Oracle Text

Oracle Text uses standard SQL to index, search, and analyze text and documents stored in the Oracle database, in files, and on the web. Oracle Text can perform linguistic analysis on documents, as well as search text using a variety of strategies including keyword searching, context queries, Boolean operations, pattern matching, mixed thematic queries, HTML/XML section searching, and so on. It can render search results in various formats including unformatted text, HTML with term highlighting, and original document format. Oracle Text supports multiple languages and uses advanced relevance-ranking technology to improve search quality. Oracle Text also offers advanced features like classification, clustering, and support for information visualization metaphors.


Technical Information

  Oracle Text in Oracle Database 11g
 White Paper (PDF)
 New Features (PDF)
 
  Text Mining
 Text Mining with Oracle Text (PDF)
 Classification and clustering in Oracle Text (PDF)>
 Information Visualization with Oracle Text (PDF)
 XML Features
 
  Text Performance
 Pre-loading Oracle Text Indexes into Memory
 MDATA - Tips and Tricks
 Progressive Relaxation - improving relevance and recall
 The CTXCAT Index type
 
  Other Information
 Oracle Text FAQ
 Using CTX_REPORT and XML
 English Knowledge Base Category Hierarchy (PDF)
 
  Technical Overviews
 Oracle Text Technical Overviews

 

Selected Papers and Presentations
 TREC Benchmark and Text Retrieval Quality
 TREC-8 Quality Benchmark (PDF)
 TREC-10 Statistical classification (adaptive and batch) and question-answering (PDF)
 Feature Preparation in Text Categorization (PDF)
 Setting up an Index Maintenance Regime for Oracle Text
 How Oracle Text processes text DML
 Using Alternative Filters for Filtering PDF Files
 Performance FAQ
 Search Enable a Web site
 20th Unicode conference presentation (ZIP)
 Oracle Text - OOW San Francisco paper (November 2001) (ZIP)
 The Last Word in Document Archives - OOW Copenhagen (July 2002) (ZIP)
 Oracle Does Search - OW San Francisco (November 2002) (ZIP)
 Improving Intranet Search with Database-Backed Technology - OW San Francisco (September 2003) (ZIP)
 Try doing this with Google - OW San Francisco (December 2004) (ZIP)
 Architecture for a Comprehensive Intranet Search - OW San Francisco (December 2004) (ZIP)
 Text Mining with Oracle - Text Mining Summit (June 2005) (PPT)
 Toward an Information Grid - OOW San Francisco (September 2005) (PDF)

 

Customer Presentations and Case Studies
 H. Ulrich (Der Spiegel) OOW San Francisco presentation (October 2006) (PDF)
 Case Study: Motorola (PDF)
 Case Study: IronMountain (PDF)
 Case Study: World Bank (PDF)
 A. Suwalska (CERN) OW Paris (November 2003) (PPT)
 L. Keller (OCLC) OOW San Francisco paper (November 2001) (DOC)
 L. Keller (OCLC) OOW San Francisco presentation (November 2001) (ZIP)
 H. Ulrich (Der Spiegel) OOW Berlin paper (July 2001) (DOC)
 H. Ulrich (Der Spiegel) OOW Berlin presentation (July 2001) (PPT)
 
Left Curve
Popular Downloads
Right Curve
Untitled Document
Left Curve
More Database Downloads
Right Curve