

Migrating Non-Oracle Databases and their Applications to

Oracle Database 12c

O R A C L E W H I T E P A P E R | D E C E M B E R 2 0 1 4

2 | MIGRATING NON-ORACLE DATABSES AND THEIR APPLICATIONS TO ORACLE DATABASE 12C

2

1. Introduction

Oracle provides products that reduce the time, risk, and financial barriers involved in migrating non-Oracle databases

and their applications to Oracle Database 12c.

Migrating tables and their associated data is a straight forward and easily automated process. Stored procedures and

application logic however require much more effort. Translating a stored procedure is doable, but making it automatic is

not a trivial exercise. Oracle Database 12c introduces several significant new features which significantly lower the cost

and time required to migrate non-Oracle databases to the Oracle platform. In addition, a new database feature, the SQL

Translation Framework, assists with the migration of your applications by automatically translating SQL Server and

Sybase ASE (T-SQL) calls as they come into the database.

This white paper outlines the new database features which assist in migrations.

 Figure 1: Oracle SQL Developer, Installing a Sybase translator to Oracle Database 12c SQL Translation Framework

3 | MIGRATING NON-ORACLE DATABSES AND THEIR APPLICATIONS TO ORACLE DATABASE 12C

2. Oracle SQL Developer

Introduction

SQL Developer is an Oracle IDE that enhances productivity and simplifies database development and

administration tasks. Using SQL Developer, users can browse, create and modify database objects, run SQL

statements, edit and debug PL/SQL and have access to an extensive list of predefined reports or create their own.

Oracle SQL Developer is included with Oracle Database 12c .

Oracle SQL Developer is also the primary third party database migration platform for Oracle Database. SQL

Developer provides an integrated migration tool for migrating Microsoft SQL Server, Sybase ASE, IBM DB2 LUW,

and Teradata databases to Oracle Database.

With SQL Developer, users can create connections to non-Oracle databases for browsing and querying objects.

SQL Developer provides utilities to migrate databases to Oracle. SQL Developer automatically converts tables,

triggers, stored procedures and all other relevant objects to Oracle database equivalents. Once converted and

target Oracle objects have been produced, SQL Developer copies the data to the new tables.

When the target database for an Oracle Database migration is version 12.1.0.1 or higher, Oracle SQL Developer

will automatically migrate the objects and stored procedures using the new database 12c features discussed below.

Included with the descriptions are examples of how code and objects were previously migrated to Oracle Database

11g and now going forward in Oracle Database 12c.

3. Oracle Database 12c Application Migration Enhancements

The following new features have been introduced to reduce the amount of custom code and time required for third

party migrations to Oracle Database.

 Identity Columns

 32K VARCHARS

 FETCH FIRST ROWS (SQL)

 Implicit Cursors

 Multitenant Architecture

 SQL Translation Framework

Identity Columns

Primary key constraints define a table column or columns that will serve to uniquely identify records in that table. A

common programming technique is to have a value automatically generated and assigned as rows in a table are

generated and inserted. These are also widely known as ‘synthetic’ or ‘surrogate’ keys. Prior to Oracle Database

12c, this was traditionally accomplished by creating a SEQUENCE and a TRIGGER. The sequence would define

and generate the value for a new row, and the trigger would fire to supply the sequence value for the column in the

INSERT statement.

4 | MIGRATING NON-ORACLE DATABSES AND THEIR APPLICATIONS TO ORACLE DATABASE 12C

The alternative approach is to use an Identity column. This would allow the sequence logic to be directly embedded

into the definition of the table column, bypassing the need to create a sequence and trigger to handle the generation

and population of the primary key value of the table records.

Oracle Database 12c now natively supports Identify columns [Oracle Docs.] This enhancement represents

significant cost savings for customers migrating to Oracle Database. Instead of having to generate two additional

database objects for each table making use of an identity column, this can now be defined in the table itself. This

also lowers the cost of maintenance going forward as there are fewer database objects to manage and support.

Fewer objects, less code, less work – all handled automatically when migrating to Oracle Database 12c using

Oracle SQL Developer.

32K VARCHAR2’s

Since its introduction, the VARCHAR2 data type has had a max size of 4,000 bytes, which equates to 4,000

characters in single byte character sets. Table column definitions exceeding this size would be migrated as

Character Large Objects, or CLOBs. This presented a challenge for many customers migrating from non-Oracle

database environments as changing data type and storage definitions is not a trivial design decision. CLOBs can

present optimization and flexibility challenges for developers when compared to Varchars.

With the introduction of Oracle Database 12c, the VARCHAR2, NVARCHAR2, and RAW data types now support up

to 32,768 bytes [Oracle Docs.]

Offering an extended size VARCHAR2 means that in most cases migrations can continue with no requirement to

switch to CLOBs in the column definition for tables containing large strings.

Note: to enable the increased size limits for these data types, the following database parameters are required:

https://docs.oracle.com/database/121/DRDAA/migr_tools_feat.htm#DRDAA109
https://docs.oracle.com/database/121/REFRN/refrn10321.htm#REFRN10321

5 | MIGRATING NON-ORACLE DATABSES AND THEIR APPLICATIONS TO ORACLE DATABASE 12C

 MAX_SQL_STRING_SIZE initialization parameter set to EXTENDED

 COMPATIBLE initialization parameter set to 12.0.0.0 or higher

In addition, the $ORACLE_HOME/rdbms/admin/utl32k.sql script must be run while the database is in UPGRADE

mode to convert data dictionary views where required.

FETCH FIRST ROWS

Queries which sort data and then limit row output are often referred to as Top-N queries. Prior to Oracle Database

12c, developers would use the pseudo-column ‘ROWNUM’ to limit the number of rows returned in a query. Limiting

the number of rows returned can be valuable for reporting, analysis, data browsing, paging results in web

applications, and other tasks.

In Oracle Database 12c Release 1, SQL SELECT syntax has been enhanced to allow a row_limiting_clause, which

limits the number of rows that are returned in the result set [Oracle Docs.] The row_limiting_clause provides both

easy-to-understand syntax and expressive power.

You can now specify the number or percentage of rows for your query results with the FETCH_FIRST SQL clause.

You can additionally use the OFFSET syntax to specify that the results begin on a specified number of rows after a

specified number of initial records.

The row_limiting_clause follows the ANSI SQL international standard for enhanced compatibility and easier

migrations.

The new FETCH FIRST SQL is powerful, flexible, and easy to read.

Implicit Cursors

A common programming practice in Microsoft SQL Server and SAP’s Sybase ASE databases’ extended SQL

language, T-SQL, is to write SQL statements directly in their stored procedures. Calling said stored procedure would

make the result set for the one or more queries immediately available to the calling user or program.

Prior to Oracle Database 12c, migrating these stored procedures to Oracle Database PL/SQL equivalent

procedures would require changing the procedure header to include one or more SYS_REFCURSORs as OUT or

RETURN parameters, forcing the application calling the procedures to change its API accordingly to reflect the

change.

https://docs.oracle.com/database/121/DRDAA/migr_tools_feat.htm#DRDAA29126

6 | MIGRATING NON-ORACLE DATABSES AND THEIR APPLICATIONS TO ORACLE DATABASE 12C

With Oracle Database 12c, stored procedures can use the DBMS_SQL package’s RETURN_RESULT() function to

make the query results available to the calling user or program [Oracle Docs.]

Maintaining the original code headers makes for a more seamless application migration as the procedural calls in

the application will not require updates post-database migration.

Multitenant Architecture

Database applications running with SQL Server or Sybase expecting a multi-tenancy database model per server

can now continue this approach with Oracle Database 12c’s Multitenant Option architecture [Oracle Docs.]

Where a single SQL Server instance can serve one or more databases, a single Oracle 12c Container Database

(CDB) can service one or more Pluggable Databases (PDBs). Instead of migrating multiple SQL Server databases

to a single Oracle database using schemas as a ‘container’ for each migrated database, Oracle Database 12c now

allows for individual pluggable databases to be used.

Figure 2: This illustration shows a CDB with a CDB$ROOT container, a PDB$SEED container plugged into the root, and several PDBs plugged
into the root.

For a complete overview of the Oracle Database Multitenant option and architecture, please see this Oracle White

Paper.

https://docs.oracle.com/database/121/DRDAA/migr_tools_feat.htm#DRDAA230
http://docs.oracle.com/database/121/CNCPT/cdbovrvw.htm#CNCPT89234
http://www.oracle.com/technetwork/database/multitenant/overview/multitenant-wp-12c-2078248.pdf
http://www.oracle.com/technetwork/database/multitenant/overview/multitenant-wp-12c-2078248.pdf

7 | MIGRATING NON-ORACLE DATABSES AND THEIR APPLICATIONS TO ORACLE DATABASE 12C

4. SQL Translation Framework

While migrating the database is a major component of any migration project, updating the database applications is

just as critical. Complicating this process is that each of the database management systems have their own

implementations of the SQL standard. Proprietary SQL code that may run in Sybase ASE may not run ‘as is’ in

Oracle Database. The amount of custom SQL present in an application can largely define the amount of time

required to fully migrate a database and its applications.

Database application migrations are currently performed with Oracle SQL Developer and its application scanner

scripts. SQL Developer can parse application code and document embedded SQL statements that will require

translation before running against an Oracle Database. The task of doing the actual translations is left to the end

user, or can be addressed one at a time using SQL Developer’s SQL Translation Scratch Editor.

Figure 3: Oracle SQL Developer Migration Scratch Editor

The SQL Translation Scratch editor is an ad hoc SQL and procedural language translation feature that allows users

to connect to third party databases, run their SQL statements, translate them to Oracle, run the statements again in

Oracle Database, and compare the results. Developers can then manually update their applications to run the

modified code. This works fine for static SQL, but there was no solution for dynamically generated SQL statements.

This, prior to Oracle Database 12c, was largely left to testing to identify any issues which may arise.

This time consuming and error-prone process has been largely eliminated with the introduction of the SQL

Translation Framework in Oracle 12c [Oracle Docs.] The framework allows for the translators in Oracle SQL

Developer to be loaded directly into the database as a collection of Java stored classes and procedures. Available

with Oracle Database 12c are translators for Sybase ASE and SQL Server.

Once installed from SQL Developer to the database, the translator can be activated at the session or service level.

This means that non-Oracle statements, which have yet to be translated, are sent to the database to be parsed,

translated, and executed on-the-fly.

These translations are stored in a SQL Translation Profile for future executions. The contents of the profile can be

reviewed, modified, and approved by the migration team to ensure the translations are accurate and ready for

production. Multiple SQL Translation Profiles can be created to address each application being migrated. The

Profiles are portable, and can be transferred to other databases running the same application. They are also parsed

https://docs.oracle.com/database/121/DRDAA/migr_tools_feat.htm#DRDAA29122

8 | MIGRATING NON-ORACLE DATABSES AND THEIR APPLICATIONS TO ORACLE DATABASE 12C

and placed into the SQL cache so that future calls will immediately get the appropriate statement executed on the

database as quickly as standard SQL statements.

SQL Translation Framework Workflow

1. Framework receives SQL call

2. Performs lookup in SQL translation dictionary (Profile)

3. When not found it fingerprints the statement and adds it to the dictionary

4. It then processes the template with the values supplied

An Example

Framework receives

 SELECT TOP 2 * FROM T1

Performs static lookup of a conversion in the SQL Translation Dictionary

Not Available: Generate the Fingerprint

Select Top <ora:literal type=integer order=1> * From T1

Note: literals are mapped in translations such that ‘select 1; select 2 select 3;’ are treated as a single

statement, where the literal (1, 2, or 3) is stored as <ora:literal type=integer order=1>) in the Fingerprint.

Lookup fingerprint in the SQL Translation Dictionary

Available: Gets the Fingerprint

Select * From T1 FETCH FIRST <ora:literal type=integer order=1> ROWS ONLY

Processes the Template with values acquired

 Select * From T1 FETCH FIRST 2 ROWS ONLY

Returns the translated SQL to the database engine

9 | MIGRATING NON-ORACLE DATABSES AND THEIR APPLICATIONS TO ORACLE DATABASE 12C

Figure 4: SQL Translation Framework Diagram: A Sybase application connects to Oracle and runs, having its statements translated and executed
on-the-fly for Oracle.

Once all translations have been completed, tested and approved, the SQL Translation Profile can be moved to a
production databases to be used. Developers may also consider implementing translated Oracle code directly back
into their application, and going forward, developing native Oracle code and techniques.

5. Conclusion

Oracle Database 12c helps customers lower IT costs and delivers a higher quality service by enabling consolidation

onto database clouds and engineered systems like Oracle Exadata and Oracle Database Appliance. It’s proven to

be fast, reliable, secure and easy to manage for all types of database workloads including enterprise applications,

data warehouses and bid data analysis.

Moving your database and database powered applications to Oracle Database often requires significant application

and data model updates as non-Oracle technologies must be changed to work with existing Oracle structures, data

types, proprietary SQL and procedural languages (PLSQL.) Oracle Database 12c includes many new features, as

described above, which minimize database and application changes to accommodate applications not originally

developed for Oracle Database.

10 | MIGRATING NON-ORACLE DATABSES AND THEIR APPLICATIONS TO ORACLE DATABASE 12C

Oracle Corporation, World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065, USA

Worldwide Inquiries

Phone: +1.650.506.7000

Fax: +1.650.506.7200

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other war-
ranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 1214

White Paper Title
December 2014
Author: Jeff Smith
Contributing Authors: Barry Mcgillin

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

