

NoSQL Database for Mobile Social Gaming

Introduction
The explosive growth in smart devices has enabled a new class of collaborative online gaming applications, also

known as “Social Gaming.” This class of gaming applications allows users to quickly launch a game, connect to a

server, and collaborate with other players that are online. For example, consider a game that presents online

users a virtual world for exploration where they may encounter other like-minded users along their journey and

interact with them. Given the potential scale of such a system (i.e. millions of users with billions of interactions)

and the latency requirements of game play, a distributed low latency and linear scale solution is needed.

How it works
In a typical online game, players will acquire “items” as they achieve certain milestones during game play. In

addition to item acquisition, social gaming adds another dimension to the game play experience. That is, online

players may interact with each other within the virtual world. For example, when a player navigates to a

location in the virtual world, the value of the X/Y coordinates on the player’s canvas is transmitted to the server.

Correspondingly, the client device will request information about other players’ avatars that are within a

specified pixel range of the player. A list of avatar images and player names that are within pixel range of the

user will then be returned to the client application. The player can then choose to interact with the player by

either sending the player a chat request or challenging the player to an interactive mini-game.

Hence, developers of such social gaming applications are concerned with the following issues:

 Mass and Scale – Due to the ubiquitous nature of smart devices, the number of online players may be

extremely large. Furthermore, game developers require a store that can easily scale out horizontally

without a large development investment in database sharding (typically a complex design and

implementation effort to partition the RDBMS workload for horizontal scaling).

 Iterative development and “schema-less” store – Delivering new game features at a high rate of velocity

requires a flexible store that can easily accommodate changes without requiring a large development

effort, especially when these changes must scale out horizontally.

 Write-intensive workload with low latency – Interaction with an online game must not be perceived by

the player as sluggish; hence the latency requirements for servicing client events are extremely

aggressive (< 30ms). Furthermore, the online gaming workload can be characterized by a very high

degree of writes (item acquisition, avatar movement, and player stat updates) with a large majority of

reads being cached at game instantiation time.

Figure 1 depicts a simplified architecture for a mobile game solution. Mobile clients will connect to HTTP

servers to write X/Y coordinate moves of avatars, update player statistics (coins earned), and retrieve the

X/Y coordinates of other players’ avatars that are currently in game. The Oracle NoSQL database provides

an extremely compelling solution in this space due to its following features;

 Schema-less store – A key-value store enables the game developer to move quickly with new

functionality without having to expend effort on RDBMS mapping, serialization, and functional

sharding.

 Low latency operations – The Oracle NoSQL database delivers extremely low latency write

operations while maintaining the ability to horizontally scale to meet throughput requirements.

 Scale without coding – The Oracle NoSQL database enables the game developer to quickly scale out

their application without the design and implementation effort to distribute the workload across

multiple DBMS instances.

Other data management and processing
Complementing the Oracle NoSQL architecture is the Oracle RDBMS that is critical to the overall solution. Game

development organizations must have ad hoc reporting visibility into the health of the business. As depicted in

Figure 1, we see the relational database management system serving up real-time, ad hoc reporting. This critical

solution component enables the game distributor to ask the following business questions:

 How many unique users per month are interacting with the game?

 How is the game performing from a revenue perspective by geography, quarter over quarter, year to

date?

 What is the rate of growth for user acquisition?

In summary, the distributed Key-Value store and the relational database management system work together in

order to provide important business value for massive-scale, low-latency, and high-velocity development in the

mobile social gaming space.

Figure 1: Social Gaming Architecture

