,
 p_wallet in varchar2,
 p_wallet_pwd in varchar2,
 p_session_id in varchar2,
 p_return_page in varchar2,
 p_payerid_item in varchar2,
 p_redirect_url in varchar2,
 p_return_url in varchar2,
 p_cancel_url in varchar2,
 p_amount in varchar2,
 p_description in varchar2,
 p_token_item out varchar2)
is
 l_response varchar2(4000);
 l_token varchar2(30);
begin

 l_response := do_post(
 p_api_url => p_api_url,
 p_api_username => p_api_username,
 p_api_password => p_api_password,
 p_signature => p_signature,
 p_wallet => p_wallet,
 p_wallet_pwd => p_wallet_pwd,
 p_method => 'SetExpressCheckout',
 p_parm01 => 'RETURNURL='||p_return_url,
 p_parm02 => 'CANCELURL='||p_cancel_url,
 p_parm03 => 'AMT='||p_amount,
 p_parm04 => 'DESC='||p_description);

 if get_parameter(l_response,'ACK') != 'Success' then
 raise_application_error(-20001,'Error: '||l_response);
 end if;

 l_token := get_parameter(l_response,'TOKEN');

 p_token_item := l_token;

 delete from paypal_session_map where session_id =
p_session_id;

 insert into paypal_session_map values (p_session_id,
apex_application.g_flow_id, p_return_page, p_payerid_item,
l_token);

 apex_application.g_unrecoverable_error := true;
 owa_util.redirect_url(p_redirect_url||l_token);

end set_express_checkout;

Integrating Application Express with PayPal Payments Pro Page 10

procedure get_express_checkout_details(
 p_api_url in varchar2,
 p_api_username in varchar2,
 p_api_password in varchar2,
 p_signature in varchar2,
 p_wallet in varchar2,
 p_wallet_pwd in varchar2,
 p_token in varchar2,
 p_email_item out varchar2,
 p_fname_item out varchar2,
 p_mname_item out varchar2,
 p_lname_item out varchar2,
 p_shiptoname_item out varchar2,
 p_shiptostreet_item out varchar2,
 p_shiptostreet2_item out varchar2,
 p_shiptocity_item out varchar2,
 p_shiptocc_item out varchar2,
 p_shiptozip_item out varchar2,
 p_phonenum_item out varchar2)
is
 l_response varchar2(4000);
begin

 l_response := do_post(
 p_api_url => p_api_url,
 p_api_username => p_api_username,
 p_api_password => p_api_password,
 p_signature => p_signature,
 p_wallet => p_wallet,
 p_wallet_pwd => p_wallet_pwd,
 p_method => 'GetExpressCheckoutDetails',
 p_parm01 => 'TOKEN='||p_token);

 if get_parameter(l_response,'ACK') != 'Success' then
 raise_application_error(-20001,'Error: '||l_response);
 end if;

 p_email_item := get_parameter(l_response,'EMAIL');
 p_fname_item := get_parameter(l_response,'FIRSTNAME');
 p_mname_item := get_parameter(l_response,'MIDDLENAME');
 p_lname_item := get_parameter(l_response,'LASTNAME');
 p_shiptoname_item := get_parameter(l_response,'SHIPTONAME');
 p_shiptostreet_item :=
get_parameter(l_response,'SHIPTOSTREET');
 p_shiptostreet2_item :=
get_parameter(l_response,'SHIPTOSTREET2');
 p_shiptocity_item := get_parameter(l_response,'SHIPTOCITY');
 p_shiptocc_item :=
get_parameter(l_response,'SHIPTOCOUNTRYCODE');
 p_shiptozip_item := get_parameter(l_response,'SHIPTOZIP');
 p_phonenum_item := get_parameter(l_response,'PHONENUM');

end get_express_checkout_details;

procedure do_express_checkout_payment(
 p_api_url in varchar2,
 p_api_username in varchar2,
 p_api_password in varchar2,
 p_signature in varchar2,
 p_wallet in varchar2,
 p_wallet_pwd in varchar2,
 p_session_id in varchar2,
 p_token in varchar2,
 p_payerid in varchar2,
 p_amount in varchar2,
 p_description in varchar2)
is
 l_response varchar2(4000);

Integrating Application Express with PayPal Payments Pro Page 11

begin

 l_response := do_post(
 p_api_url => p_api_url,
 p_api_username => p_api_username,
 p_api_password => p_api_password,
 p_signature => p_signature,
 p_wallet => p_wallet,
 p_wallet_pwd => p_wallet_pwd,
 p_method => 'DoExpressCheckoutPayment',
 p_parm01 => 'TOKEN='||p_token,
 p_parm02 => 'PAYMENTACTION=Sale',
 p_parm03 => 'AMT='||p_amount,
 p_parm04 => 'PAYERID='||p_payerid,
 p_parm05 => 'DESC='||p_description);

 if get_parameter(l_response,'ACK') != 'Success' then
 raise_application_error(-20001,'Error: '||l_response);
 end if;

 insert into paypal_transactions values (p_session_id, p_token,
get_parameter(l_response,'TRANSACTIONID'),
 get_parameter(l_response,'ORDERTIME'),
get_parameter(l_response,'AMT'),get_parameter(l_response,'FEEAMT')
,
 get_parameter(l_response,'SETTLEAMT'),
get_parameter(l_response,'PAYMENTSTATUS'),
get_parameter(l_response,'PENDINGREASON'),
 get_parameter(l_response,'REASONCODE'));

end do_express_checkout_payment;

procedure do_direct_payment(
 p_api_url in varchar2,
 p_api_username in varchar2,
 p_api_password in varchar2,
 p_signature in varchar2,
 p_wallet in varchar2,
 p_wallet_pwd in varchar2,
 p_session_id in varchar2,
 p_ip_address in varchar2,
 p_amount in varchar2,
 p_creditcardtype in varchar2,
 p_account in varchar2,
 p_expire_date in varchar2,
 p_first_name in varchar2,
 p_last_name in varchar2,
 p_description in varchar2,
 p_tran_id_item out varchar2)
is
 l_response varchar2(4000);
 l_transaction_id varchar2(30);
begin

 l_response := do_post(
 p_api_url => p_api_url,
 p_api_username => p_api_username,
 p_api_password => p_api_password,
 p_signature => p_signature,
 p_wallet => p_wallet,
 p_wallet_pwd => p_wallet_pwd,
 p_method => 'DoDirectPayment',
 p_parm01 => 'PAYMENTACTION=Sale',
 p_parm02 => 'IPADDRESS='||p_ip_address,
 p_parm03 => 'AMT='||p_amount,
 p_parm04 => 'CREDITCARDTYPE='||p_creditcardtype,
 p_parm05 => 'ACCT='||p_account,
 p_parm06 => 'EXPDATE='||p_expire_date,
 p_parm07 => 'FIRSTNAME='||p_first_name,

Integrating Application Express with PayPal Payments Pro Page 12

 p_parm08 => 'LASTNAME='||p_last_name,
 p_parm09 => 'DESC='||p_description);

 if get_parameter(l_response,'ACK') != 'Success' then
 raise_application_error(-20001,'Error: '||l_response);
 end if;

 l_transaction_id := get_parameter(l_response,'TRANSACTIONID');

 insert into paypal_transactions values (p_session_id, null,
l_transaction_id,
 null, get_parameter(l_response,'AMT'), null, null, null,
null, null);

 p_tran_id_item := l_transaction_id;

end do_direct_payment;

end paypal_api;
/

Use the Command Processor in the Application Express SQL Workshop to create the
paypal_api package and corresponding package body.

CREATE APPLICATION TO ACCEPT PAYMENT
Now that the communication infrastructure is in place, you can begin building an
Application Express application to integrate with PayPal Website Payments Pro. The
scenario for this whitepaper is an application to accept payment for tickets to an
Application Express training event.

Create an Application
The first step is to create an application. To create an Application Express application:

1. Login to your Application Express instance.

Please note that the application described in this paper cannot be completed on
apex.oracle.com because it does not support external network call-outs. You will
need to use your own instance to be able to execute the resulting application.

2. Select Application Builder

3. Click Create >

4. Supply information as required by the Create Application wizard

5. Add one blank page on the Pages step of the wizard

6. Once you have created the application, if your environment requires a proxy server
to reach pages on the Internet, supply the proxy server in the Proxy Server field of
the Application Definition (Shared Components > Definition - under Application)

Define Substitutions for PayPal Sandbox
You will use substitutions in your application to define the PayPal URLs and
credentials. By using substitutions, you can easily change your application to work with
the live PayPal services without changing any other code.

To specify substitutions for the PayPal sandbox in your Application:

Integrating Application Express with PayPal Payments Pro Page 13

1. Click Shared Components from the Application Builder home page

2. Click Definition under Application on the Shared Components page

3. Enter the following Substitution string and value pairs in the Substitutions section:
WALLET_PATH file:/path/to/wallet
WALLET_PWD password
API_URL https://api-3t.sandbox.paypal.com/nvp
API_USERNAME your_api_username
API_PASSWORD your_api_password
API_SIGNATURE your_api_signature
CHECKOUT_URL https://www.sandbox.paypal.com/cgi-
bin/webscr?cmd=_express-checkout&token=
RETURN_URL http://host:port/pls/apex/schema.paypal_accept
CANCEL_URL http://host:port/pls/apex

Replace the substitution values with values that match your environment and API
credentials. Your API credentials can be obtained from the API Credentials tab of
PayPal Developer Central (https://developer.paypal.com).

4. Click Apply Changes

Create an Application Item for PayPal TOKEN
Interaction with the PayPal Express Checkout feature involves getting a token and
passing it with subsequent requests. The token uniquely identifies a transaction. You
store this token in an application item.

To create an application item for the PayPal TOKEN:

1. Click Shared Components from the Application Builder home page

2. Click Application Items under Logic

3. Click Create >

4. Enter TOKEN in the name field

5. Choose Restricted from the Session State Protection list and click Create

Integrating Application Express with PayPal Payments Pro Page 14

Create Purchase Tickets Form
Create a form on page 1 to allow prospective attendees to choose the number of tickets
they want to purchase. You will edit the blank page that was created when you created
the application.

To create a form to allow attendees to choose the number of tickets they need:

1. Go to the page definition of page 1

2. Click the edit icon () in the Page section under Page Rendering

3. Enter Purchase Tickets in the Name and Title fields

4. Click Apply Changes

5. Click the create icon () in the Regions section

6. Choose HTML from the list of region types and click Next >

7. Choose HTML from the HTML container type list and click Next >

8. Enter Purchase Tickets in the Title field

9. Choose Form Region from the Region Template list and click Next >

10. Click Create Region

11. Click the create icon in the Buttons region

12. Choose the Purchase Tickets region and click Next >

13. Accept the button position default and click Next >

14. Enter CREATE in the Button Name field

15. Enter Check Out in the Label field and click Next >

Integrating Application Express with PayPal Payments Pro Page 15

http://apexdev.us.oracle.com:7778/pls/apxdev30/f?p=4000:181:2843374979875194::NO:181,4016,4017,4018,399,382,402,259,380:FB_FLOW_ID:559

16. Accept default Button Template and click Next >

17. Accept default Display Properties and click Next >

18. Leave the Branch to Page field blank and click Create Button

19. Click the create icon in the Items section

20. Choose Display Only as the item type and click Next >

21. Choose Display as Text (saves state) from the list and click Next >

22. Enter P1_DESCRIPTION in the Item Name field

23. Select Purchase Tickets from the Region list and click Next >

24. Enter Event: in the Label field and click Next >

25. Enter Application Express Advanced Workshop in the Item Source Value text
area and click Create Item

26. Click the create icon in the Items section

27. Choose Select List from the item type list and click Next >

28. Choose Select List from the Select List Control Type list and click Next >

29. Enter P1_QUANTITY in the Item Name field

30. Choose Purchase Tickets from the Region List and click Next >

31. Choose No from the Display Null Option List

32. Enter STATIC:1,2,3,4,5,6,7,8 in the List of values definition text area and click
Next >

33. Enter Quantity in the Label field and click Next >

34. Click Create Item

35. Click the create icon in the Items section

36. Choose Text from the item type list and click Next >

37. Choose Text Field from the Text Control Display Type and click Next >

38. Enter P1_AMOUNT in the Item Name field

39. Select Purchase Tickets from the Region list and click Next >

40. Enter Amount in the Label field click Next >

41. Enter 40 in the Default text area and click Create Item

42. Click the create icon in the items section

43. Choose Radio from the Item Type list and click Next >

44. Choose Radio group from the Radio Group Control type list and click Next >

45. Enter P1_PAYMENT_OPTION in the Item Name field

46. Select Purchase Tickets from the Region list and click Next >

Integrating Application Express with PayPal Payments Pro Page 16

47. Choose No from the Display Null Option list

48. Enter STATIC2:Credit Card;CC,PayPal;PP in the List of Values Query text area
and click Next >

49. Enter Payment Option in the Label field and click Next >

50. Enter PP in the Default text area and click Create Item

Add Javascript to the Form
Next you will add some Javascript to the form to populate the amount field based on
the number of tickets chosen and to make the amount field read only.

To add Javascript to the P1_QUANTITY and P1_AMOUNT fields:

1. Click P1_QUANTITY in the Items area

2. Enter onchange="javascript:$x('P1_AMOUNT').value = this.value*40;" in
the HTML Form Element Attributes field in the Element area

3. Enter @ $40 in the Post Element Text text area

4. Click Apply Changes

5. Click P1_AMOUNT in the Items area

6. Enter onFocus="this.blur()" in the HTML Form Element Attributes field in the
Element area

7. Click Apply Changes

Integrating Application Express with PayPal Payments Pro Page 17

Add Page Processing for Purchase Tickets Form
Depending on the Payment option chosen, when a user clicks Check Out, the
application should either call paypal_api.set_express_checkout, or redirect them to
another page where they will enter their credit card information. The Purchase form
page needs a process to call paypal_api.set_express_checkout and a branch to another
page when the user selects the credit card option.

To create a process and a branch for the Purchase Tickets page:

1. Click the create icon in the Processes area under Page Processing

2. Choose PL/SQL from the process category list and click Next >

3. Enter SetExpressCheckout in the Name field and click Next >

4. Enter the following code in the PL/SQL Page Process text area:
paypal_api.set_express_checkout(
 p_api_url => :API_URL,
 p_api_username => :API_USERNAME,
 p_api_password => :API_PASSWORD,
 p_signature => :API_SIGNATURE,
 p_wallet => :WALLET_PATH,
 p_wallet_pwd => :WALLET_PWD,
 p_session_id => :APP_SESSION,
 p_return_page => '2',
 p_payerid_item => 'P2_PAYER_ID',
 p_redirect_url => :CHECKOUT_URL,
 p_return_url => :RETURN_URL,
 p_cancel_url => :CANCEL_URL,
 p_amount => :P1_AMOUNT,
 p_description => :P1_DESCRIPTION,
 p_token_item => :TOKEN);

5. Click Next >

6. Leave Success Message and Failure Message text areas blank and click Next >

Integrating Application Express with PayPal Payments Pro Page 18

7. Choose PL/SQL from the condition type list

8. Enter :REQUEST = 'CREATE' and :P1_PAYMENT_OPTION = 'PP' in the
Expression 1 text area and click Create Process

9. Click the create icon in the Branches area under Page Processing

10. Accept the defaults and click Next >

11. Enter 4 in the Page field and the Clear Cache field and click Next >

12. Choose PL/SQL from the condition type list

13. Enter :REQUEST = 'CREATE' and :P1_PAYMENT_OPTION = 'CC'

14. Click Create Branch

Create Confirmation Page
When a prospective attendee chooses to pay for their tickets with PayPal on your site
the paypal_api.set_express_checkout procedure will be called. This procedure will call
the PayPal SetExpressCheckout API and retrieve a token. The token will be inserted
into the paypal_session_map table so the token can be associated with the Application
Express session. The attendee will then be redirected by the
paypal_api.set_express_checkout procedure to PayPal to complete their purchase. You
supply a return URL when a call is made to the SetExpressCheckout API. The return
URL is to the standalone procedure paypal_accept, which accepts the token and payerid
parameters.

The paypal_accept procedure takes the token ID and looks up the session information
in the paypal_session_map table. It uses that information to redirect back to the
Application Expression Events ticketing application in session context.

Integrating Application Express with PayPal Payments Pro Page 19

The page to redirect to is a confirmation page which displays the prospective attendee
their billing information. This information is obtained by calling the PayPal
GetExpressCheckoutDetails API. You need to create a page with display-only items
that calls paypal_api.get_express_checkout_details to populate those items, and then
finally calls paypal_api.do_express_checkout_payment which invokes the corresponding
PayPal API to complete the transaction.

You can use the Form on Procedure wizard as a shortcut to create page 2 of the
ticketing application. You will run the wizard and then customize the result.

To create the confirmation page:

1. Click Create Page > on the Application Builder home page

2. Choose Form from the page type list and click Next >

3. Choose Form on Procedure and click Next >

4. Choose the owner of the paypal_api package and click Next >

5. Choose paypal_api.get_express_checkout_details from the pop-up list and
click Next >

6. Enter 2 in the Page Number field

7. Enter Confirm Purchase in the Page Name and Region Name fields

8. Enter Purchase in the Submit Button Label field

9. Choose Breadcrumb from the Breadcrumb list

10. Click Purchase Tickets to select the Parent Entry for the breadcrumb and click
Next >

11. Choose Use an existing tab set and reuse an existing tab and click Next >

12. Choose T_PURCHASE_TICKETS (this may be T_PAGE_1) from the Use Tab
list and click Next >

13. Leave Invoking Page and Button Label blank and click Next >

14. Enter 3 in the Branch here on Submit field

15. Enter 1 in the Brach here on Cancel field and click Next >

16. Change the Display Type of all items to Display as Text and click Next >

17. Click Finish

Integrating Application Express with PayPal Payments Pro Page 20

You can use the new drag and drop form layout feature to quickly edit the multiple
items created by the form on procedure wizard. You will reference the application
substitutions created in the beginning of this paper for the first 6 parameters, and the
TOKEN application item for the seventh. You will delete all those items and then
change the labels of the rest of the items.

To edit/delete items using drag and drop form layout:

1. Click the Drag and drop icon () in the Items area of the page definition of
page 2

2. Drag the first seven items, P2_API_URL to P2_TOKEN to the trash can and
click Next >

3. Change the Label for each item to be a readable label, e.g., Email Address

4. Click Apply Changes

Integrating Application Express with PayPal Payments Pro Page 21

The second parameter needed when PayPal redirects back to the Application Express
ticketing application is PayerID. You need to create an item for PayerID on this page
because it will be used in a subsequent call to the PayPal API.

To create an item for PayerID:

1. Click the create icon in the Items area on the page definition of page 2

2. Select Hidden from the Item Type list and click Next >

3. Enter P2_PAYER_ID in the Item Name field

4. Select Confirm Purchase (with the higher sequence number) from the Region list
and click Next >

5. Click Create Item

Now you need to edit the process that was created by the Form on Procedure wizard.
You will change the process point and the process itself to reference the application
substitutions and item created earlier.

To edit the process created by the Form on Procedure Wizard:

1. Click Run Stored Procedure in the Processes area under Page Processing on the
page definition of page 2

2. Enter GetExpressCheckoutDetails in the name field

3. Choose On Load – After Header from the Process Point List

4. Edit the process to use your application substitutions and item as follows:
#OWNER#.PAYPAL_API.GET_EXPRESS_CHECKOUT_DETAILS(
P_API_URL => :API_URL,
P_API_USERNAME => :API_USERNAME,
P_API_PASSWORD => :API_PASSWORD,
P_SIGNATURE => :API_SIGNATURE,
P_WALLET => :WALLET_PATH,
P_WALLET_PWD => :WALLET_PWD,
P_TOKEN => :TOKEN,
P_EMAIL_ITEM => :P2_EMAIL_ITEM,
P_FNAME_ITEM => :P2_FNAME_ITEM,
P_MNAME_ITEM => :P2_MNAME_ITEM,
P_LNAME_ITEM => :P2_LNAME_ITEM,
P_SHIPTONAME_ITEM => :P2_SHIPTONAME_ITEM,
P_SHIPTOSTREET_ITEM => :P2_SHIPTOSTREET_ITEM,
P_SHIPTOSTREET2_ITEM => :P2_SHIPTOSTREET2_ITEM,
P_SHIPTOCITY_ITEM => :P2_SHIPTOCITY_ITEM,
P_SHIPTOCC_ITEM => :P2_SHIPTOCC_ITEM,
P_SHIPTOZIP_ITEM => :P2_SHIPTOZIP_ITEM,
P_PHONENUM_ITEM => :P2_PHONENUM_ITEM);

5. Click Apply Changes

The process point of the above process was changed to call the PayPal API during page
rendering to get the details of the transaction so it could be displayed on the
confirmation page. The next step is to call the PayPal API
DoExpressCheckoutPayment which finalizes payment for the transaction. You create a
process on the page that calls paypal_api.do_express_checkout_payment when the
Purchase button is pressed.

To create a process that calls paypal_api.do_express_checkout_payment:

Integrating Application Express with PayPal Payments Pro Page 22

1. Click the create icon in the Processes area under Page Processing on the page
definition of page 2

2. Choose PL/SQL from the process category list and click Next >

3. Enter DoExpressCheckoutPayment in the Name field and click Next >

4. Enter the following in the PL/SQL Page Process text area:
paypal_api.do_express_checkout_payment(
 p_api_url => :API_URL,
 p_api_username => :API_USERNAME,
 p_api_password => :API_PASSWORD,
 p_signature => :API_SIGNATURE,
 p_wallet => :WALLET_PATH,
 p_wallet_pwd => :WALLET_PWD,
 p_session_id => :APP_SESSION,
 p_token => :TOKEN,
 p_payerid => :P2_PAYER_ID,
 p_amount => :P1_AMOUNT,
 p_description => :P1_DESCRIPTION);

5. Click Next >

6. Leave the message text areas blank and click Next >

7. Choose SUBMIT from the When Button Pressed list

8. Click Create Process

The payap_api.do_express_checkout_payment procedure calls the PayPal API to
complete the transaction and then stores the confirmation information in the
paypal_transactions table.

Create Purchase Confirmed Page
The final step of the PayPal Express Checkout process is to create a confirmation page
with a report on the paypal_transactions table.

To create the Purchase Confirmed Page:

1. Click Create Page > from the Application Builder home page

2. Choose Report from the page type list and click Next >

3. Choose SQL Report and click Next >

4. Enter Purchase Confirmed in the Page Name field

5. Choose Breadcrumb from the Breadcrumb list

6. Enter 3 in the Page Number field

7. Click Purchase Tickets to select the Parent Entry for the breadcrumb and click
Next >

8. Choose Use an existing tab set and reuse an existing tab within that tab set
and click Next >

9. Choose T_PURCHASE_TICKETS (may also be T_PAGE_1) from the Use Tab
list and click Next >

10. Enter the following in the SQL SELECT statement text area:

Integrating Application Express with PayPal Payments Pro Page 23

select transaction_id, order_time, amount
 from paypal_transactions
 where session_id = :APP_SESSION

 and session_token = :TOKEN

11. Click Next >

12. Choose Value Attribute Pairs from the Report Template list

13. Enter Purchase Confirmed in the Region Name field and click Next >

14. Click Finish

15.

You should create a button on this page to allow for navigation back to the Purchase
Tickets page.

To create a button for navigation back to the Purchase Tickets page:

1. Click the create icon in the Buttons area on the page definition of page 3

2. Choose Purchase Confirmed (with the higher sequence number) from the region
list and click Next >

3. Leave the default button position and click Next >

4. Enter PURCHASE in the Button Name field

5. Enter Purchase More Tickets in the Label field

6. Select Redirect to URL without submitting page from the Action list and click
Next >

7. Leave the button template defaulted and click Next >

8. Leave the button position defaulted and click Next >

9. Enter 1 in the Page field

10. Enter 1 in the Clear Cache field

11. Click Create Button

Integrating Application Express with PayPal Payments Pro Page 24

Create Pay By Credit Card Page
PayPal’s Website Payments Pro requires that you offer customers the choice of using
the PayPal Express Checkout or to pay with a credit card directly on your site. You
have just completed the Express Checkout portion and now must provide the ability to
purchase with a credit card directly on your site. The Purchase Tickets page already
contains an item to allow the purchaser to make that choice and also has a branch to
page 4. You must create page 4 to accept a credit card directly.

You can again use the Create Form on Procedure wizard as a shortcut with some
customization to create page 4 that accepts credit cards directly.

To use the Create Form on Procedure wizard to create the pay by credit card page:

1. Click Create Page > from the Application Builder home page

2. Choose Form from the page type and click Next >

3. Choose Form on a Procedure and click Next >

4. Choose the owner of the paypal_api procedure and click Next >

5. Choose paypal_api.do_direct_payment and click Next >

6. Enter 4 in the Page Number field

7. Enter Pay By Credit Card in the Page Name and Region Name fields

8. Enter Pay Now in the Submit Button Label field

9. Choose Breadcrumb in the Breadcrumb list

10. Click Purchase Tickets to select the Parent Entry for the breadcrumb and click
Next >

11. Choose Use an existing tab set and reuse an existing tab within that tab set
in the Tab Options list and click Next >

12. Choose T_PURCHASE_TICKETS (may also be T_PAGE_1) from the Use Tab
list and click Next >

13. Leave the Invoking Page and Button Label blank and click Next >

14. Enter 5 in the Brach here on Submit field

15. Enter 1 in the Branch here on Cancel field and click Next >

16. Change the Display Type for the IP Address and Tran ID item to Hidden and
click Next >

17. Click Finish

You can use the Drag and drop form layout feature again to quickly edit/delete multiple
items. You will not need the items for the PayPal API parameters because you created
application substitutions for them.

1. Click the Drag and drop icon () in the Items area of the page definition of
page 4

2. Drag the first seven items, P4_API_URL to P4_SESSION_ID to the trash can

Integrating Application Express with PayPal Payments Pro Page 25

3. Drag the P4_DESCRIPTION item to the trash can

4. Click Next >

5. Change the labels of the items to be more readable, e.g., Amount

6. Click Apply Changes

You will make a couple of other edits to these items. P4_AMOUNT should be display-
only and have a value that matches the value on page 1. P4_CREDITCARDTYPE
should be a radio group. Finally, you will set the source of P4_IP_ADDRESS to be a
PL/SQL procedure that will determine the IP address of the current user.

To edit the P4_AMOUNT, P4_CREDITCARDTYPE, and P4_IP_ADDRESS items:

1. Click P4_AMOUNT in the Items area on the page definition of page 4

2. Choose Display as Text (does not save state) from the Display As list

3. Enter class=”fielddatabold” in the HTML Table Cell Attributes field in the
Element area

4. Enter $ in the Pre Element Text text area

5. Enter USD in the Post Element Text text area

6. Choose PL/SQL Expression or Function in the Source Type list in the Source
area

7. Enter :P1_AMOUNT in the Source value or expression text area

8. Click Apply Changes

9. Click P4_CREDITCARDTYPE in the Items area

10. Select Radiogroup from the Display As list

11. Enter Visa in the Default value text area in the Default section

12. Choose No from the Display Extra Values list in the List of Values section

13. Choose No from the Display Null list

14. Enter 4 in the Number of Columns field

15. Enter STATIC2:Visa,MasterCard,Discover,Amex in the List of values
definition text area

16. Click Apply Changes

17. Click P4_IP_ADDRESS in the Items area

18. Choose PL/SQL Expression or Function from the Source Type list in the
Source area

19. Enter the following in the Source value or expression text area:

owa_util.get_cgi_env('REMOTE_ADDR')

20. Click Apply Changes

Integrating Application Express with PayPal Payments Pro Page 26

Now that you have customized all the form items, you need to alter the process that
was created by the wizard. You will use application-level substitutions and an item for
reusability and to allow for easily changing these substitutions to point to the
production PayPal payment service.

In the process, you will also obfuscate the credit card account number entered by the
user so it is not stored locally.

To alter the process created by the create form on procedure wizard:

1. Click Run Stored Procedure in the Processes area under Page Processing on the
page definition of page 4

2. Enter DoDirectPayment in the Name field

3. Enter the following in the Process text area:
declare
 l_acct varchar2(30) := :P4_ACCOUNT;
begin
 :P4_ACCOUNT := 'XXXXXXXXXXXX'||substr(l_acct,-4);

paypal_api.do_direct_payment(
 p_api_url => :API_URL,
 p_api_username => :API_USERNAME,
 p_api_password => :API_PASSWORD,
 p_signature => :API_SIGNATURE,
 p_wallet => :WALLET_PATH,
 p_wallet_pwd => :WALLET_PWD,
 p_session_id => :APP_SESSION,
 p_ip_address => :P4_IP_ADDRESS,
 p_amount => :P1_AMOUNT,
 p_creditcardtype => :P4_CREDITCARDTYPE,
 p_account => l_acct,
 p_expire_date => :P4_EXPIRE_DATE,
 p_first_name => :P4_FIRST_NAME,
 p_last_name => :P4_LAST_NAME,
 p_description => :P1_DESCRIPTION,
 p_tran_id_item => :P4_TRAN_ID_ITEM);
end;

4. Click Apply Changes

Create Purchase Confirmed Page for Pay By Credit Card
Lastly, you will create a purchase confirmation page similar to the express checkout
confirmation page for the pay by credit card payment option. The difference on this
page is that the transaction cannot be identified by the token, so it will be identified by
the transaction ID.

To create the Purchase Confirmed Page:

1. Click Create Page > from the Application Builder home page

2. Choose Report from the page type list and click Next >

3. Choose SQL Report and click Next >

4. Enter Purchase Confirmed in the Page Name field

5. Choose Breadcrumb from the Breadcrumb list

6. Enter 5 in the Page Number field

Integrating Application Express with PayPal Payments Pro Page 27

7. Click Purchase Tickets to select the Parent Entry for the breadcrumb and click
Next >

8. Choose Use an existing tab set and reuse an existing tab within that tab set
and click Next >

9. Choose T_PURCHASE_TICKETS (may also be called T_PAGE_1) from the
Use Tab list and click Next >

10. Enter the following in the SQL SELECT statement text area:
select transaction_id, amount
 from paypal_transactions
 where transaction_id = :P4_TRAN_ID_ITEM

11. Click Next >

12. Choose Value Attribute Pairs from the Report Template list

13. Enter Purchase Confirmed in the Region Name field and click Next >

14. Click Finish

You need to create a button on this page to allow for navigation back to the Purchase
Tickets page.

To create a button for navigation back to the Purchase Tickets page:

1. Click the create icon in the Buttons area on the page definition of page 5

2. Choose Purchase Confirmed (with the higher sequence number) from the region
list and click Next >

3. Leave the default button position and click Next >

4. Enter PURCHASE in the Button Name field

5. Enter Purchase More Tickets in the Label field

6. Select Redirect to URL without submitting page from the Action list and click
Next >

7. Leave the button template defaulted and click Next >

8. Leave the button position defaulted and click Next >

9. Enter 1 in the Page field

10. Enter 1 in the Clear Cache field

11. Click Create Button

Integrating Application Express with PayPal Payments Pro Page 28

TESTING THE TICKETING APPLICATION
Your application is now complete and you are ready to test it. Prior to running the
application, you must go to https://developer.paypal.com/ and sign in with your
developer account. After logging in, use the same browser to run your ticketing
application. Note that this is not the experience your users will encounter when you
change the application to work with PayPal’s live site and API’s. This is only a
requirement for the Sandbox.

Test both PayPal and Credit Card payment methods. You must use the personal test
account you created in the Prerequisites section. You can get the credit card account
number and expiration date to use by going to the Sandbox, Test Accounts tab, and
click View Details under the personal test account that you created. Note that the
expiration date you enter should be in the form MMYYYY.

Finally, use the Sandbox to login in to the business test account and verify that you can
see the recently completed transactions.

Integrating Application Express with PayPal Payments Pro Page 29

https://developer.paypal.com/

Oracle Application Express Free Trial
Service

http://htmldb.oracle.com

Oracle Application Express Home
http://htmldb.oracle.com/otn

Oracle Application Express How To
Documents

http://htmldb.oracle.com/howtos

Oracle Application Express Studio
http://htmldb.oracle.com/studio

Oracle Application Express Forum on OTN
http://htmldb.oracle.com/forums

Oracle Application Express References
http://htmldb.oracle.com/references

CONCLUSION
Oracle Application Express allows for building applications that integrate with payment
solutions such as PayPal Website Payments Pro through the use of supplied PL/SQL
packages like UTL_HTTP. It is possible to use the same methodology to integrate with
other payment solutions that use a name value pair API.

Integrating Application Express with PayPal Payments Pro Page 30

http://htmldb.oracle.com/
http://htmldb.oracle.com/otn
http://htmldb.oracle.com/howtos
http://htmldb.oracle.com/studio
http://htmldb.oracle.com/forums
http://htmldb.oracle.com/references

Integrating Application Express with PayPal Payments Pro
September 2007
Author: Jason Straub

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

Copyright © 2007, Oracle. All rights reserved.
This document is provided for information purposes only and the
contents hereof are subject to change without notice.
This document is not warranted to be error-free, nor subject to any
other warranties or conditions, whether expressed orally or implied
in law, including implied warranties and conditions of merchantability
or fitness for a particular purpose. We specifically disclaim any
liability with respect to this document and no contractual obligations
are formed either directly or indirectly by this document. This document
may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.
Oracle, JD Edwards, and PeopleSoft are registered trademarks of
Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

