非常抱歉,您的搜索操作未匹配到任何结果。

我们建议您尝试以下操作,以帮助您找到所需内容:

  • 检查关键词搜索的拼写。
  • 使用同义词代替键入的关键词,例如,尝试使用“应用”代替“软件”。
  • 重新搜索。
联系我们 登录 Oracle Cloud
Oracle Data Platform for Healthcare

Optimize medical staff workloads and caseload management

Improve staffing well-being and enhance patient care

Today’s health systems face two major, interrelated challenges: employee burnout and staffing shortages. Nearly 50% of surveyed physicians and nurses have reported substantial burnout symptoms due to the heavy burden of bureaucratic and administrative tasks and working too many hours. As a result, many workers have chosen to walk away from the industry in search of better work-life balance, leaving hospitals with large staffing gaps they’re unable to fill. More than half of US hospitals report nurse vacancy rates above 7.5%, and overtime and agency spend has increased 169% since 2013. Unfortunately, many estimates suggest the healthcare worker shortage will only get worse over the coming decade.

To face both these challenges, providers must continue to optimize their staffing models in ways that prioritize health practitioner well-being while ensuring the best possible patient experience and outcomes. Data platforms will play a critical role by giving providers central access to data from disparate systems and advanced analytics and machine learning models they can use to forecast staffing needs more accurately. With these insights, health organizations can better balance caseloads and help ensure adequate staffing at all times to prevent burnout and improve patient care.

Simplify healthcare staff planning with machine learning

While clinical data can tell practitioners a great deal about their patients, operational systems, such as human capital management (HCM) systems, can tell care organizations a great deal about their employees, providing information such as historical schedules, hours worked, and sick time taken by clinicians and other staff. As the following architecture demonstrates, Oracle Data Platform unifies clinical and operational data and uses advanced analytics and machine learning to help providers understand how staffing models impact patient outcomes, how staffing decisions may impact the next week of care in near real time, what staffing gaps may need to be filled in the event of another major surge in COVID-19 cases, what an optimal staffing model looks like for any given point in time, and more.

Optimize Medical Staff Workloads diagram, description below

This image shows how Oracle Data Platform for healthcare can be used to optimize medical staff workloads. The platform includes the following five pillars:

  1. 1. Data Sources, Discovery
  2. 2. Ingest, Transform
  3. 3. Persist, Curate, Create
  4. 4. Analyze, Learn, Predict
  5. 5. Measure, Act

The Data Sources, Discovery pillar includes four categories of data.

  1. 1. Applications data comprises HCM, resource, qualification, and training data.
  2. 2. Health records include clinical data such as data from EHRs, EMRs, and administrative systems.
  3. 3. Third-party data comprises administrative and sociodemographic data and data related to policies and programs, health behaviors, and the environment.
  4. 4. Technical input data includes patient-generated data (such as social data, health risk assessments, online medical histories, and survey responses) and data from remote monitoring and mobile health apps.

The Ingest, Transform pillar comprises four capabilities.

  1. 1. Bulk transfer uses OCI FastConnect, OCI Data Transfer, MFT, and OCI CLI.
  2. 2. Batch ingestion uses OCI Data Integration, Oracle Data Integrator, and DB tools.
  3. 3. Change data capture uses OCI GoldenGate and Oracle Data Integrator.
  4. 4. Streaming ingest uses Kafka Connect.

All four capabilities connect unidirectionally into the serving data store, cloud storage, and transactional data store within the Persist, Curate, Create pillar.

Additionally, streaming ingest is connected to stream processing within the Analyze, Learn, Predict pillar.

The Persist, Curate, Create pillar comprises five capabilities.

  1. 1. The serving data store uses Autonomous Data Warehouse, Exadata Cloud Service, and Exadata Cloud@Customer.
  2. 2. The transactional data store uses Autonomous Transaction Processing, MySQL, Exadata Cloud Service, Exadata Cloud@Customer, and NoSQL.
  3. 3. Cloud storage uses OCI Object Storage.
  4. 4. Batch processing uses OCI Data Flow.
  5. 5. Governance uses OCI Data Catalog.

These capabilities are connected within the pillar. Cloud storage is unidirectionally connected to the serving data store; it is also bidirectionally connected to batch processing.

The transactional data store is unidirectionally connected to the serving data store.

Two capabilities connect into the Analyze, Learn, Predict pillar: The serving data store connects to both the analytics and visualization capability and the data products, APIs capability. Cloud storage connects to the machine learning capability.

The Analyze, Learn, Predict pillar comprises five capabilities.

  1. 1. Analytics and visualization uses Oracle Analytics Cloud, GraphStudio, and ISVs.
  2. 2. Data products, APIs uses OCI API Gateway and OCI Functions.
  3. 3. Machine learning uses OCI Data Science, Oracle Machine Learning, and Oracle ML Notebooks.
  4. 4. AI services uses Oracle Digital Assistant, OCI Decision, OCI Speech, OCI Language, and OCI Vision.
  5. 5. Streaming processing uses OCI GoldenGate Stream Analytics and stream analytics from third parties.

Three capabilities are connected within the pillar. The data products, APIs capability is unidirectionally connected to the machine learning capability, which is itself unidirectionally connected to the AI services capability, and stream processing is unidirectionally connected to the AI services capability.

The serving data store, transactional data store, and object storage supply metadata to OCI Data Catalog.

The Measure, Act pillar captures how the data analysis may be applied to support optimizing medical staff workloads and caseload management. These applications are divided into two groups.

  1. 1. The first group includes descriptive analytics, diagnostic analysis, and predictive and prescriptive analytics.
  2. 2. The second group includes analyzing statistical relevance between patient information, treatment, and outcomes.
  3. 3. The three central pillars—Ingest, Transform; Persist, Curate, Create; and Analyze, Learn, Predict—are supported by infrastructure, network, security, and IAM.


There are three main ways to inject data into an architecture to enable healthcare organizations to understand how to best staff each department at any given point in time.

  • Historical staffing and patient-related data is critical to understand and predict future staffing needs. The HCM application will provide much of the data needed for insight into past staffing models and individual staff members. And the admission, discharge, and transfer (ADT) application will provide basic details about each patient. This data can be enriched with patient data from third-party sources, which could include unstructured data from social media, for example. Frequent real-time or near real-time extracts requiring change data capture are common, and data is regularly ingested from HCM and ADT operational systems using OCI GoldenGate. OCI GoldenGate is also a critical component of evolving data mesh architectures where “data products” are the central data objects.
  • We can now add streaming data from wearable devices, which will be ingested in real time using a streaming service/Kafka. For example, we can ingest data from wearables with GPS tracking that monitor the location and movement of staff throughout the day and use it to understand how to better assign staff to units and patients. This streamed data (events) will be ingested and some basic transformations/aggregations will occur before the data is stored in cloud storage.
  • While real-time needs are evolving, the most common extract from healthcare systems is a kind of batch ingestion using an extract, transform, and load or extract, load, and transform process. Batch ingestion is used to import data from systems that can’t support streaming ingestion (for example, older mainframe systems). To get a full understanding of patient needs, we also need to ingest data from an operational system such as an electronic medical record (EMR) or electronic health record (EHR) system, most likely via the Fast Healthcare Interoperability Resources protocol. The data is sourced across products and geographies. Batch ingestions can be frequent, as often as every 10 or 15 minutes, but they are still bulk in nature as transactions are extracted and processed in groups rather than individually.

Data persistence and processing options for all the collected data are built on four components.

  • Ingested raw data is stored in cloud storage for batch processing, which will do the required cleansing, enriching, and so on to put the data into the necessary state to be consumed by downstream users, which could be people, applications, or machine learning platforms. Though some data may be directly placed in the serving data store, this data is also simultaneously placed in cloud storage. This data will be processed using Spark. Processing can be performed directly using OCI Data Flow or as part of a larger pipeline using the orchestration capabilities in OCI Data Integration. These processed datasets are returned to cloud storage for onward persistence, curation, and analysis and ultimately for loading in optimized form to the serving data store.
  • The transactional data store is used for operational reporting and as a source of data for a domain data warehouse or an enterprise data warehouse (EDW). It is a complementary element to an EDW in a decision support environment and is used for operational reporting, controls, and decision-making, as opposed to the EDW, which is used for tactical and strategic decision support. An operational data store (ODS) is typically a relational database designed to integrate and persist data from multiple sources to be used for additional operations, reporting, controls, and operational decision support.
  • We have now created processed datasets that are ready to be persisted in optimized relational form for curation and query performance in the serving data store. This gives providers access to examine all the data and variables necessary to develop optimal staffing plans.

The ability to analyze, predict, and act relies on two technologies.

  • Analytics and visualization services deliver descriptive analytics (describes current trends with histograms and charts), predictive analytics (predicts future events, identifies trends, and determines the probabilities of uncertain outcomes), and prescriptive analytics (proposes suitable actions, leading to optimal decision-making). Together, they can be used to predict staffing needs and offer suitable recommendations. For example, analytics can be used to predict whether a cluster of patients living in a specific area, who are subjected to varying environmental impacts (such as temperature), and who show certain symptoms may indicate an impending illness outbreak that would require a provider to make changes to their staffing model to handle the anticipated caseload increase.
  • Alongside the use of advanced analytics, machine learning models are developed, trained, and deployed. These trained models can be run on both current and historical operational data to detect events and trends, such as an increase in unhappy staff members, which may lead to higher turnover rates. These events and other results can be persisted back to the serving layer and reported using analytics tools such as Oracle Analytics Cloud. The model and data can also be fed into machine learning systems, such as OCI Data Science, to further train the models to recommend more-effective staffing models before promoting them. These models can be accessed via APIs, deployed within the serving data store, or embedded as part of the OCI GoldenGate streaming analytics pipeline.
  • Our curated, tested, and high-quality data and models can have governance rules and policies applied and can be exposed as a data product (API) within a data mesh architecture for distribution across the healthcare organization.

Beyond staffing: Use data to tackle other key healthcare challenges

Beyond providing your healthcare organization with the ability to develop better, more accurate staffing models, Oracle Data Platform can also help you optimize operations in other areas to improve patient care, lower costs, and elevate the employee experience. Here are some examples.

  • Drive holistic and coordinated care for target patient groups.
  • Identify the potential for system failure in case of predicted pandemic surges well in advance, and proactively intervene to help ensure system success.
  • Monitor patient cohort trends to evaluate the effectiveness of their care programs.
  • Identify areas of treatment overuse.
  • Monitor care delivery quality and cost.
  • Build patient risk stratification models.
  • Predict the risk of patient readmission.
  • Recommend preventive care to support patient self-management.

赶快行动

试用逾 20 个永久免费云服务,或在 30 天试用版中体验更多服务

Oracle 提供的免费套餐无时间限制,包含了自治数据库、Arm 计算和存储等 20 多项服务,另外还有 300 美元的免费储值,让您可以试用更多云服务。立即获取详细信息并注册您的免费帐户。

  • Oracle 云免费套餐包含哪些内容?

    • 2 个自治数据库,各 20 GB
    • AMD 和 Arm 计算 VM
    • 总共 200 GB 块存储
    • 10 GB 对象存储空间
    • 每月 10 TB 出站数据传输
    • 超过 10 项 Always Free 服务
    • 价值 300 美元的免费储值,有效期 30 天

通过分步指导学习

通过教程和动手实验室体验各种 OCI 服务。无论您是开发人员、管理员还是分析师,我们都可以帮助您了解 OCI 的工作原理。许多上机练习都运行于 Oracle 云免费套餐或 Oracle 提供的免费上机练习环境中。

  • 开始使用 OCI 核心服务

    本课程中的上机练习介绍了 Oracle Cloud Infrastructure (OCI) 核心服务,包括虚拟云网络 (VCN) 以及计算和存储服务。

    立即开始 OCI 核心服务练习
  • 自治数据库快速入门

    在本课程中,您将了解如何开始使用 Oracle 自治数据库。

    立即开始自治数据库快速入门练习
  • 基于电子表格构建应用

    此练习将指导您如何将电子表格上传到 Oracle 数据库表中,然后基于新表格创建应用程序。

    立即开始练习
  • 在 OCI 上部署 HA 应用

    在本练习中,您将在 Oracle Cloud Infrastructure (OCI) 中的两个计算实例上部署 Web 服务器,这些实例由负载均衡器在高可用性 (HA) 模式下配置。

    立即开始 HA 应用练习

了解 150 多个优秀实践设计

了解我们的架构师和其他客户如何部署各种工作负载,包括从企业应用到高性能计算 (HPC),再从微服务到数据湖的工作负载。您可以通过“构建并部署”系列视频参考其他客户架构师提供的优秀实践,并使用“一键部署”功能或者通过 GitHub 资料档案库部署更多工作负载。

广受欢迎的架构

  • Apache Tomcat 和 MySQL 数据库服务
  • 在 Kubernetes 上运行 Oracle Weblogic 和 Jenkins
  • 机器学习和人工智能环境
  • 基于 Arm 的 Tomcat 和 Oracle 自治数据库
  • 用 ELK 堆栈进行日志分析
  • 使用 OpenFOAM 的高性能计算

了解您可以通过 OCI 节省多少成本

在定价方面,Oracle 云采用全球统一超低定价,并支持各种使用场景。请利用成本估算器并配置所需服务,以估算低费率。

体验不同之处:

  • 1/4 出站带宽成本
  • 3 倍计算性价比
  • 全球统一超低价格
  • 超低定价且无需缴付多年的承诺款

联系销售

想了解更多有关 Oracle Cloud Infrastructure 的信息?让我们的专家为您提供帮助。

  • 专家能为您解答以下问题:

    • 哪些工作负载可以在 OCI 中高效运行?
    • 如何充分利用对 Oracle 的投资?
    • OCI 在云计算行业中有哪些优势?
    • OCI 如何为您的 IaaSPaaS 目标提供支持?

注:为免疑义,本网页所用以下术语专指以下含义:

  1. Oracle 专指 Oracle 境外公司而非甲骨文中国。
  2. 相关 Cloud 或云术语均指代 Oracle 境外公司提供的云技术或其解决方案。