

Oracle Primavera Gateway

Disclaimer

The following is intended to outline our general product direction. It is intended for information
purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any
material, code, or functionality, and should not be relied upon in making purchasing decisions. The
development, release, and timing of any features or functionality described for Oracle’s products
remains at the sole discretion of Oracle.

Contents of this document are Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Contents	
What Is Primavera Gateway ... 1

Primavera Gateway Architecture .. 2

How Does Primavera Gateway Work .. 3

Providers and Flows .. 3

Business Flows ... 4

Synchronizations ... 6

Monitoring ... 9

Customization ... 11

Sample Customization Project .. 13

Summary ... 14

1

What Is Primavera Gateway

Oracle Primavera Gateway allows data to be moved between two applications (at least one of them is a
Primavera application) on schedule or on demand. It is a single integration hub where all the data
integration happens with Primavera applications. As of right now, there are multiple ways how these
integrations happen between Primavera applications and other applications, such as Enterprise Resource
Planning (ERP) applications like E-Business Suite, PeopleSoft, JD Edwards and SAP. Having a single
way of integrating with them makes it easier for customers to install just one integration application
instead of several applications. It also reduces the overall cost for maintaining these integrations.
Primavera Gateway is a light-weight integration web application that is deployed into WebLogic
application server, with an Oracle database as its data store. When compared with AIA, it does not need
SOA Suite, BPEL or everything above the black line (see Figure 1). With a lighter architecture,
Primavera Gateway costs less and runs faster without sacrificing much of flexibility and scalability.
With the support of mapping templates and other customization features, Primavera Gateway is more
flexible and does a better job customizing an integration in accordance to a customer’s need.

Figure 1

2

Primavera Gateway Architecture

Primavera Gateway consists of an Integration Broker in the middle, and at least two providers, one for
each application that is involved in the integration (see Figure 2 below). Even though each flow only
involves two providers at a time, Gateway can support multiple integrations using multiple providers
simultaneously. For example, Gateway can support a P6 to SAP integration and a P6 to Unifier
integration running at the same time.

Figure 2

Primavera Gateway is designed to be easily extensible. All Primavera providers are built-in. These
include the P6 Provider, Unifier Provider, Enterprise Track Provider and Prime Provider. As newer
versions of the enterprise applications are developed, newer versions of the corresponding providers also
will be made available. All Primavera data is represented in a canonical Gateway data format which is
more stable than the individual application’s data format. Therefore, a third party provider would need
to only focus on supporting the mapping to this canonical Gateway data format as the applications
evolve from one version to the next.
Primavera encourages third-party vendors to create additional Primavera Gateway providers to integrate
non-Primavera applications with Primavera applications. Primavera Gateway also makes it easy to write
a third-party provider. A Gateway provider consists of a set of Java code bundled in a jar file and a set of
XML descriptor files. A very detailed sample provider is also built into the Primavera Gateway
application that customers use as an example when writing their third-party provider. By opening up the
integration system, and allowing third party vendors to participate, a lot more integration applications
can be made available in the Primavera ecosystem to benefit Primavera customers, thereby providing
more options for Primavera customers. The more flavors there are for the same provider, the greater the
chances of these satisfying a customer’s needs.
Integration applications built with Primavera Gateway are easily customizable. A customer can define
new fields and new mapping templates directly within the Gateway user interface to map additional
customer-specific fields. Customers can also write Groovy mapping templates right in the Gateway user
interface to include simple logic which is more than directly copying a field.
Customers can also develop complex customization, the customers can still develop it themselves. This
eliminates the need and costs of using integration vendors to develop a custom integration. Similar to a
provider, a customization consists of a set of Java code bundled in a jar file and a single XML descriptor
file. In many cases though, a single XML descriptor file alone will suffice. A sample customization
project is also provided to serve as an example for developing a customization.
Primavera Gateway also provides a set of REST APIs for applications to invoke Gateway functionalities
external to Gateway. For example, P6 EPPM 8.4 has developed dialogs that can initiate a Gateway
synchronization right within P6 user interface, by leveraging Gateway API.

3

How Does Primavera Gateway Work

Providers and Flows

In Primavera Gateway, an integration is carried out using flows. A flow is made of multiple flow steps.
In its simplest form, a flow is comprised of four flow steps as illustrated in Figure 3 below, where each
arrow is a flow step.

Figure 3 ERP to P6 Flow

In the first step (a load step), the data is loaded from the source application. In the second step (a convert
step), the data is converted from the source application format to this Primavera canonical data format
called Gateway Data Format. In the third step (another convert step), the data is converted from
Gateway format to the target application format. In the fourth and last step (a save step), the data is
saved to the target application.

Among the four steps, the first two steps (the load step and the first convert step) are carried out by the
provider of the source application, and the last two steps (the second convert step and the save step) are
carried out by the provider of the target application. Each provider handles the communication with the
application (load or save steps), and also the conversion between the application format and the Gateway
format. The advantage is that the providers involved here are not required to be aware of the data format
of the other application involved in the integration. This makes the whole system potentially pluggable.

For the two applications involved in the integration, one of them must be Primavera application (such as
P6), and the other can be a Primavera application or a non-Primavera application (such as SAP). The
providers for Primavera applications are provided out-of-the-box. The providers for non-Primavera
applications can be developed mostly by third-party integration vendors. For Primavera Gateway 14.2,
we already have the following providers: P6 Provider, Prime Provider, Unifier Provider, Enterprise
Track Provider, EBS Provider, VCP Provider and SAP Provider. Additional providers are being
developed.

In a more complex form involved with a compare step, as illustrated by Figure 4, the data is loaded from
the source application and the target application simultaneously, converted to the Gateway format,
compared to generate the delta (still in Gateway format), converted to the target data format, and
eventually saved to the target application.

4

Figure 4 ERP to P6 Flow with Compare Step

The main benefit that a compare step brings is a better performance, as less data needs to be persisted to
the target system. Saving data to an application takes much more time than reading data from the same
application. For example, in a real world project, as the project progresses, each day brings just a little
bit of change, even though the whole project can contain a lot of data. In this case, after using the
compare step, only a small delta needs to be accounted for, just as much as the progress made since the
last time the flow is run.

The second benefit of the compare step is that it enables delete. By setting the allow deletion parameter,
the compare step will report on data that is still in the target application, thereby identifying data that can
be deleted in the target application.

The compare step is carried out entirely by the Integration Broker with the data converted into the
generic Gateway format to compare data sets in a generic format. Therefore third party vendors do not
have to address it in any manner. This is also one of the benefits of using the canonical Gateway Data
Format. Without it, comparing source application data directly with target application data would be
much more a tedious process.

Business Flows

Currently the following four flow types are as defined as out-of-the-box (OOTB):
 Import Master Data flow
 Export Master Data flow
 Import Project Data flow
 Export Project Data flow
 Master Data flow

The Import/Export Master Data flow supports global objects such as resource, role, calendar, currency
and notebook topics etc.

The Import/Export Project Data flow supports project specific objects like project, WBS, activity,
resource assignment etc.

The Master Data flow has been developed to have P6 on both sides of the flow to achieve P6 to P6 data
integration. This is useful for configuration management use case, where data is pushed from a testing
environment to a production environment.

Once a Primavera Gateway integration solution is installed at a customer site, administrators can create
business flows based on these pre-defined flow types. When creating business flows, administrators
need to make the following decisions:

 Identify the business objects that are to be included in the integration;
 For each business object, determine what mapping templates are to be used (see Fig. 5);

5

 Identify what parameters are to be visible for end users.

Fig. 5 Selection of objects and mapping templates

A mapping template handles the simplest form of field mapping. First, it is a one-to-one mapping. Each
field in the source application is mapped to a field in Gateway side, and the Gateway field in turn is
mapped to the target application side. Second, when the mapping template is applied at run time, the
field values are directly copied over from the source side to the destination side, if the field type is not
enum or foreign keys. For enum type fields, the values are mapped according to how they are defined in
Data Value Mapping (DVM) XML files. For foreign key fields, the values are mapped by looking up
cross reference. A parameter is usually defined by a provider in the provider descriptor XML file,
specified by users in the user interface and used by the provider in Java code. When administrators are
creating a business flow, they need to make the following decisions:

 Decide which parameters are to be made visible and hidden to end users,
 Define what default values must be set across the organization (see Fig. 6)

6

Fig. 6 Selection of parameters to show in Synchronization dialog

Synchronizations

Based on the business flows created by the administrators, the end users can create synchronizations. To
create a synchronization, end users have to select application deployments and set parameter values.

Application deployments must be configured ahead of time, according to how many applications are
involved in the integration and where they are deployed. For example, an organization can have a single
SAP deployment and multiple P6 deployments (one for each region for example). An application
deployment includes the configuration parameters that an application provider would need to
communicate with the application itself. Again taking P6 as an example, the P6 deployment must
include the URL to the P6 Adapter (a SOAP web service), and credentials for accessing the P6 Adapter.

7

Fig. 7 Pick source and destination application deployments

In addition to picking application deployments for source/destination side of the flow (see Fig. 7 above),
the end users must also specify the parameter values for the integration. For example, to export a project
from P6, you must specify which project you want to export. These parameters are configured to be
visible when the business flow is created by an administrator. Some parameters are configured to be
visible but read only (solely for information purpose). Parameters can be left untouched when the default
values are just fine whereas a few parameters have to be set, like the P6 project filter parameter
mentioned above.

The synchronization can then be run right away or with a fixed schedule. You can schedule it to run
daily, weekly or monthly (see Fig. 8).

8

Fig. 8 Configure schedule for a synchronization

The synchronization can also be run right away with review enabled, by selecting the “Run with
Review” button instead of “Run” button. It will run right away, but will transition to a Review state
before the Save step. At that time, you can review all the changes. If you need to make any further
changes, you can cancel the job without any changes taking effect (see Fig. 9).

9

Fig. 9 Review before commit

Monitoring

After a synchronization is run, a job is created in the system. Jobs can be monitored at any time on the
Monitoring page. A job is made up of steps. Once a step is completed, the status of the step is reported
in a generated log. Users can review these logs to troublehshoot and fix errors (see Fig. 10).

Fig. 10 Job details and logs

10

With P6 Provider, when an error occurs, by default the changes are fully rolled back in both P6 and
Gateway, as if the flow is never run. However, you can also change this behavior by setting a parameter
to ensure that only the failed objects are rolled back, while the changes to all other objects are still
committed.

In addition to the logs on the Monitoring page, you can also configure Gateway to send email
notification to notify you when a flow is run.

11

Customization

Every organization has its own process for accomplishing objectives. Most of applications are designed
to allow themselves to be extended. For example, Primavera P6 has user defined fields and codes to
allow customers to extend the system. For this reason, the integration needs to be extended as well for
each organization.

While a custom-built integration is much more expensive than a generic integration application, a
generic integration application can rarely be used as is. Some kind of modification would have to be
made before the generic integration can be used in real production. This modification, here we called
customization, can be expensive, since the customers mostly likely won’t have the skills to do it
themselves and they would need to hire some experts to do it.

Primavera Gateway is designed to be highly customizable, and makes the customization job easy. You
can extend the data definition by adding additional fields to the existing objects, and then define
additional field mappings for these fields. To extend the data definition, or to add additional mapping
templates, it is as easy as writing a new XML file, and importing it from the Configuration tab (see Fig.
11).

Fig. 11 Define a new mapping template in a customization XML file

With Gateway 14.2 release, you can now define a new mapping template right in the Gateway UI (see
Fig. 12). If a field is not yet available, you can define it in this dialog as well. You can also export all
these mapping templates to an external XML file for backup purpose, or import these back after a
Gateway system upgrade.

12

Fig. 12 Create a direct mapping template in UI

For more advanced field mappings, or mappings what are not as simple as one-to-one mappings, you
can also use Java custom field mapping or Groovy custom field mapping. These two mechanisms give
you the additional flexibility to define many-to-one mappings, and also introduce coding logics into the
mapping.

With Java field mapping, you would need to write Java code in addition to the XML descriptor file. The
Java code must be built into a Jar file and bundled into the integration application. With Groovy field
mapping, the script is embedded right within the XML descriptor file, and you do not need to provide
additional Jar file. With Gateway 14.2 release, you can now create a Groovy field mapping templates in
the UI as well (see Fig. 13).

Fig. 13 Create a new Groovy field mapping template

Another feature for customization is the capability to define a custom step using Java code for a flow
type, in addition to the existing load/convert/compare/save steps. The custom step can be inserted

13

anywhere after the load step and before the save step. A custom step Java code allows you control to the
whole document (not just one object like custom field mapping), manipulate fields of existing objects,
and add new objects or delete existing objects. Custom steps are complex, yet very powerful
mechanisms with significant benefits than custom field mappings.

Sample Customization Project

Primavera Gateway delivers a sample customization project to illustrate how the customization should
be done. The sample customization project contains examples for the following:

 How to extend P6 data definition with additional user defined fields and codes (resource
codes/project codes/activity codes)

 How to define additional mapping template to map the newly added fields.
 Custom field mappings, including custom Java field mapping and Groovy field mapping,
 Custom step

Java source code for the custom Java field mapping and the custom step is also included.

14

Summary

Oracle Primavera Gateway is a light-weight integration framework, using Java, WebLogic application
server and Oracle Database, for integrating with Oracle Primavera products. While it is a generic
integration framework, it is built to be highly customizable. It is easy and economical to build
customizations for Gateway integrations. Oracle Primavera Gateway should be your first choice for any
integration needs with Oracle Primavera products.

]Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

oracle.com

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

This document is provided for information purposes only, and the contents hereof are subject to change without notice. This

document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in

law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any

liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This

document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our

prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and

are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are

trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0113

