
March 25, 2009
Beehive Object Model

Oracle Corporation

Editors: Terry M. Olkin, Eric S. Chan, Rafiul Ahad

Version 1.0: 01/12/2009 - Created for OASIS ICOM TC
Version 1.1: 03/24/2009 - Conference to subclass Folder
This document describes the object model for Beehive. The document does not attempt to define the
model in terms of an actual programming language. Instead, we describe the model using a concise
abstract notation. Once we have specified the abstract model, we will be able to define a programming
language binding to the model.
Copyright © 2009, Oracle. All rights reserved. 1 of 83

Vocabulary
1.0 Vocabulary

This section forms a glossary for all the relevant words that we will use throughout the document.

Access
Control A specific type of policy that determines whether a principal may perform a specific

operation on an entity or an action on the system.

Action 1. An action is something performed by an actor that may or may not be directed at
any particular entity. These actions are subject to access control. An operation is an
action on an entity.
2. An Action can be the THEN part of the IF/THEN rule construct. Such a rule action
is executed when the rule condition is satisfied.

Actor An entity that can perform actions upon other entities.

Address Book A container of contacts.

Agent An external person or external resource with whom the system can communicate by
messages.

Alert An urgent message to one or more entities that typically requires the immediate atten-
tion of the receivers.

Announcement A message for a group that is posted and that is valid for a specified period of time.

Artifact An entity that is the result of a communication or collaborative activity. Document
creation is an example of collaborative activity resulting in an artifact (the document).

Attachment An artifact that is associated with some other entity. It represents the association
between an attachment holder and an attachable.

Authentication The process of proving one’s identity.

Authorization The process of checking if an actor has the necessary privileges needed to perform an
operation on an entity or an action in the system.

Calendar A container of possibly recurring schedules; a schedule has a start time and duration
such as a meeting, an appointment, or a booking of a resource.

CEN The collaboration entity name which uniquely identifies an entity in the system.

Chat Specifically a many-on-many (group), synchronous, usually text-based conversation.
Contextual chat includes the ability to pass interactive, non-textual information
between participants (i.e., chat within the context of one or more artifacts).

Coexistence A registry that defines how an actor’s mail, calendar, task, and address book may
coexist in another system for the purpose of seamless access or synchronization to/
from Beehive system.
2 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Vocabulary
Collaborate Two or more actors working together for a common objective, usually sharing and
producing artifacts.

Community A group of actors and agents that share common workspaces and policies.

Conference An event that involves one or more concurrent conversations.

Conference
Participant An actor that is a participant in at least one conversation of a conference.

Contact (n) An artifact that refers to an addressable entity or a set of entity addresses. It is an
entry in a container called Address Book. (v) To communicate with the addressable
entity.

Contact List A set of contacts. The set can optionally have internal structure (e.g., hierarchy). Con-
tact lists can be used anywhere a grouping of contacts is needed. See Address Book.

Container A generic set of entities. It is used when the specific type of container is unimportant.
We use Folder to represent a specific type of container. See Folder.

Context A frame of reference containing the relevant entities and relationships in which some
operation is to be executed. Note that a context need not map directly to an entity - it
is often a dynamic grouping. See Environment.

Conversation A multi-directional flow of messages and/or streams among entities. The content of
the messages and streams are typically semantically related although this is not a
requirement. Conversations have well-defined starting points in time and typically
also have ending points (but are not required). A single conversation can be carried
out using one of or a multitude of media types.

Conversation
Originator An entity that begins a conversation, typically by sending a message or stream to at

least one receiver.

Conversation
Participant An entity which is at times optionally a sender or a receiver of at least one message or

stream in a conversation.

Delegate (n) An actor that can act on behalf of another actor; An actor who has taken on the
identity of another actor. (v) The act of granting the ability to act on an actor’s behalf
or take on another actor’s identity.

Delete To remove or mark for removal an artifact from its container. An object that is deleted
is technically still present, but is no longer accessible except through extraordiary
means.

Device A terminal from which a person can interact with the system, either to collaborate,
communicate or manage resources. There is no assumption as to how the device is
connected to the system.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 3 of 83

Vocabulary
Directory A container of mappings from entity identifiers (usually referred to as names) to the
corresponding entity. The mappings form an organization of the entities and their
hierarchical relationships. A typical implementation does not provide this mapping
directly. Instead, the identifier maps to information that describes the entity that can
be used to locate or communicate with it. There may be multiple entries that corre-
spond to a single entity where each entry provides a different name (an alias) for the
underlying entity.

Discussion
Thread A conversation.

Distribution
List A contact list whose contacts are interested in receiving information on the same

topic.

Document A specific type of self-contained artifact (a file usually) that represents the result of
certain end user applications (e.g., a word processor).

Domain A name assigned by an Internet registry authority to represent the name of an enter-
prise or institution. Typically refers to an email scoping. Should only appear in con-
text, e.g., email domain.

EID An entity identifier which is the immutable part of the collaboration entity name
(CEN).

Email A system for sending and receiving messages electronically over a computer network
or a message sent or received by such a system.

Email Thread A conversation using email as the communications protocol.

Enterprise The top-level container of all entities. Normally, a single deployment will host only a
single enterprise. However, in some cases (e.g., ASP model), a single deployment can
host multiple enterprises - but these enterprises are still logically isolated from each
other. Enterprises hold organizations.

Entity A tuple (object) that can be uniquely identified by its collaboration entity name
(CEN) which includes a globally unique identifier (guid) representing the entity ID
(EID). The entity has an optional human readable name. Some parts of the CEN are
mutable, but the EID is immutable - EID is created when the entity is created and can
never be changed, duplicated or re-used. An entity’s name is mutable. Virtually all
manipulable objects are entities.

Environment A frame of reference that may contain related and unrelated information. Typically,
an operation is performed on an entity in a context in an environment. The operation
may need information from the environment, e.g., time, location, network, in order to
perform the operation. Generally speaking, there is only one environment although
there are many contexts.

Erase The act of permanently removing a deleted artifact. Once erased, the artifact is irre-
trievable.
4 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Vocabulary
Event An event is an occurrence of some action in the system or operation on an entity asso-
ciated with a well-defined trigger condition.

Event
Type The metadata that defines the name and properties of a class of events.

Fax (v) To send an image via phone lines using a Fax protocol. (n) An image that was
transmitted via phone lines using a Fax protocol. A fax is typically delivered on paper,
but need not be.

File An artifact that contains data and corresponding meta-data that describe the contents
(e.g., type, name, etc.).

Folder A special artifact that is a container for other entities. Types of folders include calen-
dars, address books and end-user folders. Folders may themselves be elements creat-
ing hierarchies.

Form An entity that collects input from actors in a structured way.

Group A way to name a set of actors.

Hide Removing an artifact from the view of an actor. That is, the artifact appears to be
deleted from the viewing actor’s perspective. But the artifact is still present to other
actors. The artifact can be unhidden as well. Note that hiding an artifact is merely a
viewer preference and has no other effect on the artifact. Contrast this with deleting
an artifact or preventing the appearance via access control rules.

Inbox An entity that contains artifacts with the intent that these artifacts are awaiting some
kind of action.

Instant
Message (IM) Specifically a one-on-one, synchronous, usually text based, conversation. Also

used as a verb, e.g., IMing, meaning the act of instant messaging.

Journal An artifact that records an action or event. It has a start time and a duration. Journal
entries can be automatic based on user actions or manual (e.g., a “captain’s log”).

Label (n) An name that can be directly attached to an entity for the purpose of classifying
the entity. A single label can be applied to any number of entities and any entity can
support any number of labels. (v) The act of applying a label.

Location An attribute of an entity describing its logical or physical position in space.

Media Types The different ways that data can be encoded.

Meeting An occurrence where collaboration occurs within some context.

Message A unit of conversation. A message is an artifact that originates at a sender. A message
typically contains information, data and/or meta-data. Every message originates at a
location at a specific time.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 5 of 83

Vocabulary
Most-Active A way to describe an entity with a high frequncy of access by actors.

Name A “familiar” moniker for some entity.

Notification A type of message that alerts an actor as to the occurrence of some event.

Observer A pattern that defines one-to-many dependency between a source entity (for a subset
of its event types) and the policies that specifies the plan of actions.

Occurrence An action, meeting, conference, or happening. An occurrence may reference Occur-
rence Participants. Occurrences are typically named and have some temporal aspect,
minimally a start time.

Occurrence
Participant An actor that participates in an occurrence.

Operation An action on an entity.

Organization A container of workspaces and sub-organizations. An organization is the next level
container under an enterprise.

Permission A privilege granted on an entity.

Person A user that maps to a human being.

Policy A plan of actions governing the life cycles of entities. A policy can be represented by
rule-based applications or workflows.

Preference A preference declares the choices, desires, course of actions, or customizations of an
actor, a group of actors, or a scope.

Preference
Profile A preference profile is a grouping of preset preferences that can be selected for differ-

ent circumstances. For example, a user can switch back and forth between the regular
preference profile and the business travel preference profile.

Presence The knowledge of an actor’s location, connectedness, status, and ability to converse at
a given point in time.

Presentity A presentity combines devices, services, willingness, and person information for a
complete picture of a user’s presence status in the collaboration system.

Principal A principal contains information about the identities, credentials, and delegations of a
particular user for the purpose of access control.

Priority A ranking of the importance of entities in a set. The higher the priority, the more
important the entity. When the entity is a message and the priority is high, we say it is
an urgent message.

Privilege The token for some operation that can be performed by an actor.
6 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Vocabulary
Receiver An entity that receives a message or a stream.

Resource An allocatable entity limited in capacity for performing an action or being acted upon
(i.e., usually not sharable at one time).

Role A named set of permissions. Actors are then assigned to roles.

Rule An instruction of the form IF/THEN. A rule is evaluated to either true or false by
evaluating some condition. Appropriate action is taken depending on the result.

Scheduling The act of placing an event on a calendar or allocating a resource using a calendar.

Scope A scope defines a logical region or neighborhood in the universe of entities that is
governed by a common set of policies, which include memberships, roles, and
groups. Enterprises, organizations, and workspaces define the boundaries of hierar-
chies of scopes.

Sender An entity that originates a message or stream.

Stream A continuous flow of data in a conversation. A stream originates at a sender and can
be distributed to one or more receivers. Every stream starts at a location at a specific
start time.

Subscription A user instruction to have a certain action taken if an event and a given set of condi-
tions occur. It allows a user to prescribe how to automatically react or notify the user
when some events occur on an entity. Conditions involve pattern matching expres-
sions on the contents of the events.

Survey A specific type of form for the purpose of gathering feedbacks on a subject. Related
to a poll (not defined).

Synchronous
Messaging Communications between a sender and receiver with temporal concurrence. Most

real-time communications are examples of synchronous messaging.

System The totality of actors, entities, and executable code that define one logical instance or
installation of the product.

System Actor A special actor that represents a privileged, non-human user of the system. These are
things like processors or services themselves, when they need to act on the system.
System actors, because they are usually native to the system or their actions are pro-
grammed into the system, are often not authenticated but may be subjected to access
control.

System
Administrator A person that can perform privileged operations that effect the system and its environ-

ment.

Task An event that is actionable by an actor at some time.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 7 of 83

Vocabulary
Template Meta-data that describes a re-usable structure of a set of entities.

Time A fourth dimension to location. The temporal nature of an entity. Used both in its
absolute form as well as in a relative form.

Time Zone A geographical region within which the same local time is used.

Transcript A durable record of a conversation.

Trigger (n) A stimulus that can set off an event. (v) To generate an event from the trigger point
in an entity.

Trigger
Point A distinguished point in the entity representing a source of events. An entity may con-

tain several trigger points that generate events when corresponding operations are
performed on the entity.

Urgent A type of message conveying a sense of pressing importance.

User An actor that is not a System Actor, usually a human. Users can be in many states
including authenticated or not authenticated, on-line or off-line, etc.

Version The state of an entity at some point in time. Note that not all entities are versionable
(even if they change state over time, we don’t always refer to the new state as a new
version of the entity). Usually a (new) version is established once an entity enters a
newly consistent state from its last consistent state.

Voice Mail A stored message in voice form.

Watch List A list of entities being monitored. Depending on the type of monitoring, there may be
various specializations of watch list.

Wiki Page A wiki page is an artifact that is continuingly being revised. The revisions are always
versioned and maintained.

Workflow A set of instructions that cause actions to be taken based on events. Once a workflow
is instantiated, it usually maintains state. Workflows can execute over extended peri-
ods of time (and typically involve user interaction along the way).

Workspace A long-lived, named entity that defines a context and is a place to collaborate.
8 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Formalisms
2.0 Object Formalisms

2.1 Notation
This section briefly describes the notations used to define the objects and the relations between them.

The statement of the form “X => W ” is a class definition, which defines the class X. W is a set of zero or
more attribute definitions. The order of attribute definitions within a class is not significant. Each attribute
definition is a term of the form “A : Y,” where A is an attribute name and Y is a type of the attribute which
can be a class name or a primitive type. For example, “Entity => Name : string” specifies that Entity has a
Name attribute which is of the primitive type string. We use square brackets around the attribute name,
such as “ : Y ” to indicate that it is optional for attribute A to hold a value. For example, “Entity =>
[Name] : string” specifies that Name is optional for entities1.

The statement of the form “C ::= X” defines that “X is a C” where C is a class. It implies that X is a sub-
class of C and would inherit all attributes of C if defined. For example the statement “Entity ::= Artifact,”
where Entity is a class, specifies that Artifact is a subclass of Entity. The formalism includes multiple
inheritance. When two or more statements are provided, such as “B ::= D ” and “C ::= D ” which involve
the same class D with two different super-classes B and C (B and C typically do not inherit from each
other), then D is said to be a subclass of B and a subclass of C. The subclass D will inherit all attributes of
B and all attributes of C. The attributes are uniquely named to avoid collision from multiple inheritance.
We also ensure that when a class is derived from multiple super-classes, i.e. involve multiple inheritance,
only one of the super-classes is an Entity, and the rest of the super-classes are auxiliary classes. An auxil-
iary class, typeset in italic Century Gothic font in blue color, is a class which is not derived from Entity.
For example, the following set of class derivations specifies that Scope is a subclass of Entity and the three
other super-classes, namely Bondable, Addressable, and Container, which are auxiliary classes.

Entity ::= Scope
Bondable ::= Scope
Addressable ::= Scope
Container ::= Scope

The auxiliary classes can subclass from other auxiliary classes. For example, in the following class deriva-
tions, the super-class Identifiable is an auxiliary class.

Identifiable ::= Bondable
Identifiable ::= Addressable
Identifiable ::= Container

Some attributes can hold a set or list of values of certain type instead of a scalar value. We use the term “A
: {Y}” to specify that the attribute A holds a set of values of certain type Y. Similarly, we use the term “A :
<Y>” to specify that the attribute A holds a list of values and the ordering of values in the list is significant.
We allow the set and list to be empty unless explicitly stated otherwise. For example, the statement “Cal-
endar => Invitations : {Invitation}” specifies that the Calendar has an attribute named Invitations which
hold a set of Invitation objects. When the ordering is significant, such as the contents in an email message,

1 Since CEN is the unique identifier of the Entity, we can allow the name to be optiional.

A[]
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 9 of 83

Object Formalisms
we use the notation “MultiContent => Parts : <Content>” to specify that the Parts attribute of MultiCon-
tent holds an ordered list of Content.

We use the attribute definition modifier immutable as in “A : immutable Y” to specify that once the
attribute value is set, it is final. For example, the statement “Identifiable => Id : immutabe guid” specifies
that if the Id of any identifiable object is assigned at creation time, it cannot be changed afterwards.

Some attribute values of an entity can be defined to be derived by a function using the notation “C => A :
F():Y” which states that the value of the attribute A of class C is obtained by applying function F. The
complete definition of the function is given in a separate statement. The function F may take one or more
arguments with the first argument being an instance of C (i.e. this) which is omitted in the function defini-
tion. For example, the statement Entity => Parent : getParent():Entity states that parent of an entity e is
obtained by applying the function getParent(e). The definition of the function getParent is shown as “get-
Parent : () -> Entity.” Notice that the type of the first argument is omitted in the function definition.

We annotate the attribute definitions by the modifiers Part, Ref, or PartRef to specify the referential con-
straints on the references to entities. For example, the statement “Calendar => Invitations : {Part Invita-
tion}” specifies that the Invitations attribute of Calendar contains a set of Invitation objects by strong
containment relation, i.e. if the Calendar is deleted, all Invitation objects in that attribute are also deleted.
When an Invitation object is created, the parent of the Invitation object must be the Calendar object to
which it belongs.

The statement “type T is S ” declares a token T for use in this specification as some data type S. Boldface
names are keywords that have the customary meaning associated with its name. The statement of the form
“E = G | H” defines an enumeration, i.e. E is one of G or H. For example, the statement “Priority =
High | Normal | Low ” specifies that the priority can be High, Normal, or Low.

2.1.1 References
In this section, we use the term supplier to represent a referenced object and the term client to represent a
referencing object. Every supplier entity has a primary affinity to one client entity which is the unique par-
ent. However, the same supplier entity can be simultaneously referenced by multiple other client entities.
When an entity is referenced by multiple client entities, we need to derive the scope of the entity from the
particular client entity and, inductively, the particular reference path (representing a container hierarchy)
from the scope.

We use the following notations to annotate a reference type to an entity instance.

• Part E, where E is Entity or a subclass of Entity
A Part annotation implies that there is a parent-child strong composition or contains-in relationship
between the client entity and the supplier entity being referred to via the Part reference. The referred
to object cannot exist without the referrer. In addition, this annotation implies that the client entity that
refers to the supplier entity via the Part reference must be the unique parent of the supplier entity and
they belong to the same scope.

• Ref E, where E is Entity or a subclass of Entity
A Ref annotiation implies that the supplier entity being referenced has existence independent of the
referencing client entity. A client entity can use Ref reference to a supplier entity which is already a
target of an original Part reference. Ref reference does not enforce referential integrity. Upon the
10 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Formalisms
deletion of the original Part, the Ref reference will become a dangling reference. When the supplier
entity is accessed via the Ref reference, the scope in effect is derived from the original Part refer-
ence.

• PartRef E, where E is Entity or a subclass of Entity
A PartRef annotation implies that there is potentially a parent-child strong composition relationship
between the client entity that uses PartRef reference to the supplier entity. PartRef reference
enforces referential integrity by stipulating that more than one client entity can reference the same sup-
plier entity, but at least one such client must exist. When there are several client entities referring to the
same supplier entity through the PartRef references, for the purpose of binding the supplier entity to
the scope and the policies within the scope, one of the client entities must be a unique parent of the
supplier entity, unless there is a Part reference from one and only one other client entity which is
invariably the parent.

Delete semantics work as follows. When a client entity is deleted, all supplier entities referred to via
Part reference must be also deleted. A supplier entity referred to via Ref reference is untouched. A sup-
plier entity referred to via a PartRef reference has behavior depending on whether the client entity is the
unique parent of the supplier entity. If it is, then the supplier entity via a PartRef reference must be also
deleted. If it is not, the existing parent shall prevent the cascade delete of the supplier entity.

We use the following terminology to annotate a reference to the data structure objects which are not enti-
ties but may be identiable by unique IDs:

• part D, where D is not Entity
A part annotation implies that there is a 1-1 contains-in relationship between the parent object and
the data structure object being referred to via the part relation. No other object can refer to the object
that is the target of the part relation - it is effectively private to the container. The referred to object
cannot exist without the referrer. The analogous reference for entities is annotated by Part.

• ref D, where D is not Entity
A ref annotiation implies that the supplier object has existence independent of the client object. Iden-
tifiable objects that have globally unique ID’s can be weakly contained by this reference type. The
analogous reference for entities is annotated by Ref.

• part ref D, where D is not Entity
A part ref annotation implies that more than one client object can reference the supplier object, but
at least one such client object must exist. The analogous reference for entities is annotated by Par-
tRef.

The immutable annotation implies that the attribute is set at the object creation time and cannot be
changed. The Id, CreatedOn and CreatedBy attributes are examples of immutable attributes.

2.1.2 Primitive Types
This document assumes that certain basic datatypes are understood. These datatypes are defined here.

boolean Attributes of this type can be either true or false.

boolean-
Expression Attributes of this type hold an expression that can be evaluated to either true or false.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 11 of 83

Object Formalisms
date Attributes of this type hold a date value (year, month and day only).

entityClass Attributes of this type hold a handle for a class of entities.

eventDefini-
tion Attributes of this type holds a handle of a class of events in the system.

float Attributes of this type can be either integral or non-integral (real) numbers.

groupBy-
Expression Attributes of this type hold an expression that imposes the grouping of the query

results.

guid Attributes of this type hold globally unique values (identifiers) across all Beehive
instances.

integer Attributes of this type hold only whole numbers.

locale Attributes of this type hold the locale names.

octet Attributes of this type hold a single 8 bit value. Usually the type will be <octet>
indicating a sequence of such values.

orderBy-
Expression Attributes of this type hold an expression that imposes an ordering of the query

results.

password Attributes of this type are meant to be kept secret and secure at the system level. Extra
measures are taken to protect the privacy of the value in this attribute.

richtext A sequence of Unicode characters that may include mark-up tokens. Richtext can be
localized2. Richtext values preserve formatting such as carriage returns, colors, font
modifiers, etc., and it is expected that the UI will respect this formatting.

string A sequence of Unicode characters that does not include mark-up tokens. Strings can
be localized1. It is up to the particular UI to decide how string values are rendered
(contrast with richtext). String values are always single-line strings (i.e., no line feeds
or carriage returns allowed), so they can be shown in lists, etc.

time Attributes of this type hold a time value (hour, minute, second and optional further
sub-second precision).

timeoffset Attributes of this type hold a time period duration. Similar to SQL type INTERVAL
DAY TO SECOND.

2 Localization here means that instead of the attribute containing the actual characters, it can contain a special ID
instead, where the ID refers to a locale-specific sequence of characters stored separately (e.g., a resource bundle).
Localization can be static (defined by Oracle) or dynamic (defined by customer or third-party).
12 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Formalisms
timestamp Attributes of this type hold a date and time value, with time precision to at least milli-
seconds. It reflects the coordinated universal time (UTC), which is defined differently
from Greenwich mean time (GMT). GMT is equivalent to universal time (UT). UTC
is based on an atomic clock and UT is based on astronomical observations.

uri Attributes of this type hold Universal Resource Identifiers. See Berners-Lee, T., et al.
“Uniform Resource Identifiers (URI): General Syntax”, RFC 2396 [1] “Berners-Lee,
T., et al. “Uniform Resource Identifiers (URI): General Syntax”, RFC 2396, August
1998.” for more details.

viewer A field of this type represents the user in the current user context. In the case where
the user context involves delegation, the viewer is the delegator rather than the user
(delegatee) who is acting through the user context.

2.2 Conventions
The regular Times New Roman font is used for explanation of classes.

The italic Courier New font is used for class names.

The italic Century Gothic font in blue is used for auxiliary class names.

The regular Courier New font is used for attribute names.

The regular Courier New font in bold is used for attribute modifiers.

The regular Arial font in red is used for notes.

The italic Arial font in blue is used for issues.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 13 of 83

Object Models
3.0 Object Models

3.1 Entity

[1] Identifiable =>
Id : immutable guid

Identifiable defines the Id attribute common to all entities and to some non-entities, such as Attribute-
Definition, AttributeTemplate, CategoryApplication, and LabelApplication that are not entities but
need to be uniquely identified.

[2] Identifiable ::= Entity
Entity =>

[Name] : string,
[Creator] : immutable Ref Actor,
CreatedOn : immutable timestamp,
ModifiedBy : Ref Actor,
ModifiedOn : timestamp,
Deleted : boolean,
Parent : getParent():Entity,
AttachedMarkers : getAttachedMarkers():{Marker},
AttachedSubscriptions : getAttachedSubscriptions():{Subscription},
AttachedReminders : getAttachedReminders():{Reminder},
AttachedLabelApplications
: getAttachedLabelApplications():{LabelApplication},
AttachedCategoryApplications
: getAttachedCategoryApplications():{CategoryApplication}

[2.1] AccessControlFields =>
ACL : {part ACE}
[Owner] : Ref Accessor,
OwnerGrantAccessTypes : {part AccessType},
OwnerDenyAccessTypes : {part AccessType},
Scope : getScope():Scope

An entity is a tuple with a globally unique ID and an optional name. An entity’s name is mutable. Vir-
tually all manipulable objects are entities. Access to every entity is controlled through access control
fields. The owner is an accessor which can be either a single actor or a group. The actor that made the
entity come into existence is the creator of the entity and this value cannot be changed. Each entity
can have zero or more markers, subscriptions, reminders, label applications, and category applica-
tions associated with it.

The access control fields are a projection of the entity that includes the owner; the owner is a special
accessor who can always change the security attributes of the entity that she owns. The access control
fields include the access types that the owner grants or denies to herself. The entity’s scope, also an
access control field, refers to the scope that will be compared against the assigned scope and dele-
gated scope of the privileges. The assigned scope must be a super scope of the entity’s scope for the
privileges to be asserted on the entity.

[2.2] getParent : () -> Ref Entity

This function returns the entity that is the parent of the entity. The parent entity is determined implic-
itly by the primary container of the entity.
14 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
[2.3] getAttachedMarkers : viewer -> {Ref Marker}

This function computes all markers on the associated entity that are available to the viewer .

[2.4] getAttachedSubscriptions : viewer -> {Ref Subscription}

This function computes all subscriptions on the associated entity that are available to the viewer.

[2.5] getAttachedReminders : viewer -> {Ref Reminder}

This function computes all reminders on the associated entity that are available to the viewer.

[2.6] getAttachedLabelApplications : viewer -> {part LabelApplication}

This function computes the label applications assigned to the entity by the associated labels.

[2.7] getAttachedCategoryApplications : () -> {part CategoryApplication}

This function computes the category applications or attributions assigned to the classified entity by
the associated categories.

[2.8] getScope : () -> Ref Scope

This function computes the scope of the entity.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 15 of 83

Object Models
3.2 Meta-Entity

3.2.1 Entity Schema

[3] Entity ::= EntitySchema
EntitySchema =>

Class : entityClass,
[Description] : richtext,
Attributes : {part ref AttributeDefinition}

An entity schema specifies the name and type of attributes in the entities of an entity class. Users can
define entity schemas to extend the attributes of the entities. For example, a user can create “Legal-
Document,” “PurchaseOrderDocument,” “CollegeTranscriptDocument,” etc., schemas, by creating
the EntitySchema objects to extend the attributes of Document . For instance, the user can define the
“CollegeTranscriptDocument” EntitySchema object that contains the attribute definitions for Student,
Adviser, Year, Semester Hours, Average GPA, etc., attributes. Two or more EntitySchema objects
may share the same AttributeDefinition object.

[4] Identifiable ::= AttributeDefinition
AttributeDefinition =>

Name : string,
[Description] : richtext,
Searchable : boolean,
Aggregate : boolean,
Type : immutable part PropertyType,
AllowedValues : <part CollabPropery>,
[DefaultValue] : part PropertyValue,
[MinimumValue] : part PropertyValue,
[MaximumValue] : part PropertyValue,
[MinimumValueInclusive] : boolean,
[MaximumValueInclusive] : boolean

An attribute definition specifies the name, type, and enumeration of allowed values for the attributes.
The type includes String, Integer, Float, Boolean, Date, etc. The definition also specifies whether the
attribute is indexed for search.

[5] PropertyType = String | Integer | Boolean | Float
| Identifiable_Type | Uri_Type
| Timestamp_Type | DateTime_Type |
| List_Identifiable | List_String
| List_Integer | List_Boolean
| List_Timestamp | List_Uri | List_Float
| List_DateTime

The enumeration of the type of the properties.
16 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
3.3 Core

3.3.1 Attribute and Property

[6] Attribute =>
Definition : immutable ref AttributeDefinition,
PropertyValue : part PropertyValue

An attribute holds a property value, which is compatible with the type and constraints imposed by the
attribute definition.

[7] CollabProperty =>
Name : string,
[Description] : richtext,
Value : part PropertyValue

A collab property holds a property name and a property value. A collab property without a value does
not exist in the property set. Properties in the same set must have unique names.

[8] type PropertyValue is
string | <string>
| integer | <integer>
| boolean | <boolean>
| timestamp | <timestamp>
| uri | <uri>
| float | <float>
| DateTime | <DateTime>
| ref Identifiable | <ref Identifiable>

A property’s value can either be a value, an identifiable, a list of values, or a list of identifiables.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 17 of 83

Object Models
3.3.2 Bondable

[9] Identifiable ::= Bondable
Bondable =>

Bonds : getBonds():{Bond}

Bondable defines the aspect of an entity that can be bonded to any number (including zero) of other
entities by a variety of bond types. Only entities of this type can be bonded.

[9.1] getBonds : viewer -> {Ref Bond}

This function computes all bonds in which the associated entity is a participant.

NOTE While the ability to get all bonds connected to an entity from a bondable entity is an important part of the
eventual API, its inclusion in this format should not imply a particular persistence representation. Since
bonds are ultimately at least 2-way, it is appropriate to store bonds separately from any entity to which it
bonds.

3.3.3 Addressable

[10] Identifiable ::= Addressable
Addressable =>

Addresses : <part EntityAddress>,
PrimaryAddress : part ref EntityAddress,
DefaultAddressForType : getDefaultAddressForType():EntityAddress,
DefaultAddressForScheme : getDefaultAddressForScheme():EntityAddress

Addressable contains a set of addresses, one of which is the primary address.

[10.1] getDefaultAddressForType : string -> EntityAddress

This function computes the default entity address for a given addess type.

[10.2] getDefaultAddressForScheme : AddressScheme -> EntityAddress

This function computes the default entity address for a given address scheme.

[11] EntityAddress =>
AddressType : string,
AddressScheme : part AddressScheme,
Address : part Address

An entity address holds an address for an addressable. Each address is represented by a URI in one of
many varieties of URI schemes. The AddressType attribute of entity address describes in a human
readable way the type of the address. Some examples of address types are “Business,” “Personal,”
“Assistant,” “Spouse,” etc.

[12] type AddressScheme is "sip" | "mailto" | "tel" | "im"
| "fax" | "sms" | "http" | "https" | "ldap"
| "news" | "ftp" | "pres" | "xmpp" | "urn"
| "orapostal" | "orapush" | "oraalert"

The address uri schemes are predefined literal constants. Readers are referred to http://www.iana.org/
assignments/uri-schemes.html for additional uri schemes. We defined the proprietary uri scheme
18 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
“orapostal” for the post office mail, “orapush” for Oracle’s push protocol, and “oraalert” for mobile
alerts.

[13] type Address is uri

There are a number of ways to address an entity; all addresses can be represented using URI syntax
(see Berners-Lee, T., et al. “Uniform Resource Identifiers (URI): General Syntax”, RFC 2396 [1]
“Berners-Lee, T., et al. “Uniform Resource Identifiers (URI): General Syntax”, RFC 2396, August
1998.”).

3.3.4 Lockable

[14] Identifiable ::= Lockable
Lockable =>

Locks : getLocks():{Lock}

Lockable is an aspect of an entity that may be locked by an actor with the lock jointly held by a set of
accessors. Accessors not included in this set are prevented from modifying the properties of the
locked entity.

[14.1] getLocks : () -> {part Lock}

This function computes the locks on the associated entity.

[15] Identifiable ::= Lock
Lock =>

LockHolders : {Ref Accessor},
Timeout : timestamp,
LockType : part LockType,
LockedEntity : Ref Entity,
[Creator] : immutable Ref Actor,
CreatedOn : immutable timestamp

A lock is an identifiable object of a certain lock type. An actor may hold multiple locks of different
types on the same entity. If the entity is a container, the lock is applied to all entities in the container.

[16] LockType = UserRequest | Dav | All

The enumeration of lock type, which can be user request, Dav, or all.

3.3.5 Localized String

[17] LString =>
Values : {part LValue}

An L-string is a structure that contains alternative strings for different locales.

[18] LValue =>
Locale : locale,
Value : string

An L-value is a localized string for a specific locale.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 19 of 83

Object Models
3.3.6 Location

[19] Location =>
Name : string,
[Description] : richtext,
[Mark] : {part PhysicalLocation},
[TimeZone] : Ref TimeZone

A location has a name and may also have an associated physical presence in space. Note that just
because the physical location changes, the name need not. For example, a location name might be
“On an airplane” while the physical location would be the coordinates in space of the traveler chang-
ing as the plane moves.

[20] PhysicalLocation => ;

A physical location provides the spatial coordinates (that can be provided by GPS) or the specifica-
tion of geospatial regions.

[21] PhysicalLocation ::= PhysicalCoordinates
PhysicalCoordinates =>

Latitude : float,
Longitude : float,
[Altitude] : float

A physical coordinates instance is a physical location represented by the GPS coordinates of an object
in space.

[22] PhysicalLocation ::= OtherPhysicalSpecification
OtherPhysicalSpecification =>

Properties : {part CollabProperty}

An other physical specification uses the properties to specify an Oracle Spatial location mark or other
geospatial region descriptions such as the street address, Washington DC, London, Tokyo, etc.

3.3.7 Date Time

[23] DateTime =>
Time : timestamp,
[ScheduledTimeZone] : Ref TimeZone,
DateOnly : boolean,
FloatingTime : boolean

A date time is used to hold a timestamp with various granularities. Optionally, the timestamp can be
placed in a specific timezone.

[24] DateTimeRecurrenceSet =>
[StartDateTime] : part DateTime,
[InclusionRule] : part DateTimeRecurrenceRule,
20 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
IncludeDateTimes : {part DateTime},
ExcludeDateTimes : {part DateTime}

A date time recurrence set is a complete set of recurrence instances for a periodic event. The date time
recurrence set is generated by considering the initial StartDateTime attribute along with the Inclusion-
Rule, IncludeDateTimes, and ExcludeDateTimes attributes. The StartDateTime attribute defines the
first instance in the recurrence set. The final recurrence set is generated by gathering all of the start
date-times generated by the specified InclusionRule and IncludeDateTimes attribute values, and then
excluding any start date-times which fall within the union of start date-times generated by any speci-
fied ExcludeDateTimes attribute values. This implies that start date-times within exclusion related
entries take precedence over those specified by inclusion related entries. Where duplicate instances
are generated by the InclusionRule and IncludeDateTimes attribute values, only one recurrence is
considered. Duplicate instances are ignored.

[25] type DateTimeRecurrenceRule is string

A date time recurrence rule is a structured string as defined by iCalendar RFC 2445.

3.3.8 Enumerations

[26] Priority = High | Normal | Low

The enumeration of priorities for email message, voice message, occurrence, and task.

[27] ProvisioningStatus = Enabled | Locked | Disabled
| MarkedForDelete | DeleteInProgress

The enumeration of provisioning status of an entity, such as user, internal resource, external person,
device, etc.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 21 of 83

Object Models
3.4 Container and Scope

3.4.1 Container

[28] Identifiable ::= Container
Container =>

Name : string,
[ActivePreferenceProfile]: Part PreferenceProfile,
Properties : {part CollabProperty},
AttachedWorkflows : getAttachedWorkflows():{Workflow},
[VersionControlConfiguration]: part VersionControlConfiguration,
[CategoryConfiguration] : part CategoryConfiguration,
AvailableTemplates : getAvailableTemplates():{Template},
[WorkflowTemplate] : getWorkflowTemplate():WorkflowTemplate,
ChangeSummary : getChangeSummary():{ChangeSummaryRecord}

Container defines a logical region or scope for policies, workflows, preferences, version control con-
figuration, and category configurations. The available templates include the templates configured and
bound to the container. Scopes and folders are containers.

[28.1] getAttachedWorkflows : () -> {Ref Workflow}

This function computes the workflows currently active in the container.

[28.2] getAvailableTemplates : () -> {Ref Template}

This function computes the templates to use when creating new entities in the container.

[28.3] getWorkflowTemplate : eventDefinition -> Ref WorkflowTemplate

This function computes the workflow template bound to a class of events in the container. The system
shall spawn a workflow from the workflow template when such an event occurs.

[28.4] getChangeSummary : viewer -> {part ChangeSummaryRecord}

This function computes the change summary information for a container. This will be a collection of
records containing the number of new and unread artifacts in the container, with one record for each
type of artifact in the container.

[29] ChangeSummaryRecord =>
EntityClass : entityClass,
NewCount : integer,
UnreadCount : integer

A change summary record contains the number of new and unread artifacts of an entity class in the
container.

[30] Identifiable ::= VersionControlConfiguration
VersionControlConfiguration =>

VersionControlModel : part VersionControlModelType,
MaximumVersionsToKeep : integer,
AutoLabel : boolean,
22 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
LabelFormat : part LabelFormatType,
Final : boolean

A version control configuration specifies, for an associated container, whether to version the artifacts
automatically or manually. It can also disable versioning of the artifacts in the container. The system
may automatically purge the versions when the number of versions of an artifact exceeds the maxi-
mum versions to keep, unless the versions are marked not to auto-purge.

[31] VersionControlModelType = Disabled | Auto | Manual

The enumeration of version control model type. Versioning of the artifacts in the container may be
automatic or manual. The versioning can be also disabled.

[32] LabelFormatType = IntegerFormat | LowercaseFormat
| UppercaseFormat | RomanNumeralFormat
| DecimalFormat

The enumeration of label format type. The format for version labels may be integers, lowercase or
uppercase strings, Roman numerals, or decimals.

[33] Identifiable ::= CategoryConfiguration
CategoryConfiguration =>

Name : string,
[Description] : richtext,
Templates : {part ref CategoryApplicationTemplate},
Final : boolean,
Mandatory : boolean,
Parent : getParent():Container

A category configuration, which is defined on the container, configures and binds the set of category
application templates to the container. If the template configuration is final, the sub-containers must
use the templates as is, i.e. sub-containers cannot override the current configuration. If the Mandatory
attribute of the category configuration is true, all designated entities in the container and sub-contain-
ers are required to bind by these templates.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 23 of 83

Object Models
3.4.2 Scope

[34] Entity ::= Scope
Bondable ::= Scope
Addressable ::= Scope
Container ::= Scope
Scope =>

[Template] : Ref Template,
[Description] : richtext,
RoleDefinitions : {PartRef RoleDefinition},
AssignedRoles : {PartRef AssignedRole},
Groups : {PartRef Group},
AvailableMarkers : {PartRef Marker},
[QuotaConfiguration] : part QuotaConfiguration

A scope is a logical region or neighborhood in the universe of entities. The scope contains the roles
and groups. The scope also contains the library of markers. As a container, the scope can contain tem-
plates, workflows, etc., to define the administrative boundary.

[35] Scope ::= Community
Community =>

Actors : {PartRef Actor},
Agents : {PartRef Agent},
Organizations : {PartRef Organization},
Workspaces : {PartRef Workspace},
[QuotaConfiguration] : part CommunityQuotaConfiguration

A community is a set of actors and agents that share a common set of workspaces and are governed
by a common set of policies.

[36] Community ::= Enterprise
Enterprise =>

[Parent] : getParent():<>,
EntitySchemas : {Part EntitySchema},
TimeZones : {Part TimeZone},
TimeZoneAliasMaps : {Part TimeZoneAliasMap},
Archive : Part Archive

An enterprise is the top-level scope for all entities. For a small installation, the enterprise can repre-
sent the single community of actors, agents, and workspaces.

It also contains the metadata objects such as entity schemas, timezones, timezone alias maps, etc.

[37] Community ::= Organization
Organization =>

Parent : getParent():Community

An organization is a sub-space under an enterprise. Organizations can be nested to form hierarchies.
Administrative policies associated with parent organizations flow down into child organizations and
workspaces.

The qualified name of an organization is the name of itself (from the Name attribute of entity)
prepended to the qualified name of its parent (separated by a dot).
24 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
[38] QuotaConfiguration =>
StorageSpaceHardQuota : integer

A quota configuration specifies the hard quota for a container to impose the total amount of space that
can be allocated within this container.

[39] QuotaConfiguration ::= CommunityQuotaConfiguration
CommunityQuotaConfiguration =>

DefaultStorageSpaceHardQuotaForSubOrganizations: integer,
DefaultPersonalWorkspaceQuotaConfiguration

: part WorkspaceQuotaConfiguration,
DefaultTeamWorkspaceQuotaConfiguration

: part WorkspaceQuotaConfiguration,
MaximumNumberOfUsers : getMaximumNumberOfUsers():integer,
MaximumNumberOfWorkspaces: getMaximumNumberOfWorkspaces():integer

A community quota configuration specifies the quotas for sub-containers of a community. If a com-
munity administrator wants to change the quota configuration of the associated container, the change
will be allowed only if it does not invalidate the sub-container settings.

[39.1] getMaximumNumberOfUsers : () -> integer

This function computes the maximum number of users that can be created in the community. The
maximum number of users is configured from the system administration console.

[39.2] getMaximumNumberOfWorkspaces : () -> integer

This function computes the maximum number of workspaces that can be created in the community.
The maximum number of workspaces is configured from the system administration console.

[40] QuotaConfiguration ::= WorkspaceQuotaConfiguration
WorkspaceQuotaConfiguration =>

StorageSpaceSoftQuota : integer

A workspace quota configuration specifies the soft quota warning levels. When the soft quota is
breached, a warning event will be raised. Once hard quota is reached, no more create or update (with-
more-bytes) operations will be allowed until the quota breach is resolved. Since the deletion of arti-
facts in workspace only moves the artifacts to workspace trash, the deleted artifacts still count against
quota until archived or expunged. If no workspace quota configuration is specified at the time the
workspace is created, the default configuration will be inherited from the community quota configu-
ration of the parent community.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 25 of 83

Object Models
3.5 Directory

3.5.1 User Directory

[41] Entity ::= BaseAccessor
Bondable ::= BaseAccessor
BaseAccessor =>

Parent : getParent():Scope,
Groups : getGroups():{Group},
AssignedRoles : getAssignedRoles():{AssignedRole},
EffectiveGroups : getEffectiveGroups():{Group}

A base accessor can be assigned privileges via ACE’s (access control entries) and assigned roles.

[41.1] getGroups : () -> {Ref Group}

This function computes all the groups, including the static and dynamic groups, that the base accessor
is directly assigned to. This is contrasted with the function getEffectiveGroup which includes all the
groups inherited through the nested groups.

[41.2] getAssignedRoles : () -> {Ref AssignedRole}

This function computes all the roles that the accessor is directly assigned to.

[41.3] getEffectiveGroups : () -> {Ref Group}

This function computes all the groups in which the associated accessor is a member of either directly
or via any of the nested subgroups.

[42] BaseAccessor ::= Accessor
Addressable ::= Accessor
Accessor =>

Memberships : {Ref Community},
Properties : {part CollabProperty},
AvailablePreferenceProfiles: {Part PreferenceProfile},
[ActivePreferenceProfile]: Ref PreferenceProfile

An accessor is a member of a community. An accessor can be placed in multiple communities besides
the primary community. Some instances of accessor, such as users, cannot be created under the scope
of a workspace; only roles and groups can be created under the scope of a workspace. An accessor
may maintain a set of preference profiles, but only one profile can be active at a time.

[43] Accessor ::= Actor
Actor =>

Parent : getParent():Community,
Principals : {Part Principal},
Status : part ProvisioningStatus

An actor is an entity that can act on the system. Every actor must belong to one primary community,
either an enterprise or organization, and can optionally belong to multiple secondary organizations.
Each actor may contain a list of principals. Only one principal can be active at a time for authorization
purposes. An actor may use a “delegated” principal that lets the actor perform certain actions on
behalf of another actor.

[44] Addressable ::= Person
Person =>
26 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
[GivenName] : string,
[MiddleName] : string,
FamilyName : string,
[Prefix] : string,
[Suffix] : string,
[Nickname] : string,
[JobTitle] : string,
[Department] : string,
[OfficeLocation] : string,
[Company] : string,
[Profession] : string,
[TimeZone] : Ref TimeZone,
[Locale] : locale

Person defines the attributes of the user and external person.

[45] Actor ::= User
Watchable ::= User
InstantMessageRecipient ::= User
Person ::= User
User =>

[PersonalWorkspace] : Ref PersonalWorkspace,
AccessibleWorkspaces : getAccessibleWorkspaces():{Workspace},
FavoriteWorkspaces : getFavoriteWorkspaces():{Workspace}

A user has given, middle, and family names. A user is an entity that can act upon other entities. A user
is watchable and thus exhibits presence and must have at least one presence mapping. A user is also
an instant message recipient, and therefore, supports the necessary attributes to retrieve the online
instant messages.

[45.1] getAccessibleWorkspaces : () -> {Ref Workspace}

This function computes the accessible workspaces of the user.

[45.2] getFavoriteWorkspaces : () -> {Ref Workspace}

This function computes the favorite workspaces of the user.

[46] User ::= OrganizationUser
OrganizationUser =>

[Manager] : Ref OrganizationUser,
[Assistant] : Ref OrganizationUser,
DirectReports : {Ref OrganizationUser}

An organization user is a member of an organizational hierarchy.

[47] Actor ::= SystemActor
SystemActor => ;

A system actor represents a privileged, non-human user of the system. It represents a software agent
that performs email delivery, notification, workflow, record management, etc. System actors, because
they are usually native to the system or their actions are programmed into the system, are often not
authenticated.

[48] Accessor ::= Group
Watchable ::= Group
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 27 of 83

Object Models
Group =>
Name : string,
[Description] : richtext,
Members : getMembers():{Actor},
MemberActors : {Ref Actor},
MemberAgents : {Ref Agent},
MemberPrincipals : {Ref Principal},
SubGroups : {PartRef Group},
[Workspace] : Ref TeamWorkspace,
EffectiveMemberActors : getEffectiveMemberActors():{Actor},
EffectiveMemberAgents : getEffectiveMemberAgents():{Agent},
EffectiveMemberPrincipals
: getEffectiveMemberPrincipals():{Principal}

A group is addressable and is an accessor which can own entities. It contains a set of actors, princi-
pals, and sub-groups for access control. A group may include agents, such as board of directors, who
cannot access the system but can communicate with the system or other actors via messages. A group
must have a unique name. The members of the group are explicitly added to or deleted from the
group. The super-group of a group is given by the Groups attribute defined in Accessor.

[48.1] getMembers : () -> {Ref Actor}

This function computes the actors who are direct members of the associated group.

[48.2] getEffectiveMemberActors : () -> {Ref Actor}

This function computes all the actors who are members of the associated group either directly or via
any of the nested subgroups.

[48.3] getEffectiveMemberAgents : () -> {Ref Agent}

This function computes all the agents who are members of the associated group either directly or via
any of the nested subgroups.

NOTE We believe the Agents attribute is a separate attribute because agents cannot access the system; agents
can only send to or receive messages from the system. We put Principals separately in Principals attribute
because Principal is not Addressable whereas Group, Accessor, and Agent are Addressable. When you
address the group, you are addressing all the accessors and agents in the group.

[49] Group ::= DynamicGroup
DynamicGroup =>

Query : booleanExpression,
ExcludedMemberActors : {Ref Actor},
Members : getMembers():{Actor}

A dynamic group contains a list of members and agents that satisfy the query criteria. A dynamic
group can also contain members and agents who are explicitly added to or excluded from the group.

Actors can opt out of a group, especially from the groups that they belong to by super-group inherit-
ance, without affecting their privileges. When an actor opts out, the actor is placed in the exclusions
set that excludes them from the addressable members of the groups. The actors in the exclusion set
will still derive the grant and deny privileges from the group, if they belong to the group directly or
via a sub-group.
28 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
[49.1] getMembers : () -> {Ref Actor}

This function computes the actors who are direct members of the associated dynamic group. It is the
result of substracting the excluded member actors from the member actors and adding the actors from
the query.

[50] Entity ::= Agent
Bondable ::= Agent
Addressable ::= Agent
Agent =>

Parent : getParent():Community,
Memberships : {Ref Community},
Groups : {Ref Group},
Status : part ProvisioningStatus

An agent is an external person or resource with whom the actors in the system need to collaborate
through messages.

[51] Agent ::= ExternalPerson
Person ::= ExternalPerson
ExternalPerson =>

Properties : {part CollabProperty}

An external person can merely interact with the system via messages (e.g., can send a message into
the system or receive a message from the system).
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 29 of 83

Object Models
3.5.2 Resource Directory

[52] Addressable ::= Resource
Resource =>

Name : string,
[Description] : richtext,
[StationaryLocation] : part Location

Resource defines the attributes, such as the stationary location attribute, common to internal and
external resources.

[53] Actor ::= InternalResource
Resource ::= InternalResource
InternalResource =>

[ResourceWorkspace] : Ref Workspace,
[Identifier] : string

An internal resource is a non-user actor within the system. A delegate/contact person for the internal
resource could act on a system and perform operations on other entities on behalf of the resource. The
internal resource can own artifacts. It has privileges and preferences that can be delegated to a user.
For these reasons, an internal resource must be an actor and cannot be merely an agent. An internal
resource can be directly involved in an occurrence, such as conferences or meetings, as a participant.
Contrast this to the artifacts that can be merely attached or bonded to an occurrence.

[54] InternalResource ::= BookableResource
BookableResource =>

Type : immutable part BookableResourceType,
[Capacity] : integer,
[BookingInfo] : richtext,
Approvers : {Ref OrganizationUser}

A bookable resource can be included in a calendar event. By doing so, the resource will be marked as
reserved for the timeslot. A meeting within the resource calendar is typically initiated by a user.

NOTE Approvers attribute of BookableResource may be superceded by the coordinator role of the resource’s
workspace when we refine the concept of the resource workspace and workspace coordinator role.

[54.1] BookableResourceType = Room | Equipment | Other

The enumeration of bookable resource type.

[55] Agent ::= ExternalResource
Resource ::= ExternalResource
ExternalResource =>

[Capacity] : integer

An external resource is an agent outside the control of the system. It does not interact with the system
but can only exchange messages. It can be used as a participant in meetings. It serves as an address
holder for contacting the external person representing the resource. An external resource may have a
stationary location, which in turn provides the time zone.

The external resources, for example the conference rooms in the Moscone Center, may participate in
the OpenWorld events. For such an external resource, Moscone Center will be a contact address.
30 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
3.5.3 Address Book

[56] Folder ::= AddressBook
AddressBook =>

Entries : {Part AddressBookElement},
SubAddressBooks : {Part AddressBook},
PersonContacts : getPersonContacts():<PersonContact>,
GroupContacts : getGroupContacts():<GroupContact>,
ResourceContacts : getResourceContacts():<ResourceContact>

An address book is a folder that contains bookmarks to addressable entities in the user and resource
directories as well as personal contact entries. Address books may contain sub-books (chapters) that
can be used to hierarchically organize and share contacts.

[56.1] getPersonContacts : () -> <Ref PersonContact>

This function computes the person contacts from among the addresss book elements.

[56.2] getGroupContacts : () -> <Ref GroupContact>

This function computes the group contacts from among the addresss book elements.

[56.3] getResourceContacts : () -> <Ref ResourceContact>

This function computes the resource contacts from among the addresss book elements.

NOTE An address book can be owned by a group of actors.

[57] Artifact ::= AddressBookElement
Addressable ::= AddressBookElement
AttachmentHolder ::= AddressBookElement
AddressBookElement =>

[SpeedDial] : getSpeedDial():integer,
[Priority] : getPriority():Priority,
[PeopleList] : part PeopleList,
GroupContacts : getGroupContacts():{GroupContact}

An address book element is an artifact in the address book.

[57.1] getSpeedDial : viewer -> integer

This function computes the speed dial number which is a unique, viewer private property representing
the default telephone number of the address book element.

[57.2] getPriority : viewer -> Priority

This function computes the priority which is a unique, viewer private property.

[57.3] getGroupContacts : () -> {Ref GroupContact}

This function computes the group contacts that contain the associated element.

[57.4] PeopleList => ;

An address book element marked by PeopleList tag will be part of a short list of contacts with whom
the user regularly interacts with via email, voice, conference, chat, etc.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 31 of 83

Object Models
[57.5] PeopleList ::= BuddyList
BuddyList => ;

An address book element marked by BuddyList tag will be part of a shorter list of contacts that the
user can observe presence and interact with via instant messages. The BuddyList contacts must have
instant message addresses in order for the contacts to appear in the instant message roster. A BuddyL-
ist contacts is a subset of the PeopleList contacts.

[58] AddressBookElement ::= PersonContact
Person ::= PersonContact
PersonContact =>

[Bookmark] : Ref Person,
[FamilyName] : string

A person contact is an entry in the address book that contains the contact information for a person. It
can be used to bookmark a person in the community. Alternatively, it can hold all the attributes about
a person without bookmarking a person in the community.

[59] AddressBookElement ::= ResourceContact
Resource ::= ResourceContact
ResourceContact =>

[Bookmark] : Ref Resource,
[Capacity] : integer,
[ResourceName] : string

A resource contact is an entry in the address book that contains the contact information for a resource.
It can be used to bookmark a resource in the community. Alternatively, it can hold all the attributes
about a resource without bookmarking a resource in the community.

[60] AddressBookElement ::= GroupContact
GroupContact =>

[Bookmark] : Ref Group,
ExternalMembers : {part ExternalContact},
Members : {Ref Accessor},
Elements : {Ref AddressBookElement},
[GroupName] : string

A group contact is a personal group in the address book that can optionally bookmark a group and/or
include external contacts. The address book owner can include other addressable contacts in the per-
sonal group.

[61] Identifiable ::= ExternalContact
ExternalContact =>

[Name] : string,
Addresses : {part EntityAddress}

An external contact can be created in a group contact without having to create an external person
entity in the community.
32 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
3.5.4 Presence

[62] Identifiable ::= Watchable
Watchable =>

Presence : getPresence():Presence

Watchable defines the attributes common to entities that exhibit presence.

[62.1] getPresence : viewer -> Presence

This function maps a particular viewer to a state or view of a presence.In the case where the user con-
text involves delegation, the viewer is the delegator rather than the user (delegatee) who is acting
through the user context. This lets the delegatee watch the presentity from the perspective of the dele-
gator.

[63] Entity ::= Presence
Presence =>

Presentity : Ref Watchable,
Status : part PresenceStatus,
[Location] : part Location,
[Note] : richtext,
ContactMethods : <part ContactMethod>,
CurrentActivities : {part Activity}

A presence conveys the ability, willingness, reachability, and activity of a presentity to interact or be
watched by the viewer. The presented status and location may be different from the true status or
location of the presentity. That is, a presentity may present status and location differently to different
viewers. A presence provides a list of contact methods that describe to the viewer how to reach the
presentity. The viewer can choose any one of the contact methods based on circumstances. The
viewer can judge from the activity when and which method is appropriate to communicate with the
presentity. If presence projection is empty (blocked) or if there is no directed presence for the viewer,
the presence status will be shown as unknown but all other filelds in the presence object will be
empty.

[64] PresenceStatus = UserPresenceStatus | GroupPresenceStatus

The enumeration of presence status.

[65] Presence ::= UserPresence
UserPresence =>

Presentity : Ref User,
Status : part UserPresenceStatus

A user presence represents the ability, willingness, reachability, and activities of the user. From
among the ordered list of directed presences in the user’s active presence configuration, the first
directed presence that maps to the watcher shall be used to compose the state of the presence.

[66] UserPresenceStatus = Available | NotAvailable | Unknown
| Busy | DoNotDisturb | Away

The enumeration of presence status of a user. the presence status typically changes over time.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 33 of 83

Object Models
[67] Entity ::= PresenceConfiguration
PresenceConfiguration => ;

A presence configuration contains the user settings that can be used to compose the state of the pres-
ence. It can be configured as a user or group preference and activated through the preference profiles.

[68] PresenceConfiguration ::= UserPresenceConfiguration
UserPresenceConfiguration =>

CustomPresenceProfiles : {part CustomUserPresenceProfile},
DirectedPresences : <part DirectedUserPresence>

A user presence configuration contains the directed presences that can be used to compose the user
presence. The first directed presence that applies to the watcher shall be the one used.

[69] CustomUserPresenceProfile =>
Status : part UserPresenceStatus,
[Note] : richtext

A custom user presence profile specifies the status and note to be presented to the watcher.

[70] DirectedUserPresence =>
Watcher : Ref Accessor,
Projection : part Projection,
Pending : boolean,
[Status] : part CustomUserPresenceProfile

A directed user presence specifies the custom user presence status and note to be presented to the
watcher. If the status is not specified, the actual presence status will be derived from the current set of
contact methods and activities. Since Accessor includes Actor and Group, the user presence can be
directed to a group of actors as well as to an individual actor.

[71] Projection = Full | Basic | Empty

The enumeration of projection. The projection lets the presentity direct which parts of the presence
shall be shown to a particular accessor. For the user or group presence, the directed presence can
specify empty projection to show the presence status as unknown and block other attributes of the
presence. To show the proper presence status, either directed or actual, the basic projection must be
specified. If the full projection is specified, the contact methods and activities will be shown in the
user presence. For the group presence, the full projection will show the available members of the
group.

[72] Identifiable ::= Activity
Activity =>

[Reference] : Ref Entity,
Type : part ActivityType,
Realm : string,
[Start] : timestamp,
[End] : timestamp

An activity can be derived from the planned activities, free busy intervals, and real-time status of user
sessions for conference, voice, etc. The Reference attribute indicates the source (conference, occur-
rence, etc) from which the activity is derived. The activity is supplied in the presence to indicate what
the presentity is doing. The viewer can judge from the activity when and how is appropriate to com-
municate with the presentity. The realm can be used to indicate the sphere of the activity, such as offi-
cial, personal, or entertainment.
34 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
[73] ActivityType = OnThePhone | Conference
| Meeting | Travel | Steering | Meal | OutOfOffice
| Holiday | Vacation | Other

The enumeration of activity type. Each activity type implies availability of the presentity.

[74] ContactMethod =>
Address : part EntityAddress,
[Status] : part ReachabilityStatus,
[ResourceId] : string

A contact method describes how to reach a user. The presence contains a list of contact methods to
give the viewer choices.

[75] ReachabilityStatus = Reachable | NotReachable | Unknown | Away

The enumeration of reachability status. The reachability status of the contact method is part of the
presence information about the presentity.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 35 of 83

Object Models
3.5.5 Free Busy

[76] FreeBusy =>
Start : timestamp,
End : timestamp,
Intervals : <part FreeBusyInterval>,
CreatedOn : timestamp

A free busy defines the availability of an occurrence participant or a presentity (a watchable entity)
for a certain period delimited by [Start, End]. Each period of time interval is represented by a free
busy interval.

[77] FreeBusyInterval =>
Type : part FreeBusyType,
[Start] : timestamp,
[End] : timestamp

A free busy interval indicates the free busy condition of an occurrence participant. The absence of the
Start attribute represents the start time of the containing FreeBusy object; the absence of the End
attribute represents the end time of the containing FreeBusy object.

[78] FreeBusyType = Free | Busy | Tentative
| OutsideAvailableHours | OutOfOffice
| Unknown

The enumeration of free busy type. Each free busy type implies availability of the participant.

[79] computeFreeBusy : ({Actor}, timestamp, timestamp) -> FreeBusy

This function computes the free busy for a time interval for a given set of actors.
36 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
3.6 Access Control

[80] Entity ::= RoleDefinition
RoleDefinition =>

[Description] : richtext,
Parent : getParent():Scope,
Privileges : {part Privilege},
GrantAccessTypes : {part AccessType},
DenyAccessTypes : {part AccessType},
AlwaysEnabled : boolean

A role definition is a named set of privileges and access types.

[81] Entity ::= AssignedRole
AssignedRole =>

[Description] : richtext,
RoleDefinition : Ref RoleDefinition,
Parent : getParent():Scope,
AssignedScope : Ref Scope,
Accessors : {Ref BaseAccessor}

An assigned role assigns a role definition to a set of accessors for operations within an assigned
scope.

[82] type Privilege is enum

A privilege includes provisioning types such as EMAIL_USER, CONF_USER, etc. It can only be
granted via roles.

[83] type AccessType is enum

Access type includes the READ, WRITE, DELETE, EXECUTE, and DISCOVER types.

[84] ACE =>
Accessor : Ref BaseAccessor,
GrantAccessTypes : {part AccessType},
DenyAccessTypes : {part AccessType}

An access control entry (ACE) specifies what privileges should be granted to or denied from the
given accessor. Typically an ACE is an entry in the access control list (ACL) associated with an entity
or sensitivity to control access to the entity. An ACE can only be added, deleted, or modified by an
actor with MODIFY_ACL privileges.

[85] BaseAccessor ::= Principal
Principal =>

Actor : getActor():Actor

A principal represents an actor for authorization purposes. A principal can correspond to one of many
login ids, personal identification numbers, passwords, biometrics, or certificate credentials of an
actor. Usually the actor authenticates necessary credentials in order to activate a principal.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 37 of 83

Object Models
3.7 Participant

[86] Participant =>
[Participant] : Ref Addressable,
[Address] : part Address,
[Name] : string

A participant represents various modes of participation of any addressable entity in collaboration
activities, such as meetings, tasks, conferences, discussions, and messaging. If the Participant
attribute is not specified, the Address attribute must be specified. An address without the addressable
represents an external participant. If both addressable and address are specified, the address may be
one of the addresses of the addressable or may be a private address of the addressable known only to
the organizer of activities.

[87] Participant ::= UnifiedMessageParticipant
UnifiedMessageParticipant =>

[FullAddress] : string,
[LocalPart] : string,
[DomainPart] : string,
[DisplayPart] : <octet>,
[DisplayCharacterSet] : string

A unified message participant represents someone involved in messaging activity or someone orga-
nizing the occurrences and todos but is herself not an occurrence or todo participant. Full address is of
the form “Smith, John” <jsmith@acm.org>. If the full address is not specified, then it can be com-
posed from “DisplayPart” <LocalPart@DomainPart>. The display part represents the array of bytes
for any specified character set that are not converted into unicode or UTF16. If the Participant
attribute is specified in terms of an addressable entity, then all of these address parts are optional.

[88] Participant ::= ConferenceParticipant
ConferenceParticipant =>

[Principal] : Ref Principal,
[Key] : string,
Properties : {part CollabProperty}

A conference participant is a a participant in a conference. If the participant is an actor, it holds the
self or delegated principal of the actor used for authentication. If the participant is an agent, it holds
the key for the agent to sign on to the system. The key is used because the agent cannot authenticate
with the system the way an actor can authenticate with the system.

[89] Participant ::= OccurrenceParticipant
OccurrenceParticipant =>

[Role] : part ParticipantRole,
ParticipantStatus : part OccurrenceParticipantStatus,
Properties : {part CollabProperty},
DirectlyInvited : boolean,
RSVP : boolean,
InvitationDeliveryStatus: part ParticipantDeliveryStatus,
DeliveryChannels : <part AddressScheme>

An occurrence participant holds the status, role, and private properties of individual participants. The
DirectlyInvited attribute allows for the distinction of direct invitation and invitation via group mem-
bership or delegation.
38 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
[90] Participant ::= OccurrenceCompositeParticipant
OccurrenceCompositeParticipant =>

[Role] : part ParticipantRole

An occurrence composite participant is used to invite members of a group or a workspace.

[91] OccurrenceCompositeParticipant ::= OccurrenceWorkspaceParticipant
OccurrenceWorkspaceParticipant =>

InviteEnrollees : boolean

An occurrence workspace participant is used to add an invitation to the workspace default calendar.
The attribute InviteEnrollees specifies whether the enrollees should be invited to the meeting.

[92] OccurrenceCompositeParticipant ::= OccurrenceGroupParticipant
OccurrenceGroupParticipant => ;

An occurrence group participant is used to invite a group in the community or a group contact in the
address book.

[93] Participant ::= TodoParticipant
TodoParticipant =>

[Role] : part ParticipantRole,
ParticipantStatus : part TodoParticipantStatus,
Properties : {part CollabProperty},
DirectlyInvited : boolean,
RSVP : boolean,
[PercentComplete] : integer,
[TimeAllocated] : timeoffset,
[TimeSpent] : timeoffset,
[Mileage] : string,
[BillingInfo] : string,
[Comment] : string,
AssignmentDeliveryStatus: part ParticipantDeliveryStatus,
DeliveryChannels : <part AddressScheme>

A todo participant holds the status, role, optional time, and private properties of individual partici-
pants. The DirectlyInvited attribute allows for the distinction of direct invitation and invitation via
group membership or delegation. The PercentComplete attribute is similar to the Status attribute. It is
read-only for internal participants and mapped to the value of the AssigneePercentComplete attribute
in the associated assignment. For external participants, the value can be adjusted by the assigner. The
assigner can supply an optional comment.

[94] ParticipantDeliveryStatus = Delivered | Pending | Failed

The enumeration of participant delivery status.

[95] Participant ::= TodoCompositeParticipant
TodoCompositeParticipant =>

[Role] : part ParticipantRole

A todo composite participant is used to assign tasks to a group of participants.

[96] TodoCompositeParticipant ::= TodoGroupParticipant
TodoGroupParticipant => ;

A todo group participant is used to assign a task to a group in the community or a group contact in the
address book.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 39 of 83

Object Models
[97] ParticipantRole = RequiredParticipant
| OptionalParticipant
| NonParticipant
| Chair

The enumeration of participant role.

[98] Participant ::= WorkspaceParticipant
WorkspaceParticipant =>

Participant : Ref Accessor,
AssignedRoles : getParticipantRoles():{AssignedRole},
Properties : {part CollabProperty}

A workspace participant defines the role of an accessor in a team workspace. The accessor can be a
member (full participant), a coordinator, or a viewer.

[98.1] getParticipantRoles : () -> {Ref AssignedRole}

This function computes the roles assigned to the accessor by the associated workspace.
40 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
3.8 Artifact Management

3.8.1 Artifact

[99] Entity ::= Artifact
Bondable ::= Artifact
Artifact =>

[UserCreatedOn] : timestamp,
[UserModifiedOn] : timestamp,
Properties : {part CollabProperty},
ViewerProperties : privateProperties():{CollabProperty},
Unread : isUnread():boolean,
New : isNew():boolean,
Recent : isRecent():boolean

An artifact is a type of bondable entity that comes into existence at a well-defined time and is oper-
ated upon by actors. The UserCreatedOn and UserModifiedOn attributes hold the times when the arti-
fact is created or modified offline; these time stamps may be different from the times in the system’s
CreatedOn and ModifiedOn attributes.

Associated with each artifact are a set of properties that are private to each viewer. Every artifact has
a set of attributes such as the date and time the artifact was last modified and by whom and a set of
shared properties.

[99.1] privateProperties : (viewer, [ArtifactContainer]) -> {CollabProperty}

This function computes the viewer’s own set of properties from the purview of an artifact container.

[99.2] isNew : Actor -> boolean

This function, associated with an artifact, determines for a given actor whether the artifact is consid-
ered “new”. A new artifact is one that has come into existence since the last time this actor viewed the
artifact’s folder.

[99.3] isUnread : Actor -> boolean

This function, associated with an artifact, determines for a given actor whether the artifact is consid-
ered “unread”. An unread artifact is one that has been modified (from the viewing actor’s perspective)
since the last time the actor viewed the artifact or it is one that has been created since the last time the
actor viewed the artifact’s folder. Note that if an artifact is new, it is also unread.

Moving an artifact does not alter its unread status. Copying an artifact also copies the unread status.
Modifying viewer properties does not cause the artifact to become unread for any other actor (since
other actors cannot see those changes).

We may add a private (per actor) property that allows an actor to manually set the unread flag that
would override the result of the isUnread() function.

[99.4] isRecent : (Actor, timeoffset) -> boolean

This function, associated with an artifact, determines for a given actor whether the artifact is consid-
ered “recent”. A recent artifact is one that has been created or modified within the past specified time
interval, regardless of whether the actor has viewed the artifact in that time period. This allows an
actor to keep track of changing artifacts based purely on time.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 41 of 83

Object Models
[100] Sizable ::= Compressable
Compressable =>

Name : string,
ModifiedOn : timestamp

Compressable is an aspect of an artifact, e.g. document, that can be compressed.

[101] EntitySchema ::= DocumentSchema
DocumentSchema => ;

A document schema contains the attribute definitions for different types of documents. It also holds
metadata and connection information about a family of documents in external repositories.

[102] BasicTemplate ::= DocumentTemplate
DocumentTemplate =>

[EntitySchema] : Ref DocumentSchema

A document template captures the forms and default seetings for the documents.

[103] Artifact ::= Document
Sizable ::= Document
Versionable ::= Document
Attachable ::= Document
VirusScannable ::= Document
Lockable ::= Document
Compressable ::= Document
Document =>

[Template] : Ref DocumentTemplate,
Content : part Content,
[Parts] : part MultiPart,
TotalSize : getTotalSize():integer

A document is an artifact that can contain single or composite contents for any assortment of media
types. A more complex type of document can contain one or more component artifacts.

[103.1] getTotalSize : () -> integer

This function computes the aggregate size of the document and all of its versions.

[104] MultiPart =>
Parts : <PartRef Artifact>,
[MediaType] : part MIME-Multipart-Type

A multi-part instance represents the composite parts of a document. The Parts attribute specifies the
artifact components. Whether the ordering of the parts is significant depends on the multipart type.

The multi-part can model various multipart MIME encapsulations. The multi-part type must be set to
multipart/mixed, multipart/alternative, multipart/related, multipart/paral-
lel, multipart/signed, multipart/encrypted, multipart/digest, etc.

[105] Artifact ::= Link
Link =>

Reference : Ref Artifact

A link is a symbolic link to an artifact for the purpose of including the same artifact in more than one
folder or workspace. Privileges on the referenced artifact are inherited only from the primary folder or
workspace of the referenced artifact (not from the link or container of the link).
42 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
[106] Artifact ::= ExternalArtifact
ExternalArtifact =>

Location : uri,
MediaType : part MIME-Content-Type,
[ContentEncoding] : string

An external artifact is an artifact that is located outside of the system. We simply record its location
(e.g., a uri) instead of the content itself.

[107] Artifact ::= WikiPage
Sizable ::= WikiPage
Versionable ::= WikiPage
Lockable ::= WikiPage
Document =>

[Description] : richtext,
Content : part Content,
TotalSize : getTotalSize():integer,
ViewCount : getViewCount():integer,
Path : getPath():string

A wiki page is an artifact that is continuingly being revised. The revisions are always versioned and
maintained. A wiki page holds the “raw” form of the content which often includes mark-ups using
some wiki syntax, such as Creole. An implementation can render the content into an HTML represen-
tation.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 43 of 83

Object Models
3.8.2 Artifact Container

[108] Container ::= ArtifactContainer
ArtifactContainer =>

Elements : getElements():{Artifact}

ArtifactContainer defines the interface common to workspace and folder.

[108.1] getElements : () -> {Part Artifact}

This function computes the contents of the artifact container.

[109] EntitySchema ::= FolderSchema
FolderSchema => ;

A folder schema contains the metadata and in some cases connection information about a family of
folders in external repositories.

[110] BasicTemplate ::= FolderTemplate
FolderTemplate =>

[EntitySchema] : Ref FolderSchema

A folder template captures the forms and default settings for the folders.

[111] Artifact ::=Folder
ArtifactContainer ::= Folder
Folder =>

[Template] : Ref FolderTemplate,
[Parent] : getParent():ArtifactContainer,
[Description] : richtext

A folder is a special class of artifact in that its main purpose is to contain other artifacts. Every folder
except the root folder will have exactly one parent folder. The parent of the root folder will be a work-
space. Subclasses of folder should enforce their own semantics on elements of the folder.

Every artifact must be contained in exactly one folder (primary affinity). However, another folder
may refer (or link) to the same artifact (secondary affinity). A folder can be shared among different
workspaces. At any time, there's one primary container for a folder. Folder level policies must be
compatible with the policies of the primary container.

Before a folder is created under a scope or moved from one scope to another scope, the system must
check that the folder policies are compatible with the policies of the destination scope. There are two
compatibility criteria:

A folder cannot define policies that conflict with those of its primary container.

Policies at the folder can extend those defined at the destination container scope.

Each subclass of folder must implement the function getElements() which returns the contents of the
folder.

NOTE The folder may hold the contained entities in any attribute. The subclasses of the folder (such as the Calen-
dar) can classify the entities under different attributes (such as invitations and occurrences attributes). Thus
the Elements in a Calendar object are the union of Occurrences and Invitations.
44 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
[112] Folder ::= VirtualFolder
VirtualFolder =>

Sources : {part View}

A virtual folder does not contain its elements directly. Instead, it is the union of various folder sources
(views).

[113] View =>
BaseContainer : Ref Container,
[Filter] : booleanExpression

A view is a subset of elements from some container, filtered by an expression. The expression is
applied to each element of the base container and if it evaluates to true, the element is included in the
view. If the filter is absent, then that is equivalent to the booleanExpression returning true which
means that all elements in the base folder or scope are in the view.

[114] VirtualFolder ::= SearchResult
SearchResult =>

Entities : getEntities():<Entity>,
NumberOfHits : getNumberOfHits():integer,
ElementProperties : getElementProperties():{CollabProperty}

A search result contains the artifacts, whch match the search query, ordered and grouped by the spec-
ified criteria.

[114.1] getEntities : () -> <Ref Entity>

This function computes the list of entities ordered and grouped according to the specified criteria.

[114.2] getNumberOfHits : () -> integer

This function computes the estimated number of hits for the search query.

[114.3] getResultItemProperties : Entity -> {part CollabProperty}

This function computes the entity specific properties, such as the relevancy score, snippet (keywords,
summary), info source, data group, federation id, etc., from the associated search result.

[115] View ::= SearchView
SearchView =>

[OrderBy] : orderByExpression,
[GroupBy] : groupByExpression,
Count : integer

A search view specifies the order by expression and group by expression.

[116] Folder ::= Trash
Trash =>

Elements : getElements():{Artifact},
TrashItems : getTrashItems():{TrashItem}

A trash is a special container associated with a workspace to hold the trash items of the workspace.

[116.1] getElements : () -> {Part Artifact}

This function computes the trash artifacts in the trash container.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 45 of 83

Object Models
[116.2] getTrashItems : () -> {part ref TrashItem}

This function computes the trash items associated with the trash artifacts.

[117] Identifiable ::= TrashItem
TrashItem =>

DeletedOn : timestamp,
DeletedBy : Ref Actor,
OriginalName : string,
OriginalParent : Ref Entity,
DeletedEntity : Part Entity

A trash item captures information about deleted entity in the workspace trash folder. It is a first-class
artifact used to maintain the snapshot of the extended ACL of the entity at the time the entity was
deleted. This way, the entity can be restored by the authorized actor and also its ACL can be restored.

[118] Folder ::= Archive
Archive =>

Elements : getElements():{Artifact},
ArchiveItems : getArchiveItems():{ArchiveItem}

An archive contains the entities that are being purged from the enterprise. Administrators can restore
the accidentally purged entities. Enterprise preferences include settings for archiving.

[118.1] getElements : () -> {Part Artifact}

This function computes the archived artifacts in the archive folder.

[118.2] getArchiveItems : () -> {part ref ArchiveItem}

This function computes the archive items associated with the archived artifacts.

[119] Identifiable ::= ArchiveItem
ArchiveItem =>

ArchivedOn : timestamp,
ArchivedBy : Ref Actor,
OriginalName : string,
OriginalParent : Ref Entity,
OriginalWorkspace : Ref Workspace,
ArchivedEntity : Part Entity,
ArchivedEntitySize : integer

An archive item captures information about deleted entity in the enterprise archive folder. It is a first-
class artifact used to maintain the snapshot of the extended ACL of the entity at the time the entity
was deleted. This way, the entity can be restored by the authorized actor and also its ACL can be
restored.
46 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
3.8.3 Artifact Version

[120] Identifiable ::= Versionable
Versionable =>

Version : PartRef Version,
WorkingCopy : boolean,
VersionControlled : boolean,
Family : boolean,
Versioned : boolean,
CheckedOut : boolean,
CheckedOutBy : Ref Actor,
CheckedOutOn : timestamp,
CheckoutComments : string,
CurrentVersion : representativeVersion():Version,
VersionHistory : getVersionHistory():<Version>

Versionable defines the attributes of a versionable artifact. A versionable artifact represents a specific
"frozen version" of an artifact. It holds a version node that contains the version number, label, and
description. The container of the versionable artifact holds a constant EID whose representative ver-
sion varies depending on the individual actor and environment. When the representative version var-
ies, the artifact’s version number, label, description, and content will vary. Starting from the
representative version under the container, the actor can get to the version history and traverse the
artifact version nodes. Each artifact version node holds the specific “fozen version” of the artifact.

[120.1] representativeVersion : (Actor, Environment) -> PartRef Version

For a given artifact, the representative version function computes the proper artifact version for the
actor in the specified environment.

[120.2] getVersionHistory : (Actor, Environment) -> <PartRef Version>

For a given artifact, the version history function computes the version history for the actor in the spec-
ified environment.

[121] Entity ::= Version
Bondable ::= Version
Version =>

[Description] : richtext,
ParentArtifact : PartRef Versionable,
VersionArtifact : PartRef Versionable,
Predecessor : PartRef Version,
Successors : <PartRef Version>,
AutoPurge : boolean,
Finalized : boolean,
VersionNumber : integer,
[VersionLabel] : string

A version represents a node in the version history. The predecessor and successor attributes of each
node link up the nodes in the version history into a directed acyclic graph. The version node holds a
specific "frozen version" of the versionable artifact. Version number is a system-generated monotoni-
cally increasing positive integer. Version label is a user assigned version string. The description is
also assigned by the user.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 47 of 83

Object Models
3.8.4 Artifact Content

[122] Identifiable ::= Sizable
Sizable =>

Size : getSize():integer

Sizable defines the attribute Size common to artifacts that must provide the size information to
enforce the container quota. Documents and messages are two classes of artifacts that support the
Size attribute.

[122.1] getSize : () -> integer

This function computes the size of the artifact.

[123] Sizable ::= AttachmentHolder
AttachmentHolder =>

Attachments : {part SimpleContent}

Attachment holder defines the Attachments attribute common to artifacts that can hold the attached
contents. Attachment holder includes discussion message, invitation, task, etc.

[124] Sizable ::= Attachable
Attachable =>

[Name] : string

Attachable defines an aspect of Message and Document objects that allows them to be attached to the
attachment holders.

[125] MimeConvertable =>
Size : getSize():integer,
[ContentID] : string,
MediaType : part MimeConvertableType

MimeConvertable defines an aspect of Message and Content objects that allows them to be converted
to MIME format. The Size attribute is the size to be counted against the quota. The transfer length of
the object may be different from the size used for quota allocation.

[126] MimeConvertableType = MessageArtifact | MultiContentType
| MIME-Content-Type | MIME-Multipart-Type

The enumeration of MIME convertable type. The constant MessageArtifact represents the Message
objects that are MimeConvertable.

[127] Identifiable ::= Content
MimeConvertable ::= Content
Content =>

[MediaType] : part ContentType

A content contains the data for a document or message. The content, simple content, and multi-con-
tent form a composite design pattern.

[128] ContentType = MIME-Content-Type | MultiContentType

The enumeration of content type.

[129] Content ::= SimpleContent
SimpleContent =>
48 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
Data : <octet>,
MediaType : part MIME-Content-Type,
[ContentEncoding] : string,
[CharacterEncoding] : string,
[ContentLanguage] : locale

A simple content holds a single piece of data. The media type is an official RFC2046 type. Content
encoding specifies the RFC2616 content encoding applied to the content. Character encoding speci-
fies the RFC2616 character set of the content (a missing value means that the content should be
treated as binary or raw). Content language specifies the RFC2616 content language for the content (a
missing value means non-natural language content).

[130] Content ::= MultiContent
MultiContent =>

Parts : <part MimeConvertable>,
MediaType : part MultiContentType

A multi-content instance represents the multi-parts of a message or document. It is a composite con-
tent that can contain a list of simple or composite contents.

[131] MultiContentType = Alternative | Related | Parallel | Mixed

The enumeration of multi-content type, representing multipart/alternative, multi-
part/related, multipart/parallel, and multipart/mixed.

[132] Content ::= OnlineContent
OnlineContent =>

OnlineAttachment : Ref Artifact

An online content holds the online artifact attached to a message or invitation. The online artifact
must be rendered as a URL when the message or invitation is delivered to external recipients.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 49 of 83

Object Models
3.9 Metadata Management

3.9.1 Template

[133] Artifact ::= Template
Template =>

[Description] : richtext

A template defines the reusable structures that can be replicated in new entities of an entity class.

[134] Template ::= BasicTemplate
BasicTemplate =>

EntitySchema : Ref EntitySchema,
AttributeTemplates : {part AttributeTemplate}

A basic template uses the basic attribute templates to define the simple reusable structures.

[135] Identifiable ::= AttributeTemplate
AttributeTemplate =>

Definition : ref AttributeDefinition,
Mandatory : boolean,
Final : boolean,
Prompted : boolean,
ForceDefault : boolean,
AllowedValues : <part CollabPropery>,
[DefaultValue] : part PropertyValue,
[MinimumValue] : part PropertyValue,
[MaximumValue] : part PropertyValue,
[MinimumValueInclusive] : boolean,
[MaximumValueInclusive] : boolean

An attribute template is a template for creating an attribute according to a specific attribute definition.
The settings for Mandatory, Prompted, ForceDefault, and DefaultValue must not violate the following
two constraints: “if Mandatory and not Prompted then DefaultValue is not null” and “if ForceDefault
then Mandatory and DefaultValue is not null.” The following table summarizes the possible combina-
tion of settings and user interface behavior.

Mandatory Prompted ForceDefault DefautValue UI Behavior

False False False Can be null The user will not be prompted
but may supply the value in a
field in the options tab.

False True False Can be null The user will be prompted to
supply a value or leave the field
null.

True False False Is not null The system will use the default
value, which must not be null;
user may override the default
value in the options tab.
50 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
[136] Template ::= AdvancedTemplate
AdvancedTemplate =>

TemplateId : string,
Author : string,
AuthorCreationTime : timestamp,
[CopyrightInfo] : string,
[ContactInfo] : string,
Definition : part Content,
TransportableFormat : getTransportableFormat():Content

An advanced template contains an XML document content, in the Definition attribute, that prescribes
the replicable structures, including nested structure of sub-entities, associations, dependencies, etc.
The template id represents the unique vendor-specific id. The template author or author creation time
could be different from the Creator or CreatedOn attributes of the template entity if, for example, the
template is created by a third-party vendor. The template contact info is the vendor which created this
template.

[136.1] getTransportableFormat : () -> part Content

This function computes the XML document suitable for import, export, and transport of the associ-
ated template.

True True False Can be null The user must supply a value or
accept the default value if the
default value is not null.

True True or False True Is not null The system will use the default
value only. The default value
will be displayed to the user if
prompt is true. If prompt is false,
the user may view the default
value in options tab.

Mandatory Prompted ForceDefault DefautValue UI Behavior
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 51 of 83

Object Models
3.9.2 Marker

[137] Artifact ::= Marker
Marker =>

[Description] : richtext,
Entities : getEntities():{Entity}

A marker is used by end users to group (categorize) entities together by a criteria meaningful to the
users. Markers can be flat or hierarchical. Hierarchical markers are primarily used for maintaining
taxonomies. A marker is considered part of the metadata of the entity. The marker can also have prop-
erties associated with it. In some cases when the user applies a marker to an entity, the marker is pri-
vate such that only the user who applies the marker can browse or locate the entity through the
marker.

[137.1] getEntities : viewer -> {Ref Entity}

This function returns all entities, marked by the same marker, that are accessible to the given viewer.

3.9.3 Label

[138] EntitySchema ::= LabelSchema
LabelSchema => ;

A label schema contains the attribute definitions for different types of labels.

[139] Marker ::= Label
Label =>

[EntitySchema] : Ref LabelSchema,
LabelApplicationCount : integer

A label represents a keyword that is directly attached to an entity for the purpose of classifying the
entity based on the label. Labels are non-hierarchical. Labels can be pre-defined labels shipped out of
the box. Such labels are visible to all users within the enterprise. Labels can be defined by a user and
visible only to the user who created them. The label schema represents the type of the label. For
example, the label schema Recommendation can include labels by the name “Favorite,” “Important,”
etc. Another label schema System can include labels for “Work,” “Personal,” “ToDo,” “Alert,” “Peo-
pleList,” etc. A label of the System label schema is a pre-defined label in an enterprise scope. The
system labels cannot be deleted and the names cannot be changed.

[140] Identifiable ::= LabelApplication
LabelApplication =>

LabeledEntity : Ref Entity,
Label : Ref Label,
Type : part LabelApplicationType

A label application is an instance of association between a label and a specific entity.

[141] LabelApplicationType = Public | Private

The enumeration of label application type.
52 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
3.9.4 Category

[142] EntitySchema ::= CategorySchema
CategorySchema => ;

A category schema represents a taxonomy.

[143] Marker ::= Category
Category =>

[EntitySchema] : Ref CategorySchema,
DefaultTemplate : part CategoryApplicationTemplate,
Template : getEffectiveTemplate(),
[SuperCategory] : Ref Category,
SubCategories : {Part Category},
Attributes : {part ref AttributeDefinition},
Abstract : boolean

A category is used to classify an entity under a structured taxonomy. The metadata administrator pri-
marily creates and makes them available to all users within the enterprise. Categories are hierarchical
in nature. The names of the categories within a category hierarchy must be unique. A category holds
the category level attributes shared by all entities classified by the category. It uses one category
application object per entity to hold the instance level attributes. A category application is created
each time a category is applied to an entity.

Many category application templates can be associated with one category. For this reason, we need a
function that will determine the effective template for a given container. The default category applica-
tion template is used if there is no category application template configured for the container. The
default category application template is created when the category is created.

[143.1] getEffectiveTemplate : Container -> ref CategoryApplicationTemplate

This function computes the template that is in effect for the category when applied within a given
container.

[144] Identifiable ::= CategoryApplicationTemplate
CategoryApplicationTemplate =>

Category : Ref Category,
CopyOnVersion : boolean,
Hidden : boolean,
Final : boolean,
Required : boolean

A category application template captures the forms and default settings for the category applications.
A category application template holds the attribute templates to instantiate the attributes of the cate-
gory applications. Many category application templates can be associated with the same category.

[145] Identifiable ::= CategoryApplication
CategoryApplication =>

CategorizedEntity : Ref Entity,
Category : Ref Category,
Attributes : {part Attribute}

A category application contains the instance-level attributes for the classified entity.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 53 of 83

Object Models
3.9.5 Bond

[146] EntitySchema ::= BondSchema
BondSchema => ;

A bond schema contains the attribute definitions for different types of bonds.

[147] Entity ::= Bond
Bond =>

[EntitySchema] : Ref BondSchema,
[Description] : richtext,
Type : string,
Attributes : {part Attribute},
Properties : {part CollabProperty},
[Root] : Ref Bondable,
BondedEntities : {part BondEntityRelation},
Unread : isUnread():boolean,
New : isNew():boolean,
Recent : isRecent():boolean

A bond relates two or more entities to each other. The bond schema represents the type of the bond,
such as “Discuss This,” “Follow-up,” and “Related Material.” All bonds can be annotated with arbi-
trary data via the Properties attribute. Refer to Artifact for the definitions of the change management
functions isNew(), isRecent(), and isUnread().

The Root attribute can be used to define a hierarchy where the entity attached as the root is assumed
to be a relative root above the entities listed among bonded entities.

Issue 1 Note that entities among bonded entities may need to be a list (preserving the relative ordering of entities in the list).
Ordered list can support certain searching capabilities.

[148] BondEntityRelation =>
Entity : Ref Bondable,
Attributes : {part Attribute},
Properties : {part CollabProperty}

A bond-entity relation allows a set of properties to be optionally associated with a particular entity in
a bond relationship. This allows properties to be assigned to each edge(bond)-node(entity) combina-
tion in a bond.
54 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
3.10 Preference

[149] Entity ::= PreferenceProfile
PreferenceProfile =>

Name : string,
[Description] : richtext,
PreferenceSets : {PartRef PreferenceSet}

A preference profile contains a collection of preference sets that can be in effect for different circum-
stances. The user can activate one preference profile from an available list of preference profiles. For
example, a user can switch back and forth between the regular operation profile and the business
travel profile.

[150] Entity ::= PreferenceSet
PreferenceSet =>

Name : string,
[Description] : richtext,
[Template] : immutable Ref BasicTemplate,
[ExtendsFrom] : Ref PreferenceSet,
Preferences : {part PreferenceProperty}

A preference set is a container of various preference settings declaring the choices, desires, course of
actions, or customizations. A preference set aggregates the related settings for some functional area.
The preference sets can be configured for accessors (users and groups) and containers (enterprises,
organizations, workspaces, and folders). Two preference sets are said to be compatible if they are
based on the same preference set schema. One preference set can inherit preference properties from a
compatible preference set according to the predefined inheritance rule. The ExtendsFrom attribute
can be used to explicitly specify the preference set to inherit. Template provides the attribute tem-
plates that prescribe how to create the preference properties.

[151] PreferenceProperty =>
Name : immutable string,
Value : PropertyValue,
Type : getPropertyType(),
[Format] : string,
Final : boolean

A preference property stores a preference setting for a preference set that can override the setting on
another preference set. When a preference set inherits from another preference set, the latter is said to
be at a higher scope. If the Final attribute is true, this preference setting cannot be overriden by any
setting from the preference sets in the lower scopes.

[151.1] getPropertyType : () -> PropertyType

This function computes the type of the property value in the associated preference property.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 55 of 83

Object Models
3.11 Workspace

[152] Scope ::= Workspace
ArtifactContainer ::= Workspace
Lockable ::= Workspace
Workspace =>

[Description] : richtext,
Elements : {Part Folder},
Parent : getParent():Community,
[Trash] : Part Trash,
[Inbox] : getInbox():Folder,
[DefaultCalendar] : getDefaultCalendar():Calendar,
[DefaultTaskList] : getDefaultTaskList():TaskList,
[DefaultAddressBook] : getDefaultAddressBook():AddressBook,
[DefaultConference] : getDefaultConference():Conference,
QuotaStatus : part QuotaStatus,
[QuotaConfiguration] : part WorkspaceQuotaConfiguration,
PrimaryContact : Ref Actor

A workspace is a scope that defines a logical scope of work for users. All workspaces must have a
name (the Name attribute from Entity is not optional). Each workspace is addressable individually
(and they may have a variety of ways of being addressed). Every workspace is created from a tem-
plate that specifies an initial configuration for the workspace. Changes to the template can propagate
to existing workspaces created from that template.

NOTE A workspace is a durable context and place to collaborate. One such context is the durable, asynchronous
meeting place that draws several analogies to real-time meetings such as web/audio conferences. Like in a
real-time meeting, a participant can observe the presence of other participants in a workspace meeting.
Like in a real-time meeting, there are conversations in a workspace meeting. You can address email, voice,
fax, IM (unified messages) to the workspace. Through asynchronous channels, workflows, subscriptions,
etc., in the workspace, a workspace meeting adds more dimensions to the conversations. For example,
real-time conversations can take place through web conferences, synchronous conversations can take
place through chat rooms, and real-time and synchronously conversations are accessible asynchronously
through conference or chat transcripts in the workspace. Asynchronous conversations can take place
through discussion forums, blogs, messages, annoucements, calendar schedules, task assignments, docu-
ments, and wiki pages in the workspace. Workspace subscriptions, actionable alerts, and workflows add
additional mode of conversations in the workspace.

[152.1] getInbox : () -> Ref Folder

This function determines the folder for incoming messages.

[152.2] getDefaultCalendar : () -> Ref Calendar

This function determines the default calendar for workspace.

[152.3] getDefaultTaskList : () -> Ref TaskList

This function determines the default task list for workspace.

[152.4] getDefaultAddressBook : () -> Ref AddressBook

This function determines the default address book for workspace.
56 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
[152.5] getDefaultConference : () -> Ref Conference

This function determines the default conference for workspace.

[153] QuotaStatus =>
ConsumedQuota : integer,
Status : getStatus():Status

A quota status provides the quota consumed and status.

[153.1] getStatus : () -> Status

This function computes the status of quota consumption.

[153.2] Status = Normal | SoftQuotaReached | HardQuotaReached

The enumeration of status.

[154] AdvancedTemplate ::= WorkspaceTemplate
WorkspaceTemplate =>

Domain : string

A workspace template is used to define a workspace. The domain defines the line of business such as
transportation, health care, finance, etc.

[155] Workspace ::= PersonalWorkspace
PersonalWorkspace =>

[ReminderList] : getReminderList():Folder,
[SubscriptionList] : getSubscriptionList():Folder,
[NotificationList] : getNotificationList():Folder

A personal workspace is a context owned by a user.

[155.1] getReminderList : () -> Ref Folder

This function determines the folder to hold personal reminders.

[155.2] getSubscriptionList : () -> Ref Folder

This function determines the folder to hold personal subscriptions.

[155.3] getNotificationList : () -> Ref Folder

This function determines the folder to hold notifications.

[156] Workspace ::= TeamWorkspace
TeamWorkspace =>

[DefaultAnnouncements] : Ref Forum,
[DefaultRole] : Ref AssignedRole,
ParticipationMode : part ParticipationMode,
ParticipantsGroup : PartRef Group,
Participants : getParticipants():{WorkspaceParticipant}

A team workspace is shared amongst its participants. Participants are essentially those actors that
have access to the workspace (via access control). The semantics around team workspaces are differ-
ent from the semantics around personal workspaces. The participants can be assigned to “full mem-
ber,” “coordinator,” or “viewer” roles.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 57 of 83

Object Models
[156.1] getParticipants : () -> {part WorkspaceParticipant}

This function computes the workspace participant objects that specify the assigned roles and partici-
pant settings.

[157] ParticipationMode = Open | ApprovalRequired | InviteOnly

The enumeration of participation mode of a team workspace, which can be open to all, by approval,
or by invitation.
58 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
3.12 Time Management

3.12.1 Calendar

[158] Folder ::= Calendar
Calendar =>

Occurrences : {Part Occurrence},
Invitations : {Part Invitation},
TimeZone : Ref TimeZone,
InheritTimeZoneFromOwner: boolean,
AllowDoubleBooking : boolean,
BookingBehavior : part BookingBehavior,
IncludeInFreeBusy : boolean,
FreeBusyModifiedOn : timestamp,
DefaultPriority : part Priority,
DefaultICalPriority : integer,
AvailableHours : part ref AvailableHours,
DeriveAvailableHoursFromOwnerWorkingHours: boolean,
EnrollmentGroup : Part DynamicGroup,
EnrollmentType : part EnrollmentType,
CalDavResourceName : string

A calendar is a container of time management artifacts such as occurrences and invitations. The ele-
ments of calendar are classified in two categories: owned entries and calendar contents.

The owned entries are instances of Occurrence that hold the actual state of a calendar component, but
do not block off time in the calendar (i.e. are not considered in a normal day/week/month view or
free-busy lookup). Owned entries are generally created by the owner of the calendar or someone
working on his/her behalf. They are not intended to be manipulated directly by the participants.

The calendar contents are instances of Invitation. These are associated with occurrences. Invitations
are automatically added to the participant’s calendar when a new occurrence is created. Calendar con-
tents are owned by the participant and initially located in their default calendar. The calendar contents
hold the data that is owned by the participant (i.e. to set the participation status and transparency) and
act as a proxy to access the occurrence data owned by the organizer.

The enrollment group is used to specify the enrollment list which allows all users in the group to be
enrolled and allows any users to opt out.

[159] BookingBehavior = Open | FirstComeFirstServe

The enumeration of booking behavior. Booking behavior is open (for double booking) or first come
first serve.

[160] EnrollmentType = Public | Private

The enumeration of enrollment type. Enrollment type is public or private. When the enrollment type
attribute is public the invited enrollees are added as participants of the occurrence. When the enroll-
ment type is private, the system will only add invitation artifacts to the participant calendars.

[161] Identifiable ::= BaseOccurrence
AttachmentHolder ::= BaseOccurrence
BaseOccurrence =>

[Name] : string,
Participants : {part OccurrenceParticipant},
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 59 of 83

Object Models
CompositeParticipants : {part OccurrenceCompositeParticipant},
[Description] : richtext,
[Organizer] : part Participant,
[InternalOrganizer] : Ref Actor,
[Status] : part OccurrenceStatus,
Type : part OccurrenceType,
[Priority] : part Priority,
[Location] : part Location,
[Url] : uri,
[Equipment] : <string>,
Transparency : part Transparency,
iCalSequence : integer,
iCalUid : immutable string,
[iCalPriority] : integer,
iCalClass : string,
iCalCategories : <string>,
hasPendingReminders : hasPendingReminders():boolean,
hasMultipleParticipants : hasMultipleParticipants():boolean,
hasCompositeParticipants: hasCompositeParticipants():boolean,
hasMultipleInstances : hasMultipleInstances():boolean

BaseOccurrence defines the common attributes of the occurrence series, occurrence, invitation series,
and invitation that represent some kind of event that occurs on a calendar. The internal organizer is an
actor who organizes the occurrence on behalf of the external agent.

[161.1] hasPendingReminders : () -> boolean

This function computes whether there is at least one attached reminder with a reminder pending sta-
tus.

[161.2] hasMultipleParticipants : () -> boolean

This function computes whether there is more than one participant.

[161.3] hasCompositeParticipants : () -> boolean

This function computes whether there is at least one composite participant.

[161.4] hasMultipleInstances : () -> boolean

This function computes whether the associated occurrence series object has more than one occurrence
instance.

[162] Entity ::= OccurrenceSeries
Bondable ::= OccurrenceSeries
BaseOccurrence ::= OccurrenceSeries
OccurrenceSeries =>

Occurrences : {Ref Occurrence},
Recurrences : part DateTimeRecurrenceSet,
OriginalInclusionRule : part DateTimeRecurrenceRule,
Duration : timeoffset,
ExplicitlyModifiedOn : timestamp

An occurrence series is a set containing all the occurrences associated with the same event. Every
occurrence, including a single instance event, is associated with an occurrence series.
60 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
The attributes of the occurrence series are used as default values when new occurrences are added or
when expanding the recurrence rules at creation.

[163] Artifact ::= Occurrence
BaseOccurrence ::= Occurrence
Occurrence =>

Start : part DateTime,
End : part DateTime,
Series : immutable PartRef OccurrenceSeries,
iCalRecurrenceId : immutable part DateTime,
ExplicitlyModifiedOn : timestamp,
[OccurrenceExceptionToSeries]: part ExceptionToSeries

An occurrence instance represents some kind of event that occurs on a calendar, such as a meeting, a
day event, etc. An occurrence may also be part of a recurring event, in which case all the related
occurrences are part of the same occurrence series.

Occurrences are meant to be manipulated only by the organizer (or someone that was granted special
privileges). Occurrences are typically created in the organizer's calendar. When an occurrence is cre-
ated the system will automatically create the invitation objects in the participants' default calendars
(including the organizer if he/she is also an attendee). Invitations act as proxies to allow the partici-
pants to access the information in the source occurrence. Invitations are the objects to be rendered in
a day/week/month view of the participant’s calendar or when querying the free or busy status of the
participant.

The purpose of the occurrence object is to hold the information common to all the invitations. When
an occurrence is modified, the system will automatically make the proper adjustments to the invita-
tions.

[164] BaseOccurrence ::= BaseInvitation
BaseInvitation =>

Invitee : getInvitee():Addressable,
InviteeProperties : {part CollabProperty},
InviteeTransparency : part Transparency,
InviteeParticipantStatus: part OccurrenceParticipantStatus,
[InviteePriority] : part Priority,
[InviteeICalPriority] : integer,
[InviteeRepliedOn] : timestamp,
InviteeICalCategories : <string>,
InvitationSubmittedOn : timestamp,
EffectiveTransparency : getEffectiveTransparency():Transparency,
iCalClass : string

BaseInvitation defines the common attributes of the invitation series and invitation.

[164.1] getInvitee : () -> Ref Addressable

This function computes the invitee of the invitation.

[164.2] getEffectiveTransparency : () -> part Transparency

This function computes the effective transparency of the invitation.

[165] Entity ::= InvitationSeries
Bondable ::= InvitationSeries
BaseInvitation ::= InvitationSeries
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 61 of 83

Object Models
InvitationSeries =>
Source : immutable Ref OccurrenceSeries,
Invitations : {Ref Invitation},
CalDavResourceName : string,
Duration : timeoffset,
[ExplicitlyModifiedOn] : timestamp,
OriginalInclusionRule : part DateTimeRecurrenceRule,
Recurrences : part DateTimeRecurrenceSet

An invitation series is a set containing all the invitations for the same participant that are associated
with the same event. The invitation series is automatically managed by the system. Every invitation is
associated with an invitation series.

Invitation series acts as a proxy of the source occurrence series. Through this proxy, the participant
can set the participant status field to accept or decline all the invitations associated with a recurring
meeting.

[166] Artifact ::= Invitation
BaseInvitation ::= Invitation
Invitation =>

Start : part DateTime,
End : part DateTime,
Source : immutable Ref Occurrence,
Series : immutable PartRef InvitationSeries,
iCalRecurrenceId : immutable part DateTime,
[ExplicitlyModifiedOn] : timestamp,
[OccurrenceExceptionToSeries]: part ExceptionToSeries,
[InvitationExceptionToSeries]: part ExceptionToSeries

An invitation is a place holder for an event that is placed into a calendar. An invitation is associated
with a source occurrence. Invitations are automatically manipulated by the system according to the
following business logic.

Invitations are created in the default calendar of every participant of a new occurrence. The partici-
pant status of new invitations is set to needs action. Invitations are automatically deleted if the associ-
ated occurrence is deleted or marked as deleted. Invitations are deleted if the associated participant is
removed from the occurrence. Invitations are created if a participant is added to an existing occur-
rence. When an occurrence is rescheduled (i.e. when start, end or duration is modified), the partici-
pant status of the associated invitations are reset to needs action. The invitations will be restored if
they are previously deleted.

Invitation acts as a proxy to the source occurrence and holds the participant’s data such as the partici-
pant status, transparency, and reminders. Once the invitation is linked with a participant, any modifi-
cation of the participant status will be reflected in the occurrence, by modifying the participant’s reply
field in the participant status of the occurrence.

[167] OccurrenceType = Meeting | DayEvent | Holiday

The enumeration of occurrence type.

[168] ExceptionToSeries = IndirectlyModified | DirectlyModified

The enumeration of exception to series. Exception to series indicates whether an occurrence or invita-
tion is an exception, respectively, to the occurrence series or invitation series. If exception may be due
to direct or indirect modifications to the occurrence or invitation.
62 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
3.12.2 Task

[169] Folder ::= TaskList
TaskList =>

Todos : {Part Todo},
Assignments : {Part Assignment},
TimeZone : Ref TimeZone,
DefaultPriority : part Priority,
InheritTimeZoneFromOwner: boolean,
CalDavResourceName : string

A task list is a container of task management artifacts such as todos and task assignments. The ele-
ments of task list are classified in two categories: owned entries and contents.

The owned entries are instances of Todo that hold the actual state of a task list component. Owned
entries are generally created by the owner of the task list or someone working on his/her behalf. They
are not intended to be manipulated directly by the participants.

The task list contents are instances of Assignment. These are associated with todos. Assignments are
automatically added to the participant’s task list when a new todo is created. Task list contents are
owned by the participant and initially located in their default task list. The task list contents hold the
data that is owned by the participant (i.e. participation status and transparency) and act as a proxy to
access the data owned by the organizer.

[170] Identifiable ::= BaseTodo
AttachmentHolder ::= BaseTodo
BaseTodo =>

[Name] : string,
Participants : {part TodoParticipant},
CompositeParticipants : {part TodoCompositeParticipant},
[Description] : richtext,
[Organizer] : part Participant,
[InternalOrganizer] : Ref Actor,
Status : part TodoStatus,
[Priority] : part Priority,
[iCalPriority] : integer,
[Location] : part Location,
[Url] : uri,
CompanyNames : <string>,
iCalUid : immutable string,
iCalSequence : integer,
iCalClass : string,
iCalCategories : <string>,
Type : part TodoType,
[Workflow] : Ref Workflow

BaseTodo defines the common attributes of the todo series, todo, assignment series, and assignment
that represent some kind of entry in a task list. The internal organizer is an actor who organizes the
occurrence on behalf of the external agent.

[171] TodoType = Task | WorkflowTask

The enumeration of the type of todo.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 63 of 83

Object Models
[172] Artifact ::= Todo
BaseTodo ::= Todo
Todo =>

[Start] : part DateTime,
[Due] : part DateTime,
ExplicitlyModifiedOn : timestamp,
[Completed] : part DateTime,
PercentComplete : integer

A todo is a type of task list entry. It represents an instance of a task. A todo may be part of a recurring
task represented by the todo series.

Todos are meant to be manipulated only by the organizer (or someone that is granted special privi-
leges). Todos are typically created in the organizer's task list. When a todo is created the system will
automatically create assignment objects in the participants' default task lists (including the organizer's
if he/she is an assignee). Assignments act as proxies to allow the participants to customize the source
todo. Assignments are rendered in the task view of a task list.

The purpose of the todo object is to hold the information common to all the assignments. When a todo
is modified the system can automatically make the proper adjustments to the assignments.

[173] BaseTodo ::= BaseAssignment
BaseAssignment =>

Assignee : getAssignee():Addressable,
AssigneeProperties : {part CollabProperty},
AssigneeParticipantStatus: part TodoParticipantStatus,
AssigneePriority : part Priority,
AssigneeICalPriority : integer,
AssignmentSubmittedOn : timestamp,
[AssigneeRepliedOn] : timestamp,
AssigneeBillingInfo : string,
AssigneeMileage : string,
AssigneeICalCategories : <string>,
iCalClass : string

BaseAssignment defines the common attributes of assignment series and assignment.

[173.1] getAssignee : () -> Ref Addressable

This function computes the assignee of the assignment.

[174] Artifact ::= Assignment
BaseAssignment ::= Assignment
Assignment =>

Source : immutable Ref Todo,
[Start] : part DateTime,
[Due] : part DateTime,
[AssigneeTimeAllocated] : timeoffset,
[AssigneeTimeSpent] : timeoffset,
[AssigneeCompleted] : part DateTime,
[AssigneePercentComplete]: integer,
[AssigneeStart] : part DateTime,
[AssigneeDue] : part DateTime,
[AssigneeSortOrdinal] : integer,
[AssigneeComment] : string,
[AssigneeWorkflowTaskId] : immutable string,
64 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
[ExplicitlyModifiedOn] : timestamp,
CalDavResourceName : string

An assignment is an element of a task list associated with the source todos. Assignments are automat-
ically manipulated by the system according to the following business logic.

Assignments are created in the default task list of every participant of a todo. The participant status of
new assignments is set to needs action status. Assignments are automatically deleted if the associated
todo is deleted or marked as deleted. Assignments are deleted if the associated participant is removed
from the todo. Assignments are created if a participant is added to an existing todo. An assignment is
the proxy through which the participant can modify the data such as the participant status, time allo-
cated, and time spent.

Once the assignment is linked with a participant, any modification of the participation status will be
reflected in the todo (i.e., the participants reply to the organizer by modifying the participant status of
the assignment).
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 65 of 83

Object Models
3.12.3 Enumerations

[175] ParticipantStatus = NeedsAction | Accepted | Declined | Delegated
Delegated =>

DelegatedTo : Ref Accessor

The enumeration of participant status.

[176] OccurrenceStatus = Cancelled | Tentative | Confirmed

The enumeration of occurrence status.

[177] OccurrenceParticipantStatus = ParticipantStatus | Tentative

The enumeration of occurrence participant status.

[178] TodoStatus = NeedsAction | Cancelled | Completed | InProcess

The enumeration of todo status.

[179] TodoParticipantStatus = ParticipantStatus | Completed | InProcess
| WaitingOnOther | Tentative

The enumeration of todo participant status.

[180] Transparency =Opaque | Transparent | Tentative | OutOfOffice
| DefaultTransparency

The enumeration of transparency. The invitees can set the transparency of the invitations in their cal-
endars.
66 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
3.12.4 Business Hours

[181] AvailableHours => ;

An available hours instance can be for business or personal..

[182] AvailableHours ::= BusinessHours
BusinessHours => ;

A business hours instance can be customized based on the work shifts.

[183] BusinessHours ::= WeekBusinessHours
WeekBusinessHours =>

Shifts : <part WeekShift>

A week business hours instance contains a sequence of week shifts.

[184] BusinessHours ::= MultiWeekBusinessHours
MultiWeekBusinessHours =>

Start : part DateTime,
AlternatingWeekBusinessHours: <part WeekBusinessHours>

A multi-week business hours instance is a composite of week shifts. The Start attribute indicates a
point in time when the first element of availabilities is active. For subsequent weeks, the elements of
alternating week business hours are selected in a round-robin fashion.

[185] WeekShift =>
Type : part ShiftType,
StartDay : part WeekDay,
StartTime : time,
EndDay : part WeekDay,
EndTime : time

A week shift represents the days between the StartDay and EndDay attributes. The attributes Start-
Time and EndTime do not contain timezone information; the timezone is to be taken from the entity
owning the business hours (i.e., actor or calendar).

[186] ShiftType = RegularShift | ExtendedShift

The enumeration of shift type. A regular shift represents the regular working hours (e.g. 9AM to
6PM). An extended hours represent times where the subject is typically not available, but can be if
needed (e.g., 8AM to 9AM and 6PM to 8PM).
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 67 of 83

Object Models
3.12.5 Timezone

[187] Entity ::= TimeZone
Bondable ::= TimeZone
TimeZone =>

Aliases : {part TimeZoneAlias},
Rules : {part TimeZoneRule},
[Coordinates] : part Coordinates,
[CountryCode] : string,
Common : boolean

A time zone defines the aliases used for this particular time zone in different namespaces (e.g.,
“America/Montreal” in the “TZ Database” name space), as well as all the rules that defines the transi-
tion between standard time and daylight saving time and vice versa. The CountryCode attribute spec-
ifies the upper-case, two-letter country code as defined by ISO-3166. The Name attribute of
TimeZone entities will be set to the TZ database time zone identifier (e.g., America/Los_Angeles). A
time zone must have at least one time zone rule. A time zone may have only one alias per namespace.

[188] Entity ::= TimeZoneAliasMap
TimeZoneAliasMap =>

Aliases : {part TimeZoneAlias},
Direction : part TimeZoneAliasMapDirection,
Namespace : string

A time zone alias map defines a mapping from the time management time zones to the aliases of a
given namespace, or from the aliases of a given namespace to the time management time zones. A
time zone alias map defines the mapping for a simple namespace.

[189] TimeZoneAliasMapDirection = FromNamespace | ToNamespace

The enumeration of time zone alias map direction. A time zone alias map direction indicates whether
the mapping is from the time management time zones to the aliases of a given namespace
(ToNamespace), or from the aliases of a given namespace to the time management time zones (From-
Namespace).

[190] TimeZoneAlias =>
Namespace : string,
Alias : string,
TimeZone : Ref TimeZone

A time zone alias provides an alternative identifier used for a given supported time zone (e.g., “Amer-
ica/Montreal” in the “TZ Database” namespace, “Eastern Standard Time” in the “Microsoft Win-
dows” namespace).

[191] TimeZoneRule =>
[Name] : string,
IsDaylightSavingTime : boolean,
StartYear : part Year,
[EndYear] : part Year,
UTCOffsetTo : timeoffset,
UTCOffsetFrom : timeoffset,
UTCOffsetRaw : timeoffset,
OnsetMonth : part Month,
68 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
OnsetDay : part TimeZoneOnsetDay,
OnsetLocalTime : time

A time zone rule defines a transition between standard time and daylight saving time (or the other
way around).

[192] TimeZoneOnsetDay = TimeZoneOnsetFixedDay | TimeZoneOnsetMovableDay

The enumeration of time zone onset day. The day on which a time zone rule takes effect could be
specified in one of the following forms:

• the 5th of the month

• the last Sunday in the month

• the last Monday in the month

• first Sunday on or after the 8th

• last Sunday on or before the 25th

[193] TimeZoneOnsetFixedDay =>
Day : Day

A time zone onset fixed day is used to specify an onset day that occur on the same date every year
(e.g., the 5th of the month).

[194] TimeZoneOnsetMovableDay = TimeZoneOnsetOrdinalWeekDayOfMonth
| TimeZoneOnsetRelativeWeekDayOfMonth

The enumeration of time zone onset movable day, which is used to specify an onset day varying in
date from year to year.

[195] TimeZoneOnsetOrdinalWeekDayOfMonth =>
Position : integer,
WeekDay : part WeekDay

A time zone onset ordinal week day of month is used to specify an onset day that can be specified as
the first (+1), second (+2) or last (-1) specific day of the week (e.g., Sunday) of the month.

[196] TimeZoneOnsetRelativeWeekDayOfMonth =>
Relation : part DateRelation,
Day : part Day,
WeekDay : part WeekDay

A time zone onset relative week day of month is used to specify an onset day that can be specified as
a day of the week that occur “before”, “on or before”, “after” or “on or after” a given day of the
month (e.g., Sunday on or after the 8th).

[197] DateRelation = Before | OnOrBefore | After | OnOrAfter | On

The enumeration of date relation. Each type of date relation specifies a relation between two dates.

[198] type Year is integer
type Month is integer
type Day is integer

The types Year, Month and Day are used to define years (e.g., 2006), months (1-12) and days of
months (e.g., 1 to 31) in the Gregorian calendar.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 69 of 83

Object Models
[199] WeekDay = Sunday | Monday | Tuesday | Wednesday | Thursday
| Friday | Saturday

The enumeration of week day. A week day defines a specific day of the week in the Gregorian calen-
dar (e.g., Monday).
70 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
3.13 Message

[200] Artifact ::= Message
Sizable ::= Message
VirusScannable ::= Message
MimeConvertable ::= Message
Message =>

Content : part MimeConvertable,
[Sender] : part UnifiedMessageParticipant,
[DeliveredTime] : timestamp,
[Priority] : part Priority

A message is a unit of conversation. It holds a simple content or multipart message contents in the
Content attribute. It includes the sender and references. The DeliveredTime attribute holds the time
when the message is delivered to a given recipient. The sent time of the message is represented by the
user’s created-on time of the artifact. The Name attribute holds the subject or title of the message.

3.13.1 Unified Message

[201] Message ::= UnifiedMessage
Attachable ::= UnifiedMessage
UnifiedMessage =>

MediaType : part MediaType,
Receivers : {part UnifiedMessageParticipant},
CCReceivers : {part UnifiedMessageParticipant},
BCCReceivers : {part UnifiedMessageParticipant},
ReplyTo : {part UnifiedMessageParticipant}

A unified message is a special type of message delivered electronically over a computer, voice, fax,
and other networks.

[202] MediaType = Email | Voice | Fax | Notification

The enumeration of media type. A unified message can be one of these types. Email is a type of mes-
sage that is delivered electronically over a computer network. Voice is a type of message that contains
a voice or audio stream. Fax is a type of message that contains an image transmitted via phone lines
using the fax protocol. Notification is a type of message that delivers the notification of events.

3.13.2 Instant Message

[203] Message ::= InstantMessage
InstantMessage =>

Receivers : {part Participant},
ConversationId : string,
ClientSideId : string,
MediaType : part InstantMessageType

An instant message is a special type of message for one-on-one, synchronous, usually text based, con-
versation. By default the media type is Chat. Other types such as FileTransfer convey special process-
ing requirements.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 71 of 83

Object Models
[204] InstantMessageType = System | Chat | Broadcast | Notification

The enumeration of instant message media type.

[205] System = FileTransfer | InfoQuery | Logout

The enumeration of system instant message media type.

[206] Identifiable ::= InstantMessageRecipient
InstantMessageRecipient =>

InstantMessageReceptacle
: getInstantMessageReceptacle():InstantMessageReceptacle

Instant message recipient defines the attribute to hold the instant message receptacle. If the recipient
is offline, the instant messages are not delivered through this online receptacle, but instead are deliv-
ered to a designated offline folder.

[206.1] getInstantMessageReceptacle : () -> Part InstantMessageReceptacle

This function returns the instant message receptacle for the recipient.

[207] Entity ::= InstantMessageReceptacle
InstantMessageReceptacle =>

OnlineInstantMessageSets: {Part OnlineInstantMessageSet}

An instant message receptacle holds one online instant message set for each endpoint.

[208] Entity ::= OnlineInstantMessageSet
OnlineInstantMessageSet =>

Name : string,
[Description] : richtext,
OnlineInstantMessages : getOnlineInstantMessages():<InstantMessage>

An online instant message set holds the instant messages that are in transit to the recipient’s instant
messaging client. These messages for online delivery need not be persistent. However, messages are
persisted if they have been delivered and archiving is on, or if the receiver is offline.

[208.1] getOnlineInstantMessages : () -> <Part InstantMessage>

This function computes the instant messages in chronological order.

3.13.3 Discussion Forum

[209] ArtifactContainer ::= DiscussionsContainer
DiscussionsContainer =>

ViewCount : integer,
LastPost : getLastPost():DiscussionsMessage

Discussions container defines the attributes common to forum and topic, both of which can contain
discussions.

[209.1] getLastPost : () -> Ref DiscussionsMessage

This function computes the last posted message.
72 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
[210] Folder ::= Forum
DiscussionsContainer ::= Forum
Lockable ::= Forum
Forum =>

PopularTopics : getPopularTopics():{Topic},
ForumContents : {Part DiscussionsContainer}

A forum is a collection of other forums and topics.

[210.1] getPopularTopics : () -> {Ref Topic}

This function computes the popular topics by several criteria including the number of replies.

[211] Folder ::= Topic
DiscussionsContainer ::= Topic
Lockable ::= Topic
Topic =>

Messages : {Part DiscussionsMessage}

A topic represents a conversation among forum members; it is structured as a collection of discus-
sions messages. The discussions semantics may impose the topic messages to be sorted in chronolog-
ical order or threaded by reply.

[212] Topic ::= Announcement
Announcement =>

ActivatesOn : timestamp,
ExpiresOn : timestamp,
AnnouncementStatus : getAnnouncementStatus():AnnouncementStatus

An announcement is a special topic for messages that are valid for a specified period of time, depend-
ing on the activated and expire on times.

[212.1] getAnnouncementStatus : () -> part AnnouncementStatus

This function computes the status of the announcement.

[213] AnnouncementStatus = Pending | Active | Expired

The enumeration of announcement status.

[214] Message ::= DiscussionsMessage
AttachmentHolder ::= DiscussionsMessage
DiscussionsMessage =>

[InReplyTo] : Ref DiscussionsMessage

A discussion message adds discussion semantics to the message. The parent of the discussion mes-
sage is the topic that contains the discussion message.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 73 of 83

Object Models
3.14 Conference

[215] Template ::= ConferenceTemplate
ConferenceTemplate =>

ConferenceSettings : part ConferenceSettings

A conference template specifies a set of initial conference settings. It can hold a predefined set of
groups, properties, and permissions. In most cases conference groups in a template do not have any
participant assigned. Preconfigured conference groups can be used to create conferences with a fixed
list of attendees.

The conference template can be created by users and stored in the user’s workspace. Global templates
can be made available through shared workspaces with some common conference configurations.

[216] Folder ::= Conference
Conference =>

[Template] : Ref ConferenceTemplate,
Status : part ConferenceStatus,
[RunningSession] : part ref ConferenceSession,
EndedSessions : <part ConferenceSession>,
Settings : part ConferenceSetting,
LogEntries : <ref ConferenceLogEntry>,
Address : getConferenceAddress():Address

A conference specifies the current status, conference settings, sessions, and logs. The elements of the
conference are conference transcript documents containing visual and audio information collected
during the sessions. A conference can have one or more sessions that specify the demarcation and
sequencing of the transcripts in the conference, but only one of the sessions can be running at any
moment. If a conference is created from a template, it has a reference to the corresponding conference
template for informational purposes. Attendee’s privileges in a conference are specified by the con-
ference settings attribute.

A participant of a conference is a principal that has sufficient privileges to join the conference. Each
participant is authenticated and provided with a unique address, which is computed using the confer-
ence address function. Environment provides, among other attributes, the type of conference client.
The system will taylor the conference address for different client environments.

There are two ways to authenticate a participant. Internal principals are authenticated by standard cre-
dentials and identified as themselves. External persons will be authenticated by non-standard way
(conference will use its own authentication mechanism) and be identified by a name and an optional
conference key. Temporary “anonymous” principal and actor instances will be used to represent the
external participants.

A conference can be in a number of distict status. The initial status is conference not started which
means that there are no conference sessions. The conference is started when a conference participant,
who has sufficient privileges to start the conference, requests the conference address for the first time.
During this process the system creates a new conference session in the conference. The reference to
this session is placed in the RunningSession attribute.

[216.1] getConferenceAddress : (Environment, ConferenceParticipant) -> Address

This function computes the conference address for a conference participant suitable for the connect-
ing environment.
74 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
[217] ConferenceStatus = ConferenceNotStarted | ConferenceWaitingForHost
| ConferenceRunning | ConferenceHibernated
| ConferenceFailed | ConferenceEnded

The enumeration of conference status.

[218] Identifiable ::= ConferenceSession
ConferenceSession =>

Conference : Ref Conference,
[EndStatus] : part ConferenceSessionEndStatus,
Recordings : <Ref Document>,
LogEntries : getLogEntries():<ConferenceLogEntry>,
StartTime : timestamp,
[EndTime] : timestamp

A conference session specifies the demarcation and sequencing of the transcripts in the conference. A
conference session can end with a different result which is captured in the session ending status. The
conference transcript is made available after the end of a conference session. A transcript can contain
visual and audio information collected during the session. The transcript document is a media file,
identified by the media type of the document, that can be replayed by third party media players. The
conference assigns an ACL to the transcript document based on the conference settings and confer-
ence ACL.

[218.1] getLogEntries : ConferenceParticipant -> <ref ConferenceLogEntry>

This function computes the conference log entries from the conference session for each principal par-
ticipating in the session.

[219] ConferenceSessionEndStatus = SessionEndHostLeft | SessionEndHostAborted
| SessionEndNoHost | SessionEndSystemError | SessionEndTimedOut
| SessionEndByAdmin

SessionEndSystemError =>
ErrorCode : string,
Description : string

SessionEndByAdmin =>
Reason : string

The enumeration of conference session end status. It describes the various reasons why a conference
session ended.

[220] ConferenceLogEntry =>
Conference : Ref Conference,
Session : ref ConferenceSession,
Participant : part ConferenceParticipant,
EntryTime : timestamp,
Type : part PropertyType,
Value : part ConferenceVariant

A conference log entry contains a conference variant value as an entry. The security policy on the
conference log can be set through the conference settings. The default policy allows the host to see all
entries while an attendee can see only entries related to him or her. There are several conference log
entry types.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 75 of 83

Object Models
[221] ConferenceSettings =>
ConferenceRoles : {part ConferenceRole},
Properties : {part ConferenceProperty}

A conference settings instance includes a conference configuration (properties) and user rights. Gen-
erally, all settings are customized from the conference template during the conference instantiation
phase. Conference settings are comprised of two sections. The conference roles section contains a list
of roles created only for the lifetime of the conference instance. The roles are used to assign permis-
sions to participants.

[222] ConferenceRole =>
Name : string,
Participants : {part ConferenceParticipant},
ConferenceKeys : {string},
Properties : {part ConferenceProperty}

A conference role is a named set of participants, which may be principals, actors, or groups, that have
the same properties and permissions in the conference. Each conference role provides a match
between a number of participants and a set of properties and permissions. Each participant may
belong to a number of conference roles. In case of conflicts between the properties or permissions
among two or more conference roles assigned to the participant, some well defined resolution rules
will be applied. In case the participant is an external actor and cannot be authorized by the standard
procedures, the conference key is used to identify the conference role.

[223] CollabProperty ::= ConferenceProperty
ConferenceProperty =>

Name : string,
Value : part ConferenceVariant

A conference property is a special type of collab property that can hold special values, such as per-
missions and participants.

[224] ConferenceVariant = PropertyValue | Grant | Deny
| ConferenceParticipant | <ConferenceVariant>

The enumeration of conference variant. A conference variant includes standard property values
extended by permission (Grant or Deny), conference participant, and array of conference variants.
76 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
3.15 User Subscription and Reminder

3.15.1 Subscription

[225] EntitySchema ::= SubscriptionSchema
SubscriptionSchema =>

Attributes : {part ref AttributeDefinition},
EntitySubscriptionRuleDefinitions

: {part SubscriptionRuleDefinition},
ContainerSubscriptionRuleDefinitions

: {part SubscriptionRuleDefinition},
SourceEntityClass : entityClass

A subscription schema defines the attributes that can be part of the user subscriptions. There is at
most one subscription schema for each source entity class, which can be a workspace, calendar, task
list, forum, message, folder, etc. A subscription for entities of an entity class can be composed accord-
ing to the entity or container level subscription rule definitions, depending on whether the subscrip-
tion is attached to the container of the entity or to the entity itself. The container subscription rule
definitions are used to compose a blanket subscription on all entities of an entity class in the con-
tainer.

[226] BasicTemplate ::= SubscriptionTemplate
SubscriptionTemplate =>

EntitySchema : Ref SubscriptionSchema,
SubscriptionRules : {part SubscriptionRule}

A subscription template defines a variant of the subscription schema by supplying the default settings
or prescribing how to collect the settings for the required attributes. The subscription rules specify the
actions, depending on the conditions around the events, source entities, and action doers, for auto-
matic reaction or notification.

[227] Artifact ::= Subscription
Subscription =>

[Template] : Ref SubscriptionTemplate,
Attributes : {part Attribute},
Enabled : boolean,
[Overrides] : Ref Subscription,
[AttachedTo] : Ref Entity,
Subscriber : getSubscriber():User

A subscription contains the attributes submitted by a user, prescribing how to automatically react or
notify the user when some events occur on an entity. A subscription on messages, for example, pre-
scribes how to filter the messages.

A subscription refers to the subscription template that defines the metadata and forms used to con-
struct the subscriptions. The user may enable or disable the subscription at any time. A subscription
can be attached to a container to be applied to all entities of the given entity class under the container.
It can be overriden by the subscription attached to a specific entity. The Overrides attribute refers to a
container level subscription which it overrides.

[227.1] getSubscriber : () -> Ref User

This function computes the subscriber who submitted the subscription.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 77 of 83

Object Models
[228] Identifiable ::= SubscriptionRuleDefinition
SubscriptionRuleDefinition =>

Name : string,
[Description] : richtext,
Conditions : {part SubscriptionConditionDefinition},
Actions : {part SubscriptionActionDefinition}

A subscription rule definition specifies the available conditions and actions to compose the subscrip-
tion rules.

[229] Identifiable ::= SubscriptionConditionDefinition
SubscriptionConditionDefinition =>

Name : string,
[Description] : richtext,
Attributes : {ref AttributeDefinition}

A subscription condition definition specifies the forms for a condition.

[230] Identifiable ::= SubscriptionActionDefinition
SubscriptionActionDefinition =>

Name : string,
[Description] : richtext,
Attributes : {ref AttributeDefinition}

A subscription action definition specifies the forms for an action.

[231] SubscriptionRule =>
Name : string,
[Description] : richtext,
Definition : ref SubscriptionRuleDefinition,
Conjunctive : boolean,
Conditions : {ref SubscriptionConditionDefinition},
Actions : <ref SubscriptionActionDefinition>

A subscription rule specifies the conditions that must be satisfied and actions to be activated. The
Conjunctive attribute specifies whether the conditions will be evaluated in conjunction. If conjunctive
evaluation is used, all conditions must be satisfied to activate the actions. If the disjunctive evaluation
is used, each condition is evaluated independently; the actions will be activated when any of the con-
ditions are satisfied.
78 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
3.15.2 Reminder

[232] Artifact ::= DefaultReminder
DefaultReminder =>

[Container] : Ref Container,
[SourceEntityClass] : entityClass,
Trigger : part RelativeTrigger,
Rule : part ReminderRule,
Primary : boolean

A default reminder is defined on a container to be applied to all entities of the given entity class under
the container.

[233] Artifact ::= Reminder
Reminder =>

[Source] : Ref Entity,
[DerivedFrom] : Ref DefaultReminder,
Trigger : {part ref TimedTrigger},
[NextAbsoluteTriggerTime]: timestamp,
Status : part ReminderStatus,
Rule : part ReminderRule,
Enabled : boolean,
Primary : boolean

A reminder is an entity that is used to trigger a reminder action at some timed event. It associates a
timed trigger on the entity. Reminders are adjusted when the default reminder changes because the
entity is moved to another container, for example, when an invitation is moved from one calendar to
another.

[234] ReminderRule => ;

A reminder rule is a rule which must conform to a specifc rule definition associated with all remind-
ers and default reminders.

[235] ReminderStatus = ReminderPending | ReminderProcessed

The enumeration of reminder status. A reminder can be in pending or processed status.

[236] TimedTrigger => ;

A timed trigger is a time-based trigger or stimulus that can set off an event. A timed trigger can be
defined relative to the time of operations such as create, update, checkin, checkout, etc., or to a sched-
uled event (usually a future event) such as the start time of an calendar occurrence, due date of a task,
end time of a conference, etc. A timed trigger can also be defined by absolute time independent of any
operation.

[237] TimedTrigger ::= RelativeTrigger
RelativeTrigger =>

Offset : timeoffset

The relative trigger offset can be from any trigger, such as the start time, end time, anniversary, cre-
ated on time, birth day, etc.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 79 of 83

Object Models
[238] TimedTrigger ::= AbsoluteTrigger
AbsoluteTrigger =>

Value : timestamp

The absolute trigger is a schedule for an alarm.
80 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

Object Models
3.16 Workflow

[239] EntitySchema ::= WorkflowSchema
WorkflowSchema =>

Enabled : boolean,
Blocking : isBlocking():boolean,
Instances : {Part Workflow},

A workflow schema defines a plan of actions. The schema provides the metadata about the attributes
to customize the actions. In a typical deployment, a workflow schema corresponds to a workflow pro-
cess (a unit of deployment in a workflow service engine) which can execute the workflows derived
from the same workflow schema.

The workflow administrator creates and makes the workflow schemas available to all users within the
enterprise. The workflow schema contains all instances, each of which holds the instance attributes
and status.

The attribute definitions define the input and output parameters of the workflows. The Enabled
attribute indicates whether the workflow process is available to execute the workflows derived from
the associated workflow schema. The workflow may involve a mixed sequence of operations on the
artifacts and interactions with some actors of the system. Hence the Blocking attribute indicates
whether the workflow process involves any blocking operations, such as human interaction for
approval.

[239.1] isBlocking : () -> boolean

This function determines whether the workflows derived from the associated workflow schema
would involve blocking operations. It may deduce this condition from the attribute definitions and
other metadata.

[240] BasicTemplate ::= WorkflowTemplate
WorkflowTemplate =>

EntitySchema : Ref WorkflowSchema,
EventDefinition : eventDefinition,
Final : boolean,
Mandatory : boolean

A workflow template defines a variant of the workflow schema by supplying the default settings or
prescribing how to collect the settings for the required attributes from the environment, including the
actors, scopes, artifacts, etc. The EventDefinition attribute specifies the type of operations that initiate
the workflow. Many workflow templates can be associated with the same workflow schema. The
workflow configuration on the container configures the workflow templates and consequently binds
the workflow schemas to the events in the container.

[241] Artifact ::= Workflow
Workflow =>

[Template] : Ref WorkflowTemplate,
[Description] : richtext,
Attributes : {part Attribute},
[Initiator] : Ref Actor,
Duration : integer,
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 81 of 83

Object Models
Status : getWorkflowStatus():WorkflowStatus,
[CurrentTodo] : Ref Todo

A workflow is created from the workflow schema and template when the user initiates the workflow.
The attributes contain the values that are used to create the workflow.

[241.1] getWorkflowStatus : () -> WorkflowStatus

This function computes the status of the workflow.

[241.2] WorkflowStatus = Open | Closed | Failed
| Aborted | Cancelled

The enumeration of workflow status.
82 of 83 Beehive Object Model Copyright © 2009, Oracle. All rights reserved.

References
4.0 References

[1] Berners-Lee, T., et al. “Uniform Resource Identifiers (URI): General Syntax”, RFC 2396, August
1998.

Beehive Object Model
January 2009

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.800.633.0973
Fax: +1.650.506.7200
oracle.com

Copyright © 2009, Oracle and/or its affiliates. All rights reserved. This document is provided for informa-
tion purposes only and the contents hereof are subject to change without notice. This document is not war-
ranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or
implied in law, including implied warranties and conditions of merchantability or fitness for a particular
purpose. We specifically disclaim any liability with respect to this document and no contractual obliga-
tions are formed either directly or indirectly by this document. This document may not be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior
written permission.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trade-
marks of their respective owners.
Beehive Object Model Copyright © 2009, Oracle. All rights reserved. 83 of 83

	Beehive Object Model
	1.0 Vocabulary
	2.0 Object Formalisms
	2.1 Notation
	2.1.1 References
	2.1.2 Primitive Types

	2.2 Conventions

	3.0 Object Models
	3.1 Entity
	3.2 Meta-Entity
	3.2.1 Entity Schema

	3.3 Core
	3.3.1 Attribute and Property
	3.3.2 Bondable
	3.3.3 Addressable
	3.3.4 Lockable
	3.3.5 Localized String
	3.3.6 Location
	3.3.7 Date Time
	3.3.8 Enumerations

	3.4 Container and Scope
	3.4.1 Container
	3.4.2 Scope

	3.5 Directory
	3.5.1 User Directory
	3.5.2 Resource Directory
	3.5.3 Address Book
	3.5.4 Presence
	3.5.5 Free Busy

	3.6 Access Control
	3.7 Participant
	3.8 Artifact Management
	3.8.1 Artifact
	3.8.2 Artifact Container
	3.8.3 Artifact Version
	3.8.4 Artifact Content

	3.9 Metadata Management
	3.9.1 Template
	3.9.2 Marker
	3.9.3 Label
	3.9.4 Category
	3.9.5 Bond

	3.10 Preference
	3.11 Workspace
	3.12 Time Management
	3.12.1 Calendar
	3.12.2 Task
	3.12.3 Enumerations
	3.12.4 Business Hours
	3.12.5 Timezone

	3.13 Message
	3.13.1 Unified Message
	3.13.2 Instant Message
	3.13.3 Discussion Forum

	3.14 Conference
	3.15 User Subscription and Reminder
	3.15.1 Subscription
	3.15.2 Reminder

	3.16 Workflow

	4.0 References

