

Oracle J2EE State Replication
Guidelines and Best Practices

An Oracle White Paper
October 2007

Maximum Availability
Architecture

Oracle Best Practices
For High Availability

Maximum Availability Architecture

Oracle J2EE State Replication Guidelines and
Best Practices

Executive Summary .. 4
Introduction ... 5
Reference Replication topology .. 5

Topology Components and Terminology... 6
Load Balancer ... 6
Oracle HTTP Server (OHS)... 6
Oracle Containers for Java (OC4J).. 6
OPMN-based Topology.. 6

Replication Configuration Options .. 7
Multicast vs. Peer-to-Peer.. 7
Distributed vs. Co-located JVMs.. 8

Response Time ... 8
Availability ... 8
System Resources ... 8

Number of Replication Targets or Replication Quota............................ 9
Response Time ... 9
Availability ... 9
System Resources ... 9

Asynchronous and Synchronous Replication ... 10
Response Time ... 10
Availability ... 10
System Resources ... 10

When to Replicate... 11
Replication Tests ... 11

Multicast vs. Peer-to-Peer.. 11
Distributed vs. Co-located JVMs.. 11
Quota or Number of Replication Targets... 12
Asynchronous and Synchronous Replication ... 13

Scalability Recommendations .. 14
The cost of Replication.. 14
Scaling with Replication Pairs ... 15
Failover Planning .. 16

JVM Failure ... 16
OC4J Node Failure .. 17
OHS Failure .. 17

Other Scalability considerations ... 17
High Load Scenarios.. 17
Large Session Sizes... 18

Conclusion.. 18
Appendix A: Configuration Details .. 20

Hardware Configuration.. 20
HPUX Configuration... 20

Oracle J2EE State Replication Guidelines and Best Practices Page 2

Maximum Availability Architecture

Appendix C: Diagram of Actual Test Environment.................................. 23
Appendix D: JVM Configuration ... 24
Appendix C: Client, Servlet and JVM Configuration................................. 25

Oracle J2EE State Replication Guidelines and Best Practices Page 3

Maximum Availability Architecture

Oracle J2EE State Replication Guidelines and
Best Practices

EXECUTIVE SUMMARY
Oracle’s J2EE State Replication provides reliability for HTTP Sessions and their
associated objects. Application state held in memory by one instance of the
application can be configured to automatically be replicated to another instance of
the application. Should the first instance become unavailable, the replication
framework provides for transparent failover to another instance of the application
with the replicated session state.

The advantages of State Replication include application availability, transparent
failover and the load balancing provided by Oracle’s J2EE Cluster framework.
Oracle Application Server 10g R3 provides a standards-based, mission critical
platform for organizations planning their futures around reliable architectures.
Oracle Application Server 10g Release 3 has extended the State Replication features
of previous releases to provide the most scalable and fault-tolerant session
replication framewor with special empahsis on guarantied services, reliability,
ordering, fragmentation and group membership.

This paper addresses recommendation and best practices surrounding State
Replication for a stateful application at the Servlet/JSP layer (HTTP Session
replication1). It also demostrates how Oracle Applicatiion Server 10g R3 offers
practical linear scalability for stateful configurations and explains the different
replication options available. We also walk through all of the major configuration
parameters and discuss the impact and benefits of different replication settings on
Availability, Performance and System Resources.

Our tests and observations support the conclusion that enabling Replication adds
minimal overhead, is a fully scalable solution, and should be enabled in all cases
where an application’s session data is deemed critical.

1 Although state replication for Stateful Session Bean is also available and uses the same
replication framework as HTTPSessions in OracleAS 10g R3, it is not addressed nor
analyzed in this doc

Oracle J2EE State Replication Guidelines and Best Practices Page 4

Maximum Availability Architecture

INTRODUCTION
The decision to enable replication on a stateful application involves considering the
following questions:

1) What is the impact on my application if session state is lost?

2) How does state replication protect against loss of state and increase the
availability of my environment?

3) Will enabling state replication affect the performance of my application?

4) Will enabling state replication have an adverse effect on my system
resources?

Regarding the first question above: The impact of losing session information will
depend on the nature of the application. Sessions often are used to keep track of a
specific user’s progress through a series of pages or decisions. Loss of this data will
mean a reinitialization of all session state for all users.

The other questions posed above are the ones we address in this paper. That is,
what is the overall cost of replication and what are the effects of the different
replication options? How will this affect an existing application in terms of
performance, availability and resources?

The first part of this paper introduces a reference replication topology and defines
some basic terminology. Then we discuss the replication options with a short
discussion of their effect as well as our recommendations. The latter part of this
paper discusses some of the specific tests performed and presents some graphs of
our own test data which support the recommendations.

Scalability recommendations and observations follow, especially pertinent to high-
traffic or high-replication environments. Finally, the appendices include more
detailed information on our specific environment as well as details on our JVM
configuration.

REFERENCE REPLICATION TOPOLOGY
 Before proceeding to discuss the specifics of a J2EE Clustered Replication
environment, we introduce a typical topology for further reference.

Oracle J2EE State Replication Guidelines and Best Practices Page 5

Maximum Availability Architecture

Topology Components and Terminology

Load Balancer

We will use a Load Balancer to direct client requests to one of our OHS servers.
This will normally be configured with an HTTP-based health monitor to determine
which of the OHS Servers are available to serve requests.

Oracle HTTP Server (OHS)

The OHS Server accepts HTTP requests and then forwards the Servlet request to
one of the available OC4J Servers in the OPMN Topology.

Oracle Containers for Java (OC4J)

The OC4J Server accepts the request from one of the OHS Servers, processes the
request and returns the result to OHS.

An OC4J installation may be running one or more OC4J Instances. An Instance
may include 1 or more JVMs. In most cases (the notable exception being the
colocation tests) we ran with 1 OC4J instance with 1 JVM.

OPMN-based Topology

All of the OHS Servers and OC4J Servers are configured in a Multicast OPMN
Topology. Each of the OHS Servers can route to any of the OC4J Servers in the
diagram above. Membership in the topology is dynamic. If an OC4J Server is taken
down, it is removed from the OHS routing table. More OC4J Servers can also be
added by configuring OPMN parameters in the opmn.xml file.

Oracle J2EE State Replication Guidelines and Best Practices Page 6

Maximum Availability Architecture

Replication Cluster

A Replication Cluster is an OC4J clustering mechanism orthogonal to the OPMN
topology. In Oracle Application Server 10g Release 3 replication of state for J2EE
applications can be enabled both at the application and the container level thus
providing a more granular control of the replication scope.The OC4J Session
replication clusters and the OPMN topology are generally distinct except that:

1. A Replication Cluster can be a subset of an OPMN topology.

2. The OPMN topology can optionally be used as a discovery
mechanism for a Replication Cluster.

The OPMN configuration is used for dynamic routing of requests and dynamic
topology membership. The Replication cluster is used for propagating session state.
These two groups (OPMN topology and Replciation Cluster) use two distinct
communication channels.

REPLICATION CONFIGURATION OPTIONS
After making the initial choice to replicate session state, there are still a variety of
options to consider in how the replication is performed and in what circumstances.
Here we review some of the basic Replication Topologies and Configuration
Options.

Multicast vs. Peer-to-Peer
When configuring replication, three different network configuration options are
documented: Multicast, Dynamic Peer-to-Peer and Static Peer-to-Peer. The
differences among these three are:, briefly:

Multicast – Uses IP Multicast for replication. Each replicating host is configured
with the same multicast address. All hosts are then part of the same Replication
cluster.

Static Peer-to-Peer – Each host is configured with the IP address of one other
peer. As long as there is a chain of peers linking all hosts together, then a
Replication cluster is established. This unicast communication is used both for
discovery and for replication.

Dynamic Peer-to-Peer – In this configuration, Peers are discovered via the
OPMN Topology. This is only used for discovery. After the discovery phase, the
replication peer-to-peer cluster manages replication in the same manner as the static
peer-to-peer configuration described above.

There are trade-offs involved in choosing a replication clustering mechanism. The
introduction of Peer-to-Peer clustering was introduced in 10.1.3 to increase the
reliability (over UDP based multicast) of communications among the JVMs. The
recommendations in this paper apply to a peer-to-peer environment.

Oracle J2EE State Replication Guidelines and Best Practices Page 7

Maximum Availability Architecture

In stand-alone OC4J installation, the only peer-to-peer option available is static.
Otherwise, if OPMN is available (as in an Oracle AS instance installation), a
dynamic peer-to-peer cluster will be easier to configure and maintain and is the
recommended option.

If only static peer-to-peer is possible, the nodes should be configured in a ring
model so as to have a complete cluster even if a node is unavailable. For example,
in a 4 OC4J node configuration (A,B,C,D) the nodes should be configured so that
B is configured with A as a peer, C with B as a peer, D with C as a peer, and A with
D as a peer.

Distributed vs. Co-located JVMs
Replication can occur either to another JVM on the same machine and instance or
to a remote JVM on another node. The boolean parameter allow-colocation can
be set to allow or disallow local replication. The advantages and disadvantages of
replicating to a local JVM are outlined below:

Response Time

The difference between making a local replication request and one across the
network can be one of milliseconds, depending on the network speed. In most
cases this will be an insignificant extra overhead to the application.

In the case of default, asynchronous replication, our tests showed that the extra
latency in the request time stays fixed even as the amount of replicated state increases. That is, in
an asynchronous model, the only extra delay is in communicating with the remote
replication JVM, not in the actual transmission of state.

Availability

Replication provides greater Availability and protection against failures. Although a
JVM on the same machine protects against an application or JVM failure, it
provides no protection against failure of the entire node, if the JVM is only
replicating locally.

System Resources

Enabling Replication to another JVM effectively doubles the memory resource
requirements. Each JVM maintains its own session state as well as that of any other
JVMs which are sending session state to replicate. If both JVMs are on the same
machine then adding additional memory for a new JVM may not be feasible.

A remote JVM, however, will add to the network bandwidth requirements. This
scales linearly with the amount of state that is being replicated since all of the state must be
transported over the network. The impact of replication network traffic on
performance is described in the “Response Time” section above, with the caveat of
course that network bandwidth is not saturated.

Oracle J2EE State Replication Guidelines and Best Practices Page 8

Maximum Availability Architecture

Number of Replication Targets or Replication Quota
The number of other JVMs to replicate to is controlled by the parameter write-
quota with a default value of 1. Considerations of the optimum value for this
parameter should take the following into account:

Response Time

In asynchronous replication mode, state is sent to a remote JVM but there is no
wait for acknowledgment. In this case, sending state to multiple remote JVMs does
not noticeably increase the response time of a replication request. In the case of
comparing a write-quota of 1 and 2, no appreciable difference was found in the response time.
Since the session state is sent asynchronously, it can be quickly sent to any number
of external JVMs.

In synchronous replication, the application waits for acknowledgment from at least
one node, rather than all nodes which are receiving replicated state. So the addition
of more replication targets also does not add to the total response time.

This of course assumes sufficient system resources. More detail on this is in the
‘System Resources’ section below.

Availability

More replication targets increases the availability of the system. If the original JVM
fails, there is more than one other JVM which still holds the session state. On the
other hand, this can also be a matter of diminishing returns. If the write-quota is set
to 1 and the replication is occuring to a JVM on another node, it would take two
independent node failures for all session state to be lost.

In practice, this is an uncommon enough occurrence that a write-quota of 1, with
the target set as a remote node (allow_colocation=false) should be sufficient for
most purposes.

System Resources

A replication request produces both outbound network traffic, as the state of local
JVMs is sent to remote nodes, as well as inbound traffic, as remote state is received
locally. The amount of total traffic is proportional both to the amount of state
being replicated as well as the number of nodes involved in the replication.

The amount of inbound traffic during a specific time period, for example, can be
roughly calculated as:

I=Reqs*Wq*St

Where I is the total traffic, Reqs is the number of replication requests per
application instance during that time period, Wq is the write-quota and St is a factor
of the average size of the replicated Session state. That is, on a busy system with a
lot of replicated state, increasing the write-quota from 1 to 2 will double the traffic
and may or may not be acceptable.

Oracle J2EE State Replication Guidelines and Best Practices Page 9

Maximum Availability Architecture

Likewise, a JVM managing double the amount of session state is a JVM with
potentially increased memory requirements and more memory management
overhead – in the form of increased garbage collection activity for example.

It should be emphasized that these considerations should not come into play at all
in a system unless resources are otherwise constrained.

Asynchronous and Synchronous Replication
The default replication mode is asynchronous. The difference between
asynchronous and synchronous is in whether the application waits for an
acknowledgement from at least one replication target after the data has been sent.
In the asynchronous case, the application sends the data and continues with
application processing concurrently.

Again, we summarize the impact of this extra acknowledgment.

Response Time

Waiting for the acknowledgement does add to the total response time. This extra
time will not be large for small bits of state going across a fast network. In the cases
of an application with small, fast servlets, the effect of the extra overhead of
synchronous replication, on the order of milliseconds, may as much as double the
total response time. For larger more complex applications, the extra milliseconds to
wait for an acknowledgement may be negligible.

Availability

The advantage of synchronous replication is that it protects against inconsistencies
in the session when a failure happens before session state has been replicated to
another node.

Thus enabling synchronous replication does increase reliability, but only for a small
window. Both asynchronous and synchronous replication wait for an initial
acknowledgement from the remote host that it is available to receive data. So the
remote host must disappear in the window of time after which the remote host has
made an initial acknowledgement but during the transmission of data, while it has
not been completely received.

System Resources

Choosing to enable synchronous replication does not have an appreciable effect on
any system resources. The CPU time may be seen to be slightly lower for
synchronous replication since a small extra wait time has been added to the
application.

For most cases, the default asynchronous replication should provide sufficient
availability. Enabling synchronous replication does detract from the performance of
the application while covering a small availability window. Whether the trade-off
should be made will be an application-dependent decision.

Oracle J2EE State Replication Guidelines and Best Practices Page 10

Maximum Availability Architecture

When to Replicate
The default parameter for replication frequency is OnRequestEnd. This specifies
that replication occurs at the end of the request. The other options are
OnAttributeModify and OnShutdown. The latter option will only replicate if the
application is normally shutting down and thus will not protect against most
failures.

For all of our testing we have employed the option OnRequestEnd. From an
application perspective, the benefit of session replication is to hold and maintain
state between several independent requests. Replicating more frequently will have a
performance impact but, more importantly, may not produce data that is consistent
or usable since it was produced mid-request but now must also be valid at the
initiation of a request.

REPLICATION TESTS
The following sections delve into a bit more detail on the actual tests performed,
results obtained and motivation for the recommendations. These sections parallel
those in the previous section.

Multicast vs. Peer-to-Peer
Initial tests showed the variability of multicast communications to be not as relaible
as peer to peer for our testing purposes. That is, the distribution in latency for a
series of replication requests affected other variables we were interested in
exploring. And so, beyond a few initial tests, we chose to perform all further tests
using Peer-to-Peer replication.

Distributed vs. Co-located JVMs
The tests with colocated JVMs all involved a total of two JVMS, configured to
replicate to each other. This involved the following configurations:

1) Two Instances on the same machine, each instance with one JVM

2) One instance, configured with two identical JVMs

3) Two Instances, each on their own machine, each instance with one JVM.

The immediate impact of having two JVMs share the same machine is that this
situation is more likely to saturate the resources on that particular machine. This
assumes that the memory allocated to each JVM remains the same.

Regarding Availability, configuration 2) provides proteciton at the JVM level but
does not provide any protection against OracleAS instance nor node failure. On the
other hand, this configuraiton is very easy to manage by OracleAS (automatic port
allocation is done for the different JVMs by the instance) and provides a very
dynamic way to scale vertically (inside a node) . Configuration 1) will protect against
instance failure but will not protect against machine/network failure.

Oracle J2EE State Replication Guidelines and Best Practices Page 11

Maximum Availability Architecture

It was observed that the CPU requirements doubled when having two JVMs on the
same machine, as might be expected. Placing the JVMs in separate instances
requires slightly more resources. On a constrained system we expect that this will
have a strong adverse impact on performance.

What about an unconstrained system? In that case, we would expect the difference
to be that between local replication and replication across a network.

The graph below shows the response time, in milliseconds, of two different
configurations. In both these cases, all of the machines involved had sufficient
memory and CPU. In one case, however, the two JVMs are replicating to each
other locally. In the other case, the JVMs are replicating across a fast network.

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50

Sessions (k)

2 nodes, 2 JVMs
1 Node, 2 JVMs

The horizontal axis in the graph demonstrates the effect of increasing the amount
of state being replicated. Both configurations show an increase in response time,
presumably due also to the greater amount of work that the test servlet must do to
process more state. But the extra amount of replicated state does not increase the
amount of extra time required by the servlet.

It should be emphasized that these tests were performed on a system with
sufficient network bandwidth. The amount of bandwidth used does increase
linearly with the amount of state being replicated (refer to the previous section on
Replication Targets for rough calculations) and this will undoubtedly affect the
performance if the network is becoming saturated. It should be noted that
response time barely doubles for a configuration with almost 5 times the
size and number of sessions. This demonstrates a good workload adapation
by the replication framework in such a topology

Quota or Number of Replication Targets
Our tests found no noticeable additional overhead from replicating to multiple
targets other than the potential impact on network bandwidth. Since our tests were

Oracle J2EE State Replication Guidelines and Best Practices Page 12

Maximum Availability Architecture

performed on a system with sufficient resources, we saw no discernible difference
at all, as shown in the graph below.

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50

Session Size (k)

wq=1
wq=2

The test represented by the graph above was performed in an environment with
four different JVMs all configured with replication. In one case, each was
configured with a write-quota of 1, replicating state to one other JVM. In the
second case, the write-quota was set to 2, each JVM replicating to two other
JVMs.

The response time was also measured across a range of total replicated state size.
As can be seen above, within the bounds of normal variability in response times,
the two configurations had no impact on the total response time of the test servlet.
This is due to the fact that replication happens in paralell to the different members,
hence we can increase the realibility of the replication cluster (by increasing quota)
without a major impact in perfromance

Asynchronous and Synchronous Replication
The difference between synchronous and asynchronous replication is in whether
the originating JVM waits for acknowledgement that all data has been received by
at least one other JVM before proceeding. This also explains why increasing write-
quota is fairly benign – in that case, synchronous replication only waits for
acknowledgement from the first JVM to receive the data.

The wait time for the extra acknowledgement, however, will increase the response
time of the application. The amount of extra wait time will depend on the
application. In the chart below, we show response time as a function of total state
being replicated.

Oracle J2EE State Replication Guidelines and Best Practices Page 13

Maximum Availability Architecture

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50

Session Size (k)

async
sync

Enabling synchronous replication does add to the total response time as above.
However, this is on the order of milliseconds per request. In the case of our test
servlet which does very little other than replicate, this effectively doubles the
response time.

With the increase in the size of session state being replicated, the extra amount of
time increases. In general, the major driver for the impact of syncrhonous mode on
the perfromance of the system is the replication trigger (i.e. depending how many
times the session is replicated in an application, and how long the application takes
to process that info) the impact may be higher as the wait for acknowledge will
happen more often and the wait period will increase.

SCALABILITY RECOMMENDATIONS
The best practices involved in creating an appropriate replication topology will, to
some degree, be application dependent. Using our reference topology introduced
earlier we can make some observations about the impact of enabling replication,
recommendations on scaling out replication topologies as well as some remarks
about availability.

The cost of Replication
The graph below compares the response time of a small test application both with
replication enabled and replication disabled.

Oracle J2EE State Replication Guidelines and Best Practices Page 14

Maximum Availability Architecture

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50

Session Size (k)

no rep
rep

The graph above represents the measured response time of a small servlet. In this
case, we have used the default asynchronous replication, a write-quota of 1 and
peer-based replication.

The response time is a measured average of five concurrent clients over a sufficient
period after which the system has stabilized. The horizontal axis represents the
amount of replicated state. It is recommended not to use session sizes above a few
100kbs since this increases the perfromance impact and also the amount of data
loss in all cases.

This also represents a system with sufficient resources in terms of Memory, CPU
and bandwidth. The extra time added by asynchronous replication is processing
time.

Although the extra cost of replication does increase with more session state, the
average increase in processing time, especially for small amounts of state is on the
order of milliseconds per request.

Scaling with Replication Pairs
Scaling up an application involves the addition of more resources to handle the
load in a manner that is repeatable and ideally with no immediate limits.

With a write-quota of 1, each JVM is only replicating to one other JVM. This
naturally suggests the idea of replication pairs – pairs of JVMs which are replicating
to each other.

In the reference topology outlined in this paper, we have OC4J1 and OC4J2
replicating to each other. We can continue to add JVMs in pairs. Adding OC4J3
and OC4J4, for example, will create a new pair which replicate to each other.

Oracle J2EE State Replication Guidelines and Best Practices Page 15

Maximum Availability Architecture

The graph below shows the response time in a topology with 2 replicating JVMs
and a system with 4 JVMs.

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50

Session Size (k)

2 JVM
4 JVM

In an unconstrained system, we would expect the response time of an application
to remain the same when more resources are added. If the response time goes
down, then the system was constrained after all. If the response time goes up, we
expect that the addition of more resources has introduced overhead somehow.

Failover Planning
The greatest advantage of session replication is in protecting against outages. These
outages can take the form of process failures, or hardware or network failures.

Here we discuss some possible outages and how replication fails over the state in
each case:

JVM Failure

If a JVM crashes or is otherwise unavailable, it will be removed from the OPMN
Topology and also removed from the Replication cluster. Surviving JVMs will
reconfigure themselves to find a new replication destination.

Finding a new replication partner is best-effort. That is, if write-quota is set to 2 but
only one other surviving JVM exists, then replication will only occur to one
destination. Likewise, if a JVM is the only surviving JVM it will continue to
function and process data even though there is no replication destination available.
That is, the system will continue to function and will not hang or wait for the
designated number of replication partners.

If a previously unavailable JVM rejoins the cluster, the cluster will again reconfigure
itself to enable the requested number of replication destinations if this is possible.
In this model a node a JVM acts as a replication master that triggers replication to
meet quota as other members become avasilable. To trigger replication quota

Oracle J2EE State Replication Guidelines and Best Practices Page 16

Maximum Availability Architecture

fullfillment, it s necessary that the replica of the session is active (i.e. has been
accessed at least once in that node) by a user request

OC4J Node Failure

Tha failure of an entire machine, instead of just the OC4J processes, is similar to
the failure of just the JVM process. In both cases, the surviving nodes will
reconfigure themselves as described above.

In the case of a node failure, however, the wait time is longer before the node is
ejected from the Replication cluster. In this case the wait is on a TCP timeout of
the open connection between the now-dead node and the surviving nodes.

OHS Failure

Since OHS is the point of entry for the system, clients detect a failure of either the
process or the node immediately. In our reference architecture in this paper, we
have two OHS nodes. If one becomes available, the surviving OHS node is able to
perform the same routing as the unavailable one.

Other Scalability considerations

High Load Scenarios

The graph below shows the response time as we increase the load on the system –
both without replication and with replication enabled.

The horizontal axis represents the number of concurrent users, each making small
(1k) session requests. The vertical axis is the response time in millseconds.

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350

Concurrent Users

Rep
No Rep

Oracle J2EE State Replication Guidelines and Best Practices Page 17

Maximum Availability Architecture

Although our system appears to become erratic above 200 concurrent users, due to
the system becoming overloaded, there is no appreciable difference in the response
time of the application with or without replication enabled. Likewise, at high loads,
the response of a replication-enabled system does not reveal any scalability
concerns. This is as clear a demostration we were able to see that the OracleAS 10g
R3 replication framework is highly scalable.

Large Session Sizes

How does replication scale with larger session state sizes?

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200 250 300 350

Replicated Session Size

5 threads No Rep.
5 threads, rep.

The graph above shows the response time as a function of session size. Above a
state size of around 100k, the response time increases as a function of the state size,
rather than being a fixed overhead. At this point, the network bandwidth is
becoming heavily used but the increase appears to be linear. Still, response times are
increased in the order of fractions of a second for session increases of several
hundrd K, and there is an order of seconds impact difference between a session
replciation enabled system and a system where replication is not being used.

CONCLUSION
The costs of enabling J2EE State Replication have been outlined here in this paper.
From our tests and observations, we have determined that the additional cost of
enabling asynchronous replication is minimal both in terms of impact on
performance and required system resources and thus the overall scalability of the
replication system is extremely good.The gain in application availability justifies the
extra overhead for applications where it is relevant.

The parameters recommended for most cases are:

Asynchronous replication - Although synchronous replication offers greater
consistency guaranties than asynchronous, this may be a case of diminishing
returns.

Oracle J2EE State Replication Guidelines and Best Practices Page 18

Maximum Availability Architecture

Distributed JVMs – Only JVMs on different physical machines can protect against
network or machine failures. Dependeing on the scalability model required in a
system (horizontal vs. vertical) either one or the toher may be acceapble with the
trade offs describe in this document

One Replication Target – Although multiple replication targets can offer greater
protection without significant overhead, one replication target should be sufficient
for most cases.

Peer Replication – Peer replication can offer greater control for setting up a
replication topology. Coupled with Dynamic OPMN-based discovery, this is also a
manageable solution.

Oracle J2EE State Replication Guidelines and Best Practices Page 19

Maximum Availability Architecture

APPENDIX A: CONFIGURATION DETAILS

Hardware Configuration
[NOTE: Drivers and Application Servers were identical unless otherwise noted]

 HP Integrity rx2620 servers

o 2 x 1.6 GHz Single Core Processors

o 12 GB RAM

 2 x 146 GB internal disk drives

 HP-UX 11iV2 operating system software

o Patch Bundles: March 2006 Quality Pack; June 2006 HW
Enablement

o Java 1.5.0.03

 Networks:

o MP (Maintenance Port) 100TX

o Public 1GB

o Private 1GB (Dedicated Apps-Tier Load Balancer network for all
non-replication communication)

o Private 1GB (Dedicated Replication network for Apps-Tier)

HPUX Configuration
For most of the tests, HPUX 11v2 was used on all servers. Toward the end of this
investigation, one of the application servers was upgraded to HPUX 11v3., and
some baseline tests were rerun. The results showed that there was no difference in
performance between 11iV2 and 11iV3. The patch requirements for 11iV2 are
listed below. No additional patches were required for 11iV3. Also listed are the
kernel parameters, which are same for both 11iV2 and 11iV3.

HPUX 11iV2 Patches

PHCO_34944 pthread library cumulative patch
PHKL_34032 ksleep cumulative patch
PHSS_34444 assembler patch
PHSS_34445 milli cumulative patch
PHSS_34853 Math Library Cumulative Patch
PHSS_34858 linker + fdp cumulative patch
PHSS_34859 Integrity Unwind Library
PHSS_35045 Aries cumulative patch │

Oracle J2EE State Replication Guidelines and Best Practices Page 20

Maximum Availability Architecture

PHSS_35055 aC++ Runtime (IA: A.06.10, PA: A.03

HPUX Kernel Parameters

Parameter Name Value
cmc_plat_poll 15
create_fastlinks 1
dbc_max_pct 8
dbc_min_pct 8
default_disk_ir 1
fs_async 1
hfs_max_ra_blocks 20
hfs_max_revra_blocks 20
hfs_revra_per_disk 256
max_async_ports 768
max_thread_proc 2048
maxdsiz 4294963200
maxfiles 32768
maxfiles_lim 32768
maxssiz 401604608
maxtsiz 1073741824
maxuprc 3277
maxvgs 80
msgmap 5122
msgmax 32768
msgmnb 65536
msgseg 20480
msgssz 128
msgtql 5120
nfile 65536
ninode 8192
nkthread 16384
nproc 8192
npty 200
nstrpty 200
nswapdev 25
o_sync_is_o_dsync 1
scsi_max_qdepth 8
semmni 4096
semmns 8192
semmnu 4092
semume 512
shmmax 2000000000
shmmni 520
shmseg 512
STRMSGSZ 65535
swapmem_on 1

Oracle J2EE State Replication Guidelines and Best Practices Page 21

Maximum Availability Architecture

swchunk 8192
tcphashsz 32768
vps_ceiling 64

Oracle J2EE State Replication Guidelines and Best Practices Page 22

Maximum Availability Architecture

APPENDIX C: DIAGRAM OF ACTUAL TEST ENVIRONMENT

U ID D V D

hp
integr ity
r x2620- 2

0

1

2

Driver
HP Integrity rx2620

2x 1.6 GHz CPUs
12 GB RAM

HP-UX 11iv2 0609
HP-UX JVM 5.0.03

JMeter 2.2

2 x OHS Servers
HP Integrity rx2620

2x 1.6 GHz CPUs;
12 GB RAM

HP-UX 11iv2 0609
HP-UX JVM 5.0.03

F5 BIG-IP Model 1500
SW Version: 9.2.3

BIG-IP – LB VLAN

4 x Application Servers
HP Integrity rx2620

2x 1.6 GHz CPUs;
12 GB RAM

HP-UX 11iv2 0609
HP-UX JVM 5.0.03

OC4J 10.1.3.0.3

Switch
ProCurve 2848

Load Balancer VLAN
Back EndVLAN

LEGEND
1 Gigabit Load Balancer LAN

1 Gigabit Replication VLAN

Oracle J2EE State Replication Guidelines and Best Practices Page 23

Maximum Availability Architecture

APPENDIX D: JVM CONFIGURATION
The HP Java 1.5 was used for all of the testing. However two different patch
releases were used. Most of the testing was done using the version that is shipped
with AS 10.1.3.x:, java version "1.5.0.03"

However a series of baseline tests were run using the latest version of the HP
Java, java version "1.5.0.08". The tests using the newer version showed similar
performance characteristics.

In addition to varying the JVM version, we also varied the JVM parameters. Most
runs were performed with the following set of parameters:

-server -Xmx3000m -Xms3000m -Xmn2000m -XX:PermSize=48m -
Xverbosegc:file=/tmp/gcfile -
Djava.security.policy=$ORACLE_HOME/j2ee/project/config/java2.policy -
Djava.awt.headless=true -Dhttp.webdir.enable=false

However test runs were also performed with the full set of performance related
parameters that had been used for SpecJAppServer2004 benchmarks (see

http://www.spec.org/osg/jAppServer2004/results/res2007q1/jAppServer2004-
20070130-00054.html

Perhaps because there were sufficient system resources for all runs, these additional
parameters did not result in any performance improvements.

There was sufficient memory so as not to produce any distractions for memory
management issues such as JVM Garbage collection. Tuning for a resource
constrained environment was not the focus of these tests

Oracle J2EE State Replication Guidelines and Best Practices Page 24

http://www.spec.org/osg/jAppServer2004/results/res2007q1/jAppServer2004-20070130-00054.html
http://www.spec.org/osg/jAppServer2004/results/res2007q1/jAppServer2004-20070130-00054.html

Maximum Availability Architecture

APPENDIX C: CLIENT, SERVLET AND JVM CONFIGURATION

The Servlet used for the test environment provided three functions:

1) Create state

2) Process state

3) Destroy state

A typical call to the servlet was of the form:

http://host:port/Session/Session?mode=initialize&number=2&size=5

This example would create 2 session objects, each 5k in size. The process function
loops through all the session objects, modifying the value of each one. The final
function releases all of the session objects.

The calling clients were emulated using Apache’s Jmeter. Typical runs were 5
threads each implementing the functions above, processing 4 times before
destroying the state. There was no think time. The measured response times
presented in this paper were gathered by averaging the reported output values from
Jmeter .jtl files over the course of 10k-20k runs per thread. The resulting average is
a mean value, calculated after discarding the first 20% of the run (to correct for any
initialization issues and get a steady state value).

The JVM parameters used in these runs was:

-server -Xmx3000m -Xms3000m -Xmn2000m -XX:PermSize=48m -
Xverbosegc:file=/tmp/gcfile -
Djava.security.policy=$ORACLE_HOME/j2ee/project/config/java2.policy -
Djava.awt.headless=true -Dhttp.webdir.enable=false

This was sufficient memory so as not to produce any distractions for memory
management issues such as JVM Garbage collection since that was not the focus of
these tests. The output gc file was used to verify that this was the case.

Oracle J2EE State Replication Guidelines and Best Practices Page 25

http://host:port/Session/Session?mode=initialize&number=2&size=5

Oracle J2EE State Replication Guidelines and Best Practices
October 2007
Author: Richard Delval
Contributing Authors: Pradeep Bhat, Fermin Castro, Bill Cortright

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

Copyright © 2005, Oracle. All rights reserved.
This document is provided for information purposes only and the
contents hereof are subject to change without notice.
This document is not warranted to be error-free, nor subject to any
other warranties or conditions, whether expressed orally or implied
in law, including implied warranties and conditions of merchantability
or fitness for a particular purpose. We specifically disclaim any
liability with respect to this document and no contractual obligations
are formed either directly or indirectly by this document. This document
may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.
Oracle, JD Edwards, and PeopleSoft are registered trademarks of
Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

Oracle J2EE State Replication Guidelines and Best Practices Page 26

