Fast Delivery of Intelligent BI Solutions

Marty Gubar
Oracle BI/DW Product Management
Agenda

• The Requirement: Intelligent Ad hoc Data Exploration
• Overview: Embedded OLAP in Oracle Database 11g
• Calculation Capabilities Scale to Business Requirements
• Advanced Analytic Queries Using Simple SQL
• Ad hoc Analysis Using Excel and OBIEE
The Requirement
Example Report

Calculations include:
- Time-series
- Comparison to peers (i.e. share)
- Alerts (uncover issues at levels below current selection)
- Statistical Forecasts
- … and multiple layers of nested calculations
- … at any level of detail

<table>
<thead>
<tr>
<th>Sales Revenue Analysis</th>
<th>Q1-CY2009</th>
<th>Q2-CY2009</th>
<th>Q3-CY2009</th>
<th>Q4-CY2009</th>
<th>Q1-CY2010</th>
<th>Q2-CY2010</th>
<th>Q3-CY2010</th>
<th>Q4-CY2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computers<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales</td>
<td>33,777,199</td>
<td>26,581,026</td>
<td>30,362,113</td>
<td>34,565,477</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales % Chg PV</td>
<td>20.3</td>
<td>18.1</td>
<td>9.6</td>
<td>9.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Alert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales YTD</td>
<td>33,777,199</td>
<td>62,358,225</td>
<td>53,341,138</td>
<td>127,706,615</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales YTD % Chg PV</td>
<td>20.3</td>
<td>19.3</td>
<td>15.3</td>
<td>14.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales YTD Share of Parent Product</td>
<td>91.5</td>
<td>61.0</td>
<td>90.5</td>
<td>80.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales YTD Share % Chg PV</td>
<td>2.5</td>
<td>1.1</td>
<td>(1.2)</td>
<td>(1.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross Over Best Fit Fct</td>
<td>33,777,199</td>
<td>26,581,026</td>
<td>30,362,113</td>
<td>34,565,477</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cameras and Camcorders<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales</td>
<td>2,961,771</td>
<td>2,699,267</td>
<td>3,192,047</td>
<td>3,540,144</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales % Chg PV</td>
<td>1.1</td>
<td>14.1</td>
<td>28.6</td>
<td>25.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Alert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales YTD</td>
<td>2,961,771</td>
<td>5,661,058</td>
<td>8,053,105</td>
<td>12,399,249</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales YTD % Chg PV</td>
<td>1.1</td>
<td>6.3</td>
<td>14.1</td>
<td>17.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales YTD Share of Parent Product</td>
<td>7.1</td>
<td>7.7</td>
<td>8.3</td>
<td>8.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales YTD Share % Chg PV</td>
<td>(13.9)</td>
<td>(2.3)</td>
<td>16.8</td>
<td>13.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross Over Best Fit Fct</td>
<td>2,961,771</td>
<td>2,699,267</td>
<td>3,192,047</td>
<td>3,540,144</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portable Music and Video<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales</td>
<td>4,692,772</td>
<td>3,550,017</td>
<td>4,319,055</td>
<td>4,223,332</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales % Chg PV</td>
<td>9.4</td>
<td>9.3</td>
<td>8.9</td>
<td>12.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Alert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales YTD</td>
<td>4,692,772</td>
<td>6,692,769</td>
<td>12,905,844</td>
<td>17,319,235</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales YTD % Chg PV</td>
<td>9.0</td>
<td>9.6</td>
<td>9.4</td>
<td>10.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales YTD Share of Parent Product</td>
<td>11.3</td>
<td>11.3</td>
<td>11.2</td>
<td>11.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales YTD Share % Chg PV</td>
<td>(6.8)</td>
<td>(5.8)</td>
<td>(1.8)</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross Over Best Fit Fct</td>
<td>4,692,772</td>
<td>3,550,017</td>
<td>4,319,055</td>
<td>4,223,332</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Oracle Database 11g
The Optimal Information Platform

- Cohesive, integrated database platform
- Secure, highly available, scalable and manageable
- Rich analytic platform
World's First Database Machine
Using Sun FlashFire Technology

• Extreme performance for data warehousing
• Pre-installed and configured system out of the box
• Extends suite of Oracle Database 11g functionality
Oracle Database 11g: Embedded OLAP
Simplify Heterogeneous Query Environments

- Business rules in Oracle Database
 - Single definition shared by all client tools and applications
 - Available in Oracle data dictionary

- Calculation complexity pushed into analytic engine in the database
 - Calculations leverage dimensional metadata
 - Simplifies implementations
 - Delivers efficient computation
Oracle Database Metadata

Table Relationships

- **REGION**
- **SALES FACT**
- **INVENTORY**
- **ITEM**
- **CUST**
- **TIME**
Column Relationships
Not Captured in Table’s Metadata
Value of Dimensional Metadata
Dimensions Formalize Data Relationships

- CUST
- SALES FACT
- INVENTORY
- TIME
- REGION

Geography

Product

Time
Value of Dimensional Metadata

Dimensions Formalize Data Relationships

Define the business relationships

<table>
<thead>
<tr>
<th>CUST</th>
<th>REGION</th>
<th>SALES FACT</th>
<th>INVENTORY</th>
<th>ITEM</th>
<th>TIME</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Product</th>
<th>Category</th>
<th>Type</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level-based Hierarchy</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Geography
- Time
Value of Dimensional Metadata
Dimensions Formalize Data Relationships

- Region
- Geography
- Time
- Product
- Complex Hierarchy

Model complex hierarchical relationships
Value of Dimensional Metadata

Dimensions Formalize Data Relationships

- Geography
- Time
- Product
- Hierarchical Relationships
- Use family references to simplify calculations

SALES FACT
INVENTORY
ITEM
TIME
CUST
REGION
Value of Dimensional Metadata

Time Dimension Supports Any Calendar Type

Time dimension simplifies time-series calculations
Value of Dimensional Metadata

Dimensions Shared Across Cubes

Sales Cube
- Product
- Time
- Geography

Inventory Cube
- Product
- Time

SALES FACT
- Time
- Geography

INVENTORY
- Product

SALES FACT
- Time

INVENTORY
- Product

TIME
- Product

CUST
- Product

ITEM
- Product
Value of Dimensional Metadata

Aggregation Rules

SUM Aggregation Rules
Product: Sum
Geography: Sum
Time: Sum

SUM Aggregation Rules
Product: Sum
Time: Hierarchical Last
Value of Dimensional Metadata

Analytic Calculations Leverage Metadata

Calculations
- Sales
- YTD
- YTD % Change
- Share YTD
- Share YTD % Chg
- Forecast
- Moving Average
- ...

Calculations
- Balance
- Inventory Cost
- Stock Out
- ...

Product

SALES FACT

INVENTORY

TIME

CUST

REGION

TIME

Geography

Inventory Cube

Sales Cube
Calculation Glide-Path
Solution Scales as Calculation Complexity Grows

Calculation definition options support most any analytic calculation requirements:

1. Calculation Templates
2. Calculation Expression Syntax
3. OLAP DML Programs, Functions and Models
Calculation Templates

Choose from a wide range of common business calculations

- **Addition**
 - Simple Math
 - Subtraction
 - Multiplication
 - Division (Ratio)
 - Percent Difference
 - Index

- **Prior and Future Periods**
 - Prior Period
 - Difference from Prior Period
 - Percent Difference from Prior Period
 - Future Period
 - Difference from Future Period
 - Percent Difference from Future Period

- **Period To Date**
 - Period To Date
 - Period To Date Period Ago
 - Difference from Period To Date Period Ago
 - Percent Difference from Period To Date Period Ago

- **Parallel Period**
 - Parallel Period
 - Difference from Parallel Period
 - Percent Difference from Parallel Period

- **Share and Ranking**
 - Share
 - Rank

- **Moving Aggregates**
 - Moving Total
 - Moving Average
 - Moving Maximum
 - Moving Minimum

- **Cumulative Aggregates**
 - Cumulative Total
 - Cumulative Average
 - Cumulative Maximum
 - Cumulative Minimum
Customize the Calculation

Create Calculated Measure

Specify General Calculated Measure Information

Name: PRODUCT_RANK_PCT_CHO_YTD
Short Label: Product Rank by % Chg Sales YTD
Long Label: Product Rank by % Chg Sales YTD
Description: Product Rank by % Chg Sales YTD
Calculation Type: Rank

Calculation:
Rank members of the PRODUCT dimension and PRODUCT STANDARD hierarchy based on measure SALES_YTD_PY_PCT_CHO ().
Calculate rank using RANK method with context in order highest to lowest. Rank NA(null) values null last.

Expression:
RANK() OVER HIERARCHY (PRODUCT_STANDARD ORDER BY SALES_CUBE.SALES_YTD_PY_PCT_CHO DESC NULLS LAST WITHIN PARENT)
Easy to define nested calculations

Start with Sales

Sales YTD

Accumulate Sales for the year

Sales YTD % Chg Pr Year

Compare YTD Sales to last year

Rank Products w/in Parent

Rank products by Sales YTD % Chg Pr Year
Calculation Expression Syntax

• OLAP Expression Syntax:
 • Patterned after SQL analytic and window functions
 • Extended to leverage unique properties of OLAP model
 • Can leverage OLAP DML code
Calculation Expression Syntax

Similarity to Standard SQL Syntax

• Identical to SQL syntax for:
 • Single Row Functions
 • Approximately 90 single row functions are identical to SQL
 • Examples: nvl, nullif, to_date, ||, replace, etc.
 • Conditional Statements
 • Supports standard comparative operators
 • Examples: case, decode, <, <=, =, >, >=, !=, etc.
Calculation Expression Syntax
SQL Syntax Extended for OLAP Metadata

- Enables a single calculation to span various levels of aggregation
- Leverages native understanding of hierarchical relationships
- Requires no densification for time-series calculations
- Includes the following functions:

<table>
<thead>
<tr>
<th>Function</th>
<th>Function</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVERAGE_RANK</td>
<td>HIER_PARENT</td>
<td>MAX</td>
</tr>
<tr>
<td>AVG</td>
<td>HIER_TOP</td>
<td>MIN</td>
</tr>
<tr>
<td>COUNT</td>
<td>LAG</td>
<td>RANK</td>
</tr>
<tr>
<td>DENSE_RANK</td>
<td>LAG_VARIANCE</td>
<td>ROW_NUMBER</td>
</tr>
<tr>
<td>HIER_ANCESTOR</td>
<td>LAG_VARIANCE_PERCENT</td>
<td>SHARE</td>
</tr>
<tr>
<td>HIER_CHILD_COUNT</td>
<td>LEAD</td>
<td>SUM</td>
</tr>
<tr>
<td>HIER_DEPTH</td>
<td>LEAD_VARIANCE</td>
<td></td>
</tr>
<tr>
<td>HIER_LEVEL</td>
<td>LEAD_VARIANCE_PERCENT</td>
<td></td>
</tr>
</tbody>
</table>
Calculation Expression Syntax

Example of Extended SQL Syntax

Window function example (RANK)

- One OLAP Expression is equivalent to several SQL rank expressions

--OLAP
- Rank within parent at any level
RANK() OVER HIERARCHY (PRODUCT.STANDARD ORDER BY SALES_CUBE.QUANTITY DESC NULLS LAST WITHIN PARENT)

--SQL
--Rank departments
RANK() OVER (PARTITION BY total_product_id ORDER BY sales DESC NULLS LAST)
--Rank categories
RANK() OVER (PARTITION BY department_id ORDER BY sales DESC NULLS LAST)
--Rank types
RANK() OVER (PARTITION BY category_id ORDER BY sales DESC NULLS LAST)
--Rank sub types
RANK() OVER (PARTITION BY type_id ORDER BY sales DESC NULLS LAST)
--Rank items
RANK() OVER (PARTITION BY sub_type_id ORDER BY sales DESC NULLS LAST)
Calculations Using OLAP DML

- OLAP DML is a dimensionally aware procedural programming language
 - Supports looping, conditional logic, multidimensional selection and more
 - Includes hundreds of analytic functions
- OLAP DML can be used:
 - Within a custom measure expression
 - To assign data to stored measures within a cube
 - Forecasts
 - Allocations
 - Systems of expressions (a.k.a ‘models’)
 - Assignments based on user defined expressions
Calculations Using OLAP DML

Example: Product Alert

“Look at product sales for the children of the current product limit product to children using product_parentrel_product

“Have any products fallen compared to last year? _alert = ANY(sales_cube_sales_py_pct_chg lt 0, time channel geography)

return _alert
Cubes Exposed as a “Star”

- Single cube view contains many summary levels
- Calculations exposed as columns and computed in OLAP engine

- Fact table contains leaf data
- Calculations computed in relational engine using functions in select list
Basic Query:

```sql
SELECT c.long_description as chan,
       p.long_description as prod,
       t.long_description as time,
       s.sales
FROM channel_sales_channel_view c,
     product_standard_view p,
     geography_regional_view g,
     time_calendar_view t,
     sales_cube_view s
WHERE c.dim_key = s.channel
  AND g.dim_key = s.geography
  AND p.dim_key = s.product
  AND t.dim_key = s.time
  AND c.level_name = 'CLASS'
  AND g.level_name = 'ALL_REGIONS'
  AND p.level_name = 'DEPARTMENT'
  AND t.dim_key in ('CY2009')
```

Analytic Query:

```sql
SELECT c.long_description as chan,
       p.long_description as prod,
       t.long_description as time,
       s.sales,
       s.sales_ytd,
       s.sales_ytd_py_pct_chg,
       s.product_alert
FROM channel_sales_channel_view c,
     product_standard_view p,
     geography_regional_view g,
     time_calendar_view t,
     sales_cube_view s
WHERE c.dim_key = s.channel
  AND g.dim_key = s.geography
  AND p.dim_key = s.product
  AND t.dim_key = s.time
  AND c.level_name = 'CLASS'
  AND g.level_name = 'ALL_REGIONS'
  AND p.level_name = 'DEPARTMENT'
  AND t.dim_key in ('CY2009','APR2009')
```
Turn Application Express into a BI Tool

APEX Interactive Report:

<table>
<thead>
<tr>
<th>Product Type</th>
<th>Time</th>
<th>Sales</th>
<th>Product Alert</th>
<th>% Chg PY</th>
<th>YTD</th>
<th>YTD % Chg PY</th>
<th>YTD Share % of Prod</th>
<th>YTD Share % Chg PY</th>
<th>Best Hit Forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera and Camcorders</td>
<td>Q1-2009</td>
<td>2,061,770</td>
<td>-</td>
<td>1.0</td>
<td>2,961,770</td>
<td>1.0</td>
<td>7.1</td>
<td>-13.0</td>
<td>2,961,771</td>
</tr>
<tr>
<td>Camera and Camcorders</td>
<td>Q2-2009</td>
<td>2,699,267</td>
<td>-</td>
<td>14.1</td>
<td>5,661,057</td>
<td>6.9</td>
<td>7.6</td>
<td>-2.3</td>
<td>2,699,267</td>
</tr>
<tr>
<td>Camera and Camcorders</td>
<td>Q3-2009</td>
<td>3,192,047</td>
<td>-</td>
<td>29.5</td>
<td>6,653,104</td>
<td>14.1</td>
<td>6.2</td>
<td>16.8</td>
<td>3,192,047</td>
</tr>
<tr>
<td>Camera and Camcorders</td>
<td>Q4-2009</td>
<td>3,540,143</td>
<td>-</td>
<td>25.8</td>
<td>12,398,248</td>
<td>17.2</td>
<td>8.2</td>
<td>13.4</td>
<td>3,540,144</td>
</tr>
<tr>
<td>Computers</td>
<td>Q1-2009</td>
<td>33,777,199</td>
<td>-</td>
<td>20.3</td>
<td>33,777,199</td>
<td>20.3</td>
<td>61.5</td>
<td>2.5</td>
<td>33,777,199</td>
</tr>
<tr>
<td>Computers</td>
<td>Q2-2009</td>
<td>28,591,026</td>
<td>-</td>
<td>18.1</td>
<td>62,995,225</td>
<td>19.3</td>
<td>61.0</td>
<td>1.1</td>
<td>28,591,026</td>
</tr>
<tr>
<td>Computers</td>
<td>Q3-2009</td>
<td>30,982,913</td>
<td>-</td>
<td>9.5</td>
<td>98,341,188</td>
<td>15.8</td>
<td>80.5</td>
<td>-1.2</td>
<td>30,982,913</td>
</tr>
<tr>
<td>Computers</td>
<td>Q4-2009</td>
<td>34,565,476</td>
<td>-</td>
<td>9.4</td>
<td>127,906,615</td>
<td>14.0</td>
<td>60.0</td>
<td>-1.4</td>
<td>34,565,477</td>
</tr>
<tr>
<td>Portable Music and Video</td>
<td>Q1-2009</td>
<td>4,692,772</td>
<td>-</td>
<td>9.3</td>
<td>4,692,772</td>
<td>9.3</td>
<td>11.3</td>
<td>-6.3</td>
<td>4,692,772</td>
</tr>
<tr>
<td>Portable Music and Video</td>
<td>Q2-2009</td>
<td>3,990,016</td>
<td>-</td>
<td>9.0</td>
<td>8,682,769</td>
<td>9.6</td>
<td>11.3</td>
<td>-5.9</td>
<td>3,990,017</td>
</tr>
<tr>
<td>Portable Music and Video</td>
<td>Q3-2009</td>
<td>4,313,054</td>
<td>-</td>
<td>8.8</td>
<td>12,900,684</td>
<td>9.3</td>
<td>11.2</td>
<td>-1.8</td>
<td>4,313,055</td>
</tr>
<tr>
<td>Portable Music and Video</td>
<td>Q4-2009</td>
<td>4,923,391</td>
<td>-</td>
<td>12.3</td>
<td>17,919,235</td>
<td>10.1</td>
<td>11.4</td>
<td>1.2</td>
<td>4,923,392</td>
</tr>
</tbody>
</table>

1. **Drill down on any dimension**
2. **Calculations work perfectly across all summary levels**
Generate OBIEE Metadata Over Cubes

AWM Plug-in Automates Process

Export cube metadata to OBIEE Administrator
OBIEE Answers Leverages OLAP Calculations Computed in OLAP Engine

<table>
<thead>
<tr>
<th>Department</th>
<th>Calendar Quarter</th>
<th>Sales</th>
<th>Sales YTD</th>
<th>YTD Pr Year</th>
<th>VTD % Chg Pr Year</th>
<th>3 Per Moving Total</th>
<th>Target</th>
<th>% of Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cameras and Camcorders</td>
<td>Q1-CY2007</td>
<td>2,901,771</td>
<td>2,901,771</td>
<td>2,928,022</td>
<td>1.1</td>
<td>11,000,054</td>
<td>10,572,086</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Q2-CY2007</td>
<td>2,609,287</td>
<td>2,601,258</td>
<td>2,694,958</td>
<td>6.0</td>
<td>12,200,004</td>
<td>10,572,086</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Q3-CY2007</td>
<td>3,132,047</td>
<td>3,561,305</td>
<td>7,758,323</td>
<td>14.1</td>
<td>9,531,478</td>
<td>10,572,086</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Q4-CY2007</td>
<td>3,543,144</td>
<td>12,200,246</td>
<td>10,572,086</td>
<td>17.2</td>
<td>6,732,151</td>
<td>10,572,086</td>
<td>117</td>
</tr>
<tr>
<td>Computers</td>
<td>Q1-CY2007</td>
<td>33,777,199</td>
<td>33,777,199</td>
<td>28,073,256</td>
<td>20.3</td>
<td>126,000,000</td>
<td>112,123,808</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Q2-CY2007</td>
<td>20,591,020</td>
<td>20,590,225</td>
<td>52,204,340</td>
<td>4.5</td>
<td>127,300,015</td>
<td>112,123,808</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Q4-CY2007</td>
<td>34,585,477</td>
<td>127,300,815</td>
<td>112,123,808</td>
<td>14.1</td>
<td>85,540,360</td>
<td>112,123,808</td>
<td>114</td>
</tr>
<tr>
<td>Portable Music and Video</td>
<td>Q1-CY2007</td>
<td>4,602,772</td>
<td>4,602,772</td>
<td>4,200,265</td>
<td>9.4</td>
<td>17,300,000</td>
<td>18,264,253</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Q2-CY2007</td>
<td>3,990,017</td>
<td>3,882,789</td>
<td>7,921,044</td>
<td>9.5</td>
<td>17,919,236</td>
<td>18,264,253</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Q3-CY2007</td>
<td>4,313,055</td>
<td>12,200,044</td>
<td>11,000,202</td>
<td>9.4</td>
<td>13,226,450</td>
<td>18,264,253</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Q4-CY2007</td>
<td>4,023,392</td>
<td>17,010,238</td>
<td>16,264,253</td>
<td>10.2</td>
<td>9,238,147</td>
<td>18,264,253</td>
<td>110</td>
</tr>
</tbody>
</table>
Analyze Cubes Using Excel
Simba MDX Driver Connects to OLAP

1. Reads Oracle Data Dictionary for metadata
2. Generates optimized queries against cube

http://www.simba.com/
Summary

• Oracle OLAP improves the delivery of information rich queries by SQL-based tools and applications
 • Simple definition of analytic calculations
 • Simple access to analytic calculations
 • Fast performance
 • Leverage existing Oracle Database expertise
For More Information

search.oracle.com

Oracle OLAP

Oracle Technology Network
For demonstrations, white papers, tutorials and more, visit: