
Session 2a:
Oracle Machine Learning for R
Transparency Layer - dplyr

Mark Hornick, Senior Director

Oracle Machine Learning Product Management

November 2020

Safe harbor statement

The following is intended to outline our general product direction. It is intended for information
purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any
material, code, or functionality, and should not be relied upon in making purchasing decisions. The
development, release, timing, and pricing of any features or functionality described for Oracle’s
products may change and remains at the sole discretion of Oracle Corporation.

Copyright © 2020 Oracle and/or its affiliates.

Agenda

1

2

3

What is dplyr?

Functionality of OREdplyr

Examples using OREdplyr

Copyright © 2020 Oracle and/or its affiliates.

What is dplyr?

Copyright © 2020 Oracle and/or its affiliates.

What is dplyr?

A grammar for data manipulation

An R package that provides fast, consistent tool for working with
data frame like objects, both in memory and out of memory

Operates on data.frame or numeric vector objects

Widely used package that also interfaces to database management systems

https://cran.r-project.org/web/packages/dplyr/index.html

dplyr + Oracle Database via OML4R…

Copyright © 2020 Oracle and/or its affiliates.

https://cran.r-project.org/web/packages/dplyr/index.html
https://cran.r-project.org/web/packages/dplyr/index.html

OREdplyr

A subset of dplyr functionality extending ORE transparency layer

Use ore.frames instead of data.frames for in-database execution

Avoid costly movement of data

Scale to larger data volumes since not constrained by R Client memory

Copyright © 2020 Oracle and/or its affiliates.

Functionality of OREdplyr

Copyright © 2020 Oracle and/or its affiliates.

OREdplyr functions in ORE 1.5.1

OREdplyr functionality maps closely to CRAN dplyr package,
e.g., function and args

OREdplyr operates on ore.frame or ore.numeric objects

Functions support non-standard evaluation (NSE) and
standard evaluation (SE) interface

• Difference noted with a _ at the end of function name, e.g.,
- NSE  select, filter, arrange, mutate, transmute

- SE  select_, filter_, arrange_, mutate_, transmute_

• NSE interface is good for interactive use while SE ones are convenient for programming

• See https://cran.r-project.org/web/packages/dplyr/vignettes/programming.html for details

Copyright © 2020 Oracle and/or its affiliates.

https://cran.r-project.org/web/packages/dplyr/vignettes/programming.html

OREdplyr functions by category

Data manipulation
• select, filter, arrange, rename, mutate, transmute, distinct, slice, desc, select_, filter_, arrange_,

rename_, mutate_, transmute_ , distinct_, slice_, inner_join, left_join, right_join, full_join

Grouping
• group_by, groups, ungroup, group_size, n_groups, group_by_

Aggregation
• summarise, summarise_, tally, count, count_

Sampling
• sample_n, sample_frac

Ranking
• row_number, min_rank, dense_rank, percent_rank, cume_dist, ntile, nth, first, last, n_distinct,

top_n

Copyright © 2020 Oracle and/or its affiliates.

Examples using OREdplyr

Content adapted from original dplyr vignettes (e.g., link)

Copyright © 2020 Oracle and/or its affiliates.

https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html

Examples: basic operations
library(OREdplyr)

library(nycflights13) # contains data sets

Import data to Oracle Database

ore.drop("FLIGHTS") # remove database table, if exists

create table from data.frame

ore.create(as.data.frame(flights), table="FLIGHTS")

dim(FLIGHTS) # get # rows and # columns

names(FLIGHTS) # view names of columns

head(FLIGHTS) # verify data.frame appears as expected

Basic operations

select(FLIGHTS, year, month, day, dep_delay, arr_delay)

%>% head() # select columns

select(FLIGHTS, -year,-month, -day)

%>% head() # exclude columns

Copyright © 2020 Oracle and/or its affiliates.

select(FLIGHTS, tail_num = tailnum)

%>% head() # rename columns, but drops others

rename(FLIGHTS, tail_num = tailnum)

%>% head() # rename columns

filter(FLIGHTS, month == 1, day == 1)

%>% head() # filter rows

filter(FLIGHTS, dep_delay > 240) %>% head()

filter(FLIGHTS, month == 1 | month == 2) %>% head()

arrange(FLIGHTS, year, month, day)

%>% head() # sort rows by specified columns

arrange(FLIGHTS, desc(arr_delay))

%>% head() # sort in descending order

distinct(FLIGHTS, tailnum)

%>% head() # see distinct values

distinct(FLIGHTS, origin, dest)

%>% head() # see distinct pairs

Examples: basic operations
mutate(FLIGHTS, speed = air_time / distance)

%>% head() # compute and add new columns

mutate(FLIGHTS, # keeps existing columns

gain = arr_delay - dep_delay,

speed = distance / air_time * 60) %>% head()

transmute(FLIGHTS, # only keeps new computed columns

gain = arr_delay - dep_delay,

gain_per_hour = (arr_delay - dep_delay) / (air_time / 60))

%>% head()

summarise(FLIGHTS, # aggregates the specified column values

mean_delay = mean(dep_time,na.rm=TRUE),

min_delay = min(dep_time,na.rm=TRUE),

max_delay = max(dep_time,na.rm=TRUE),

sd_delay = sd(dep_time,na.rm=TRUE))

Row indexing requires setting row.names or have primary key

FLIGHTS[1,] # Fails

row.names(FLIGHTS) <- FLIGHTS$tailnum

FLIGHTS[1,]

set row.names

 # Succeeds

requires ordered ore.frame, returns specified rows

slice(FLIGHTS, 10:20)

sample_n(FLIGHTS, 10) # take a random sample of N rows

dim(sample_frac(FLIGHTS, 0.01)) # take a random sample of p %

take a random sample of N rows with replacement

sample_n(FLIGHTS, 10, replace = TRUE)

Copyright © 2020 Oracle and/or its affiliates.

Examples
IRIS <- ore.push(iris)

select specified columns

names(select(IRIS, Petal.Length))

names(select(IRIS, petal_length = Petal.Length))

drop specified column

names(select(IRIS, -Petal.Length))

names(select_(IRIS, ~Petal.Length))

names(select_(IRIS, petal_length = quote(Petal.Length)))

names(select_(IRIS, .dots = list("-Petal.Length")))

rename() keeps all variables

names(rename(IRIS, petal_length = Petal.Length))

Programming with select

head(select_(IRIS, ~Petal.Length))

head(select_(IRIS, "Petal.Length"))

head(select_(IRIS, quote(-Petal.Length),

quote(-Petal.Width)))

head(select_(IRIS, .dots = list(quote(-Petal.Length),

quote(-Petal.Width))))

Copyright © 2020 Oracle and/or its affiliates.

arrange ore.frame

MTCARS <- ore.push(mtcars)

arrange(MTCARS, cyl, disp)

arrange(MTCARS, desc(disp))

filter ore.frame

head(filter(MTCARS, cyl == 8))

head(filter(MTCARS, cyl < 6))

Multiple criteria

head(filter(MTCARS, cyl < 6 & vs == 1))

head(filter(MTCARS, cyl < 6 | vs == 1))

Multiple arguments are equivalent to and

head(filter(MTCARS, cyl < 6, vs == 1))

head(mutate(MTCARS, displ_l = disp / 61.0237))

head(transmute(MTCARS, displ_l = disp / 61.0237))

head(mutate(MTCARS, cyl = NULL))

head(mutate(MTCARS, cyl = NULL, hp = NULL,

displ_l = disp / 61.0237))

Examples
MTCARS <- ore.push(mtcars)

by_cyl <- group_by(MTCARS, cyl)

arrange(summarise(by_cyl, mean(disp), mean(hp)), cyl)

summarise drops one layer of grouping

by_vs_am <- group_by(MTCARS, vs, am)

by_vs <- summarise(by_vs_am, n = n())

arrange(by_vs, vs, am)

arrange(summarise(by_vs, n = sum(n_CNT)), vs)

remove grouping

summarise(ungroup(by_vs), n = sum(n_CNT))

group by expressions with mutate

arrange(group_size(group_by(mutate(MTCARS,

vsam = vs + am),

vsam)), vsam)

rename the grouping column

groups(rename(group_by(MTCARS, vs), vs2 = vs))

Copyright © 2020 Oracle and/or its affiliates.

add more grouping columns

groups(group_by(by_cyl, vs, am))

groups(group_by(by_cyl, vs, am, add = TRUE))

Duplicate groups are dropped

groups(group_by(by_cyl, cyl, cyl))

library(magrittr)

by_cyl_gear_carb <- MTCARS %>% group_by(cyl, gear, carb)

n_groups(by_cyl_gear_carb)

arrange(group_size(by_cyl_gear_carb), cyl, gear, carb)

by_cyl <- MTCARS %>% group_by(cyl)

number of groups

n_groups(by_cyl)

size of each group

arrange(group_size(by_cyl), cyl)

Examples: stacking and grouping
Stacking operations - lazy evaluation

c1 <- filter(FLIGHTS, year == 2013, month == 1, day == 1)

c2 <- select(c1, year, month, day,

carrier, dep_delay, air_time, distance)

c3 <- mutate(c2,

speed = distance / air_time * 60) # compute col

c4 <- arrange(c3, year, month, day, carrier) # sort result

head(c4)

dim(c4)

class(c4)

#-- Retrieve all data to a local data.frame

c4_local <- ore.pull(c4) # as opposed to 'collect' from dplyr

dim(c4_local)

class(c4_local)

Grouping

by_tailnum <- group_by(FLIGHTS, tailnum)

head(by_tailnum)

For each tailnum, compute count, avg distance, arrival delay

delay <- summarise(by_tailnum,

count = n(),

dist = mean(distance,na.rm=TRUE),

delay = mean(arr_delay,na.rm=TRUE)

 # group by tailnum

)

head(delay)

filter rows by count and distance

delay <- filter(delay, count > 20, dist < 2000)

head(delay)

Copyright © 2020 Oracle and/or its affiliates.

Examples: grouping, etc.
library(ggplot2)

delay.local <- ore.pull (delay) # pull data to client to

generate plot

ggplot(delay.local, aes(dist, delay)) +

geom_point(aes(size = count), alpha = 1/2, color='green') +

geom_smooth() +

scale_size_area()

Group by year and month

monthly <- group_by(FLIGHTS, year, month)

Find the most and least delayed flight each month

bestworst <- monthly %>%

select(year, month, flight, arr_delay) %>%

filter(min_rank(arr_delay) == 1 |

min_rank(desc(arr_delay)) == 1)

bestworst %>% arrange(month, arr_delay)

Copyright © 2020 Oracle and/or its affiliates.

Rank each flight within the month

ranked <- monthly %>%

select(arr_delay,year,month) %>%

mutate(rank = rank(desc(arr_delay)))

head(ranked)

class(ranked)

ranked_sorted <- arrange(ranked, rank) # sort data by rank

head(ranked_sorted)

destinations <- group_by(FLIGHTS, dest) # group by destination

destinations %>% transmute(dest, planes = dense_rank(tailnum))

%>% top_n(1) %>% unique

determine # flights/day

daily <- group_by(FLIGHTS, year, month, day)

per_day <- summarise(daily, flights = n())

head(per_day)

number of flights per month

(per_month <- summarise(per_day, flights = sum(flights)))

number of flights per year

(per_year <- summarise(per_month, flights = sum(flights)))

Examples: chaining
a1 <- group_by(FLIGHTS, year, month, day)

a2 <- select(a1, arr_delay, dep_delay)

a3 <- summarise(a2,

arr = mean(arr_delay, na.rm = TRUE),

dep = mean(dep_delay, na.rm = TRUE))

a4 <- filter(a3, arr > 30 | dep > 30)

head(a4)

res <- filter(

summarise(

select(

group_by(FLIGHTS, year, month, day),

arr_delay, dep_delay),

arr = mean(arr_delay, na.rm = TRUE),

dep = mean(dep_delay, na.rm = TRUE)),

arr > 30 | dep > 30)

head(res)

res <- FLIGHTS %>%

group_by(year, month, day) %>%

select(arr_delay, dep_delay) %>%

summarise(

arr = mean(arr_delay, na.rm = TRUE),

dep = mean(dep_delay, na.rm = TRUE)

) %>%

filter(arr > 30 | dep > 30)

head(res)

Copyright © 2020 Oracle and/or its affiliates.

Examples: tally and count
Tally and count

ore.drop("MTCARS")

ore.create(mtcars, table="MTCARS")

count cars by # cylinders, sort by # cylinders

arrange(tally(group_by(MTCARS, cyl)), cyl)

same, but sort by count

tally(group_by(MTCARS, cyl), sort = TRUE)

#-- Multiple tallys progressively roll up the groups

cyl_by_gear <- tally(group_by(MTCARS, cyl, gear), sort = TRUE)

tally(cyl_by_gear, sort = TRUE)

tally(tally(cyl_by_gear))

cyl_by_gear <- tally(group_by(MTCARS, cyl, gear),

wt = hp, sort = TRUE)

tally(cyl_by_gear, sort = TRUE)

tally(tally(cyl_by_gear))

cyl_by_gear <- count(MTCARS, cyl, gear, wt = hp + mpg,

sort = TRUE)

tally(cyl_by_gear, sort = TRUE)

tally(tally(cyl_by_gear))

MTCARS %>% group_by(cyl) %>% tally(sort = TRUE)

count is more succinct and performs grouping

MTCARS %>% count(cyl) %>% arrange(cyl)

MTCARS %>% count(cyl, wt = hp) %>% arrange(cyl)

MTCARS[MTCARS$cyl==4, "hp"]

sum(MTCARS[MTCARS$cyl==4, "hp"])

MTCARS %>% count_("cyl", wt = hp, sort = TRUE)

Copyright © 2020 Oracle and/or its affiliates.

Examples: tally and count
#-- Grouped tally

tally(group_by(FLIGHTS, month)) # count of flights per month

tally(group_by(FLIGHTS, month), sort = TRUE) # sorted by count

#-- Nested tally invocations progressively roll up the groups

origin_by_month <- tally(group_by(FLIGHTS, origin, month),

sort = TRUE)

tally(origin_by_month, sort = TRUE)

tally(tally(origin_by_month))

Use the infix %>% operator

FLIGHTS %>% group_by(month) %>% tally(sort = TRUE)

count is more succinct - also does grouping

FLIGHTS %>% count(month,sort=TRUE)

Non-Standard Evaluation (NSE) vs Standard Evaluation (SE)

NSE version:

summarise(MTCARS, mean(mpg))

SE versions:

summarise_(MTCARS, ~mean(mpg))

summarise_(MTCARS, quote(mean(mpg)))

summarise_(MTCARS, "mean(mpg)")

n <- 10

dots <- list(~mean(mpg), ~n)

summarise_(MTCARS, .dots = dots)

Copyright © 2020 Oracle and/or its affiliates.

Examples: two table functions – joins
create the needed tables from the nycflights13 data sets

ore.drop("AIRLINES")

ore.create(as.data.frame(airlines), table="AIRLINES")

ore.drop("WEATHER")

ore.create(as.data.frame(weather), table="WEATHER")

ore.drop("PLANES")

ore.create(as.data.frame(planes), table="PLANES")

ore.drop("AIRPORTS")

ore.create(as.data.frame(airports), table="AIRPORTS")

#-- select subset of columns for the following examples

flights2 <- FLIGHTS %>% select(year,month,day, hour,

origin, dest, tailnum, carrier)

head(flights2)

dim(flights2)

create a database table index, if desired

ore.exec('CREATE INDEX carrier_idx on FLIGHTS("carrier")')

joins on carrier - "natural join“

res <- flights2 %>% left_join(AIRLINES)

dim(res)

joins on year, month, day, origin - "natural join“

res <- flights2 %>% left_join(WEATHER)

dim(res)

specify column to join by

res <- flights2 %>% left_join(PLANES, by = "tailnum")

dim(res)

specify which columns to join

res <- flights2 %>% left_join(AIRPORTS, c("dest" = "faa"))

dim(res)

join on origin instead of dest

res <- flights2 %>% left_join(AIRPORTS, c("origin" = "faa"))

dim(res)

Copyright © 2020 Oracle and/or its affiliates.

Examples: other join-related functions
(df1 <- data_frame(x = c(1, 2), y = 2:1)) # create some data

(df2 <- data_frame(x = c(1, 3), a = 10, b = "a"))

store in the database as tables

ore.drop("DF1")

ore.create(as.data.frame(df1), table="DF1")

ore.drop("DF2")

ore.create(as.data.frame(df2), table="DF2")

returns rows when there is a match in both tables

DF1 %>% inner_join(DF2)

returns all rows from the left table,

even if no matches in the right table

DF1 %>% left_join(DF2)

returns all rows from the right table,

even if no matches in the right table

DF1 %>% right_join(DF2)

swap the tables and see different,

but similar results on a per row basis

DF2 %>% left_join(DF1)

returns all rows from the left and right tables.

Combines the result of both LEFT and RIGHT joins

DF1 %>% full_join(DF2)

Copyright © 2020 Oracle and/or its affiliates.

OREdplyr caveats

‘:’ not supported for range of column specification, e.g., V1:V10

Variables cannot be referenced within a mutate() and transmute()

• Restate computation where needed

Functions supported for summarise when using grouped ore.frame

• 'min', 'mean', 'max', 'median', 'length', 'IQR', 'prod', 'sum',
'range', 'quantile', 'fivenum', 'summary', 'sd','var', 'all', 'any‘

n_distinct()

• Works with non-grouped ore.frame

• Not supported for summarise with grouped ore.frame
- Work around: use dense_rank, top_n, and unique

compute number of distinct planes over destination
destinations %>% transmute(dest, planes = dense_rank(tailnum)) %>% top_n(1) %>% unique

filter() does not apply non-ranking function per group

Use ore.pull instead of dplyr collect

Copyright © 2020 Oracle and/or its affiliates.

Summary

OREdplyr provides a subset of dplyr functionality working with ore.frames

Use popular API conveniently with Oracle Database tables

Avoid costly movement of data

Scale to larger data volumes since not constrained by R Client memory

Use Oracle Database as high performance compute engine

Copyright © 2020 Oracle and/or its affiliates.

 For more information…

oracle.com/machine-learning

See also AskTOM OML Office Hours

Copyright © 2020 Oracle and/or its affiliates.

https://asktom.oracle.com/pls/apex/asktom.search?office=6801#sessions

Thank You

Mark Hornick
Oracle Machine Learning Product Management

