Oracle R Technologies Logo Oracle R Technologies Icon

Oracle has adopted R as a language and environment to support Statisticians, Data Analysts, and Data Scientists in performing statistical data analysis and advanced analytics, as well as generating sophisticated graphics. In addressing the enterprise and the need to analyze Big Data, Oracle provides R integration through four key technologies:

website icon Oracle R Distribution

Oracle's supported redistribution of open source R, provided as a free download from Oracle, enhanced with dynamic loading of high performance linear algebra libraries.

website icon Oracle R Enterprise

Integration of R with Oracle Database. A component of the Oracle Advanced Analytics Option. Oracle R Enterprise makes the open source R statistical programming language and environment ready for the enterprise with scalability, performance, and ease of production deployment.

website icon Oracle R Advanced
           Analytics for Hadoop

High performance native access to the Hadoop Distributed File System (HDFS) and MapReduce programming framework for R users. Oracle R Advanced Analytics for Hadoop is a component of Oracle Big Data Connectors software suite.

website icon ROracle

An open source R package, maintained by Oracle and enhanced to use the Oracle Call Interface (OCI) libraries to handle database connections - providing a high-performance, native C-language interface to Oracle Database.

Why Oracle for Advanced Analytics? 

If you're an enterprise company, chances are you have your data in an Oracle database. You chose Oracle for it's global reputation at providing the best software products (and now engineered systems) to support your organization. Oracle database is known for stellar performance and scalability, and Oracle delivers world class support.

If your data is already in Oracle Database or moving in that direction, leverage the high performance computing environment of the database to analyze your data. Traditionally it was common practice to move data to separate analytic servers for the explicit purpose of model building. This is no longer necessary nor is it scalable as your organization seeks to deliver value from Big Data. Oracle database now has several state of the art algorithms that execute in a parallel and distributed architecture directly in-database and augmented by custom algorithms in the R statistical programming language. Leveraging Oracle database for Advanced Analytics has benefits including:

  • Eliminates data movement to analytic servers
  • Enables analysis of all data not just samples
  • Puts your database infrastructure to even greater use
  • Eliminates impedance mismatch in the form of model translation when operationalizing models
  • All aspects of modeling and deployment are optionally available via SQL making integration into other IT software
  • Leverage CRAN algorithms directly in the database

Customers such as Stubhub, dunnhumby, CERN OpenLab, Financiera Uno, Turkcell, and others leverage Oracle Advanced Analytics to scale their applications, simplify their analytics architecture, and reduce time to market of predictive models from weeks to hours or even minutes.

Oracle leverages its own advanced analytics products, for example, by using Oracle Advanced Analytics in a wide range of Oracle Applications and internal deployments, ranging from:

  • Human Capital Management with Predictive Workforce to produce employee turnover, performance prediction, and "what if" analysis
  • Customer Relationship Management with Sales Prediction Engine to predict sales opportunities, what to sell, how much, and when
  • Supply Chain Management with Spend Classification to flag non-compliance or anomalies in expense submissions
  • Retail Analytics with Oracle Retail Customer Analytics to perform shopping cart analysis and next best offers
  • Oracle Financial Services Analytic Applications to enable quantitative analysts in credit risk management divisions to author rules/models directly in R

Oracle wants you to be successful with advanced analytics. Working closely with customers to integrate Oracle Advanced Analytics as an integral process of their analytics strategy, customers are able to put their advanced analytics into production much faster.

Oracle's Strategy for Advanced Analytics 

At Oracle our goal is to enable you to get timely insight from all of your data. We continuously enhance our database to allow workloads that have traditionally required data to be extracted out of the database to run in-place. We do this to narrow the gap that exists between insights that can be obtained and available data - because any data movement introduces latencies not to mention moving parts and the ensuing need for data reconciliation and governance not to mention the cost. We try to be inclusive of all types of enterprise users - users that prefer GUI based access to analytics with lots of defaults and heuristics out of the box, users that chose to work interactively and quantitatively with data using R and users that prefer SQL and focus on operationalization of models.

Oracle recognized the need to support data analysts, statisticians, and data scientists with a widely used and rapidly growing statistical programming. Oracle chose R - recognizing it as the new de facto standard for computational statistics and advanced analytics. Oracle supports R in at least 3 ways:

  • R as the language of interaction with the database
  • R as the language in which analytics can be written and executed in the database as a high performance computing platform
  • R as the language in which several native high performance analytics have been written that execute in database

Additionally, of course, you may chose to leverage any of the CRAN algorithms to also execute in-database leveraging several forms of data parallelism.

Providing the first and only supported commercial distribution of R from an established company, Oracle released Oracle R Distribution. In 2012 Oracle embarked on the Hadoop journey acknowledging alternative data management options emerging in the open source for management of unstructured or not-yet-structured data. In keeping with our strategy of delivering analytics close to where data is stored, Oracle extended Advanced Analytics capabilities to execute on HDFS resident data in Hadoop environments. R has been integrated into Hadoop in exactly the same manner as it has been with the database.

Realizing that data is stored in both database and non-database environment, Oracle provides users options for storing their data (in Oracle Database, HDFS, and Spark RDD), where to perform computations (in-database or the Hadoop cluster), and where results should be stored (Oracle Database or HDFS). Users can write R scripts that can be leveraged across database and Hadoop environments. Oracle Database, as a preferred location for storing R scripts, data, and result objects, provides a real-time scoring and deployment platform. It is also easy to create a model factory environment with authorization, roles, and privileges, combined with auditing, backup, recovery, and security.

Oracle provides a common infrastructure that supports both in-database and custom R algorithms. Oracle also provides an integrated GUI for business users. Oracle provides both R-based access and GUI-based access to in-database analytics. A major part of Oracle's strategy is to maintain agility in our portfolio of supported techniques - being responsive to customer needs.

customer-icon Customer Video Stories


NEW! dunnhumby Delivers for Its Clients with Oracle Big Data and Oracle Advanced Analytics

Hear how dunnhumby can support its global clients better by using Big Data Appliance and Exadata. By viewing 100% of the data, dunnhumby can now understand what is driving its business in order to build increased loyalty with its customers, while using R language to run Advanced Analytics on both Big Data and the Oracle Database..
Posted: 18 Nov, 2014

NEW! StubHub Taps into Big Data for Insight into Millions of Customers' Ticket-Buying Patterns, Fraud Detection, and Optimized Ticket Prices

What can you use for a comprehensive platform for real-time analytics? How do you drive company growth to leverage actions of millions of customers? How can you process big data volumes for near-real-time recommendations and dramatically reduce fraud?. Read what Stubhub achieved with Oracle R Enterprise from the Oracle Advanced Analytics option to Oracle Database here.
Posted: 13 Aug, 2014

dunnhumby Increases Customer Loyalty with Oracle Big Data and Oracle Advanced Analytics

Hear how dunnhumby strengthened its competitive advantage, consolidated and centralized its data, and benefitted from better analysis increasing customer loyalty using Oracle Advanced Analytics and Oracle Exadata, and ZFS Backup Appliance. Read more about this great story here.
Posted: 03 Dec, 2013