非常抱歉,您的搜索操作未匹配到任何结果。

我们建议您尝试以下操作,以帮助您找到所需内容:

  • 检查关键词搜索的拼写。
  • 使用同义词代替键入的关键词,例如,尝试使用“应用”代替“软件”。
  • 重新搜索。
联系我们 登录 Oracle Cloud
Oracle Data Platform for Manufacturing

Manufacturing plant data consolidation

Optimize efficiency and lower risk with consolidated, real-time data

Today’s manufacturers must understand how efficiently all their lines are running across multiple plants—they need to know immediately when a problem occurs, not five or ten minutes after the fact. However, this is also one of their biggest challenges because their ability to do this relies on real-time access to data from multiple remote locations that may have limited or sporadic internet connectivity. To solve this problem, we need to push machine learning (ML) and data acquisition to the network edge.

Simplify decision-making at the edge

We can configure Oracle Data Platform to solve this challenge by including Oracle Roving Edge Devices (REDs). Each RED is designed to capture, store, run, manage, and gain insight from data, giving manufacturers the ability to automate the decision-making process and management of manufacturing equipment at the edge. Oracle Data Platform for manufacturing also includes anomaly detection capabilities, which can be used to address manufacturing line disruptions and provide maintenance-related insights to improve mitigation and remediation.

The following architecture demonstrates how Oracle Data Platform supports plant data consolidation by deploying advanced analytics and machine learning at the edge to identify anomalies, perform smart data collection, and provide real-time operational information.

plant data consolidation diagram, description below

This image shows how Oracle Data Platform for manufacturing can be used to consolidate plant data. The platform includes the following five pillars:

  1. 1. Data Sources, Discovery
  2. 2. Ingest, Transform
  3. 3. Persist, Curate, Create
  4. 4. Analyze, Learn, Predict
  5. 5. Measure, Act

The Data Sources, Discovery pillar includes two categories of data.

  1. 1. Business records data comprises warehouse management and inventory optimization data, ERP (Oracle E-Business Suite, Fusion SaaS, NetSuite) data, and MES planning and scheduling data.
  2. 2. Technical input data includes sensor, camera, and device (IoT) data and data from PLM, SCADA, and manufacturing applications.

The Ingest, Transform pillar comprises four capabilities.

  1. 1. Batch ingestion uses Oracle Data Integrator and OCI Data Integration.
  2. 2. Streaming ingest uses Kafka Connect.
  3. 3. Custom integration uses Oracle WebLogic Server on VMs.
  4. 4. RED sync transfer uses a local daemon.

Batch ingestion connects unidirectionally to the serving data store.

Streaming ingest and custom integration connect unidirectionally to the outbound transfer area.

Additionally, RED sync transfer unidirectionally connects to the inbound transfer area.

The Persist, Curate, Create pillar comprises four capabilities.

  1. 1. The serving data store uses MySQL and Oracle DB server.
  2. 2. Batch processing/Spark processing uses OCI GoldenGate Stream Analytics.
  3. 3. The outbound transfer area uses OCI Object Storage.
  4. 4. The inbound transfer area uses OCI Object Storage.

These capabilities are connected within the pillar. Batch/Spark processing is unidirectionally connected to the serving data store.

The outbound transfer area is unidirectionally connected to batch/Spark processing.

Three capabilities connect into the Analyze, Learn, Predict pillar:

The serving data store connects unidirectionally to the analytics and visualization capability and bidirectionally to the anomaly detection capability. The outbound transfer area connects unidirectionally to the anomaly detection and RED sync transfer capabilities.

The inbound transfer area connects unidirectionally to the anomaly detection capability.

The Analyze, Learn, Predict pillar comprises three capabilities.

  1. 1. Analytics and visualization uses Oracle Analytics Server.
  2. 2. Anomaly detection uses a model trained centrally and deployed locally as PMML.
  3. 3. RED sync transfer uses a local daemon.

The anomaly detection capability is unidirectionally connected to the analytics and visualization capability within the pillar.

Three capabilities are connected to the Measure, Act pillar. The analytics and visualization capability is unidirectionally connected to local dashboards and reports and also local predictions. The anomaly detection capability is unidirectionally connected to local predictions, and the RED sync transfer capability is unidirectionally connected to an additional use case.

The Measure, Act pillar captures how the consolidated plant data can be used. These potential uses are divided into four groups.

  1. The first group includes local dashboards and reports.
  2. The second group includes local predictions.
  3. The third group includes applications.
  4. The fourth group contains an additional use case, which is operational efficiency and performance.

The three central pillars—Ingest, Transform; Persist, Curate, Create; and Analyze, Learn, Predict—are supported by Oracle Roving Edge Device(s).



There are four main ways to inject data into an architecture to enable manufacturers to easily understand operational efficiency and performance.

  • A custom integration from Oracle Integration Repository lets us integrate data—both structured and unstructured—from various sources, allowing for interactions with devices, custom APIs, and so on. The data can be ingested from any application development type (for example, standalone Java or Python code, Oracle WebLogic Server–based applications, or Kubernetes-based applications). Data will be stored in object storage for further refinement, for outbound transfer, or to feed AI models.
  • The RED data sync is an efficient and simple way to transfer ML models from a central location (for example, your object storage repository of trained models in Oracle Cloud Infrastructure (OCI)) to the edge. In this use case, the edge definition would have the RED colocated with other machinery within the plant itself. New versions of models are stored in “standalone” Predictive Model Markup Language (PMML) format. The local daemon will perform an update when a new model is discovered and automatically push it to the RED. The RED data sync is also a great way to transfer all the data collected by different REDs throughout the day (for example, relevant anomalies, signals, and so on) to your central location, most likely to object storage on OCI. This data will then be used for operational reporting and ML model training. The volume of data involved in these RED data sync processes will determine your requirements for edge-to-data center telco or satellite bandwidth.
  • Batch ingestion uses Oracle Data Integrator, a comprehensive data integration solution that covers all data integration requirements from high-volume, high performance batch loads to event-driven, trickle-feed integration processes and SOA-enabled data services. While real-time needs are evolving, the most common extract from ERP, planning, warehouse management, and transportation management systems is a batch ingestion using an extract, transform, and load or extract, load, and transform process. These extracts could be frequent, as often as every 10 or 15 minutes, but they are still bulk in nature as transactions are extracted and processed in groups rather than individually. OCI offers different services to handle batch ingestion; these include the native OCI Data Integration service or Oracle Data Integrator running on an OCI Compute instance. Depending on the volumes and data types, data could be loaded into object storage or loaded directly into a structured relational database for persistent storage.
  • Analyzing data in real-time from multiple sources can help provide manufacturing companies with valuable insights into their operational efficiency and overall performance. Oracle Data Platform uses streaming ingestion to ingest data streams from several ISA-95 Level 2 systems, such as supervisory control and data acquisition (SCADA) systems, programmable logic controls, and batch automation systems. Streaming data (events) will be ingested and some basic transformations/aggregations will occur before the data is stored in object storage. Streaming analytics can be used to identify correlating events, and identified patterns can be fed back (manually) for a data science examination of the raw data. While traditional analytics tools extract information from data at rest, streaming analytics assesses the value of data in motion, i.e., in real time.

Data persistence and processing is built on three components.

  • In the serving data store, data will be managed by Oracle Database Server or MySQL for data processing. The serving data store provides a persistent relational tier often used to serve data directly to end users via SQL-based tools. It also functions as the serving layer for specialized analytics.
  • All data retrieved from data sources in its raw form (as a native file or extract) is captured and loaded into object storage to be used in current or future ML model training. Cloud object storage is the most common data persistence layer for our data platform, and it serves as both the inbound transfer area and the outbound transfer area. It can be used for both structured and unstructured data.
  • With object storage as the primary data persistence tier, OCI GoldenGate Stream Analytics is the primary processing engine. Batch processing involves several activities, including basic noise treatment, missing data management, and filtering based on defined outbound datasets. Results are written back to various layers of object storage or to a persistent relational repository based on the processing needed and the data types used.

The ability to analyze, learn, and predict is built on two technologies.

  • Analytics and visualization services deliver descriptive analytics (describes current trends with histograms and charts), predictive analytics (predicts future events, identifies trends, and determines the probabilities of uncertain outcomes), and prescriptive analytics (proposes suitable actions, leading to optimal decision-making). Oracle Analytics Server provides the functionality to deliver descriptive analytics related to operational reporting and prescriptive analytics. Additionally, ML models can be embedded directly into the Oracle Analytics Server data flow. Oracle Analytics Server is designed to run on-premises and provides dashboards, reporting, alerting, self-service data preparation, and end user–driven machine learning algorithms. Oracle Data Platform for manufacturing is completely open and flexible, so, if desired, you could use third-party tools for this instead.
  • Alongside the use of advanced analytics, ML models are developed, trained, and deployed to support anomaly detection. OCI Anomaly Detection is an AI service that makes it easier for developers to build business-specific anomaly detection models that flag critical incidents, speeding up detection and resolution. These models will be trained at the central location and deployed in PMML format to be executed locally as Java or Python code.

Automate decision-making to increase profitability

Oracle Data Platform lets manufacturers get the greatest value from all their available data while simplifying and streamlining data access and storage. The ability to push data collection and ML scoring to the edge through Oracle Roving Edge Devices helps manufacturers make better business decisions that are informed by accurate data that’s always available when they need it, allowing them to increase efficiency and production while lowering costs.

赶快行动

试用逾 20 个永久免费云服务,或在 30 天试用版中体验更多服务

Oracle 提供的免费套餐无时间限制,包含了自治数据库、Arm 计算和存储等 20 多项服务,另外还有 300 美元的免费储值,让您可以试用更多云服务。立即获取详细信息并注册您的免费帐户。

  • Oracle 云免费套餐包含哪些内容?

    • 2 个自治数据库,各 20 GB
    • AMD 和 Arm 计算 VM
    • 总共 200 GB 块存储
    • 10 GB 对象存储空间
    • 每月 10 TB 出站数据传输
    • 超过 10 项 Always Free 服务
    • 价值 300 美元的免费储值,有效期 30 天

通过分步指导学习

通过教程和动手实验室体验各种 OCI 服务。无论您是开发人员、管理员还是分析师,我们都可以帮助您了解 OCI 的工作原理。许多上机练习都运行于 Oracle 云免费套餐或 Oracle 提供的免费上机练习环境中。

  • 开始使用 OCI 核心服务

    本课程中的上机练习介绍了 Oracle Cloud Infrastructure (OCI) 核心服务,包括虚拟云网络 (VCN) 以及计算和存储服务。

    立即开始 OCI 核心服务练习
  • 自治数据库快速入门

    在本课程中,您将了解如何开始使用 Oracle 自治数据库。

    立即开始自治数据库快速入门练习
  • 基于电子表格构建应用

    此练习将指导您如何将电子表格上传到 Oracle 数据库表中,然后基于新表格创建应用程序。

    立即开始练习
  • 在 OCI 上部署 HA 应用

    在本练习中,您将在 Oracle Cloud Infrastructure (OCI) 中的两个计算实例上部署 Web 服务器,这些实例由负载均衡器在高可用性 (HA) 模式下配置。

    立即开始 HA 应用练习

了解 150 多个优秀实践设计

了解我们的架构师和其他客户如何部署各种工作负载,包括从企业应用到高性能计算 (HPC),再从微服务到数据湖的工作负载。您可以通过“构建并部署”系列视频参考其他客户架构师提供的优秀实践,并使用“一键部署”功能或者通过 GitHub 资料档案库部署更多工作负载。

广受欢迎的架构

  • Apache Tomcat 和 MySQL 数据库服务
  • 在 Kubernetes 上运行 Oracle Weblogic 和 Jenkins
  • 机器学习和人工智能环境
  • 基于 Arm 的 Tomcat 和 Oracle 自治数据库
  • 用 ELK 堆栈进行日志分析
  • 使用 OpenFOAM 的高性能计算

了解您可以通过 OCI 节省多少成本

在定价方面,Oracle 云采用全球统一超低定价,并支持各种使用场景。请利用成本估算器并配置所需服务,以估算低费率。

体验不同之处:

  • 1/4 出站带宽成本
  • 3 倍计算性价比
  • 全球统一超低价格
  • 超低定价且无需缴付多年的承诺款

联系销售

想了解更多有关 Oracle Cloud Infrastructure 的信息?让我们的专家为您提供帮助。

  • 专家能为您解答以下问题:

    • 哪些工作负载可以在 OCI 中高效运行?
    • 如何充分利用对 Oracle 的投资?
    • OCI 在云计算行业中有哪些优势?
    • OCI 如何为您的 IaaSPaaS 目标提供支持?

注:为免疑义,本网页所用以下术语专指以下含义:

  1. Oracle 专指 Oracle 境外公司而非甲骨文中国。
  2. 相关 Cloud 或云术语均指代 Oracle 境外公司提供的云技术或其解决方案。