什么是 AI?了解人工智能

人工智能术语辨析

如今人工智能 (AI) 已变成了一个无所不包的术语,很多用来执行在过去需要人工输入的复杂任务的应用(例如与客户在线沟通或下棋)都可以被称作人工智能。在现实中,人工智能也经常与它的子领域互换使用,例如机器学习 (ML) 和深度学习。

然而,它们之间是有区别的,例如机器学习侧重于构建能够基于自身使用的数据进行学习或改进性能的系统。换句话说,所有的机器学习都是 AI,但不是所有的 AI 都是机器学习。

为了充分发挥 AI 的价值,如今许多企业正加大对数据科学团队的投入。数据科学综合运用统计、计算机科学和商业知识,从各种数据源中挖掘价值。

AI 和开发人员

人工智能可帮助开发人员更高效地执行以往需要手动处理的任务,与客户建立联系,识别模式和解决问题。但要使用人工智能,开发人员需要具备数学背景,并且熟悉算法。

在使用人工智能构建应用时,开发人员可以从简单做起,例如通过相对简单的三子棋项目学习人工智能的基本知识。在实践中学习是提升技能的好方法,人工智能也不例外。当您成功完成了一个或多个小项目后,您就可以尽情探索人工智能的无限可能了。

AI 技术可为企业提供哪些帮助?

AI 的本质是学习并超越人类感知和响应世界的方式。如今,AI 正迅速成为创新的基石。得益于各种可识别数据模式然后驱动企业开展预测的机器学习技术,AI 可以为您创造更多价值

  • 更全面地理解丰富的可用数据
  • 基于预测,自动执行过于复杂的任务或常规任务

AI 在企业中的应用

人工智能技术可以自动执行以往需要手动完成的流程或任务,提高企业绩效和生产率,还可以超越人力极限,充分发挥数据的价值,为企业创造巨大的商业效益。例如,Netflix 使用机器学习将个性化提升到了一个新的高度,实现了 25% 以上的客户增长。

大多数公司都把数据科学作为重中之重,并在这方面投入巨资。McKinsey 在 2021 年针对 AI 开展的一项调查发现,在一个及以上职能中采用 AI 的企业从一年前的 50% 增加到了 56%。此外,27% 的受访者表示至少 5% 的收入可能要归功于 AI,而一年前仅有 22%。

AI 可以为大多数职能、业务和行业创造价值。其中包括通用和行业特定的应用,例如

  • 使用交易和人口统计数据来预测特定客户在与某企业的关系中将花费多少(或称作客户的终生价值)
  • 根据客户行为和偏好优化定价
  • 使用图像识别来分析 X 射线图像中的癌症迹象

企业如何使用 AI?

根据哈佛商业评论 开展的一项调查,企业主要使用 AI 来完成以下任务

  • 检测和阻止安全入侵(44%)
  • 解决用户的技术问题(41%)
  • 减少生产管理工作(34%)
  • 在使用认证供应商的技术时评估内部合规性(34%)

哪些因素促进了 AI 的使用?

推动 AI 在各个行业中快速发展的主要有 3 大因素。

  • 快速可用、经济高效、性能强劲的计算能力: 强大的商用云计算为企业带来了经济高效、高性能的计算能力。在此之前,唯一适用于 AI 的计算环境并非基于云技术且成本高昂。
  • 大量的可供训练的数据: AI 需要接受大量数据的训练才能做出正确的预测。易于使用的数据标签和经济实惠的结构化和非结构化数据存储和处理让更多算法构建和训练成为可能。
  • AI 的竞争优势:越来越多的企业开始认识到运用 AI 洞察支持业务目标所带来的竞争优势,并将其作为企业的重中之重。例如,AI 提供的针对性建议可以帮助企业更快做出更明智的决策。利用 AI 特性和功能,企业可以降低成本和风险,缩短产品上市时间,获得更多优势。

AI 模型训练和开发

机器学习模型的开发和部署分为多个阶段,包括训练和推理。AI 训练和推理指的是尝试使用机器学习模型解决问题的过程。

举例来说,机器学习工程师可能会尝试使用不同的候选模型来解决计算机视觉问题,比如在 X 射线图像上检测骨折。

为了提高这些模型的准确性,工程师会向模型提供数据并优化参数,直至达到预定义的阈值。这些训练需求通过模型复杂度衡量,每年呈指数级增长。

规模化 AI 训练的关键基础设施技术包括集群网络,如 RDMA 和 InfiniBand、裸金属 GPU 计算和高性能存储。

AI 的优势和挑战

如今很多成功案例已经有力证明了 AI 的价值。通过在传统业务流程和应用中融入机器学习和感知交互,组织可显著改善用户体验并提高工作效率。

但阻碍依然存在。由于多个方面的原因,很少有公司能够规模化地部署人工智能。举例来说,如果未采用云计算,那么机器学习项目的计算成本往往非常高。此外,构建 AI 项目不仅十分复杂,而且还需要极其稀缺、高水平的专业技能。为了尽可能减少这些痛点,企业应了解采用这些项目的时机和场景以及何时寻求第三方帮助。

AI 成功案例

如今,AI 已经帮助很多企业取得了重大成功。

  • 哈佛商业评论称,通过训练 AI 软件,美联社实现了自动撰写短期收益新闻报道,并将新闻报道量提升了 12 倍。这让其记者能够专注于撰写更具深度的文章。
  • Deep Patient 是西奈山伊坎医学院构建的一个人工智能工具,可以帮助医生在诊断出疾病之前识别高风险患者。insideBIGDATA 称,该工具可以分析患者的病史,在发病前一年预测近 80 种疾病。

即时可用型 AI 让 AI 应用更简单

基于 AI 的解决方案和工具的兴起意味着更多的公司可以在更短的时间内以更低的成本利用 AI。即时可用的 AI 是指具有内置 AI 功能或者自动化算法决策过程的解决方案、工具和软件。

即时可用的 AI 包括自治修复数据库和预构建模型,可利用各种数据集进行图像识别和文本分析。

如何开始使用 AI?

通过聊天机器人与客户沟通:聊天机器人可以使用自然语言处理技术来理解客户,允许客户提问和获取信息。这些聊天机器人会随着时间的推移不断学习,旨在为客户交互创造更大的价值。

监视数据中心:IT 运维团队可以通过一个集成了所有数据并自动跟踪阈值和异常的云技术平台来简化监视。

无需专家帮助即执行业务分析: 利用具有可视化用户界面的分析工具,非技术人员也可以轻松在系统中查询所需信息,获得通俗易懂的答案。

构建良好的 AI 文化

要想充分利用 AI,消除 AI 应用面临的阻碍,企业需要构建良好的 AI 文化,从而为 AI 生态系统提供全面支持。在此环境中

  • 业务分析师与数据科学家共同定义问题和目标
  • 数据工程师负责管理数据和底层数据平台,确保其完全可用于分析
  • 数据科学家在数据科学平台上准备和探索数据并实施数据可视化和建模
  • IT 架构师负责管理为数据科学提供全面支持所需的底层基础设施,无论是在本地部署环境还是云端
  • 应用开发人员将模型部署到应用中,构建数据驱动的产品

从人工智能到自适应智能

随着 AI 功能广泛应用于主流企业运营,一个新术语正在兴起:自适应智能。通过将实时的内部和外部数据与决策科学及高度可扩展的计算基础设施相结合,自适应智能应用可帮助企业做出更明智的业务决策。

从本质上说,这些应用使您的业务更智能。您将能够为客户提供更好的产品、建议和服务 — 所有这些都能带来更好的业务成果。

AI — 未来企业的战略要务和竞争优势

对于任何希望获得更高效率、新的收入机会和提高客户忠诚度的企业来说,AI 都是一项战略要务。它正迅速成为众多组织的竞争优势。有了 AI,企业可以在更短的时间内完成更多任务、创建个性化和极具吸引力的客户体验并预测业务成果,从而提升盈利能力。

但 AI 仍是一项颇为复杂的新兴技术。为了充分发挥其价值,您需要在如何构建和管理大规模 AI 解决方案方面具备专业知识。一个成功的 AI 项目需要的不仅仅是聘用数据科学家。企业需要实施合适的工具、流程和管理策略来确保 AI 的成功。

充分发挥 AI 价值的优秀实践

哈佛商业评论 就如何开始使用 AI 提出了以下建议:

  • 在对收入和成本具有重大和直接影响的活动中应用 AI 功能。
  • 在保持人员不变的情况下使用 AI 来提高工作效率,而不是削减或增加员工数量。
  • 在后端而非前端开始实施 AI(IT 和会计受益最大)。

获取 AI 支持,开启 AI 之旅

AI 转型已是大势所趋。为了保持竞争力,企业终将拥抱 AI 并构建 AI 生态系统。在未来 10 年里,未能在某种程度上采用 AI 的企业终将落于人后。

虽然您的企业可能是个例外,但大多数公司没有内部人才和专业知识来开发能够充分发挥人工智能能力的生态系统和解决方案

要成功完成 AI 转型之旅(包括战略开发和工具访问),您需要找到一个具备丰富行业专业知识和全面 AI 产品组合的合作伙伴。

人工智能学习库

  • 什么是数据科学?
    企业正积极将统计学与计算机科学概念(如机器学习和人工智能)结合起来,从大数据中提取洞见,进而推动创新并转变决策制定。
  • 什么是机器学习?
    机器学习是人工智能 (AI) 的一个子集,专注于构建通过数据进行学习的系统,旨在加快自动化决策流程和价值实现速度。

AI 成功案例

如今,AI 已经帮助很多企业取得了重大成功。

  • 哈佛商业评论称,通过训练 AI 软件,美联社实现了自动撰写短期收益新闻报道,并将新闻报道量提升了 12 倍。这让其记者能够专注于撰写更具深度的文章。
  • Deep Patient 是西奈山伊坎医学院构建的一个人工智能工具,可以帮助医生在诊断出疾病之前识别高风险患者。insideBIGDATA 称,该工具可以分析患者的病史,在发病前一年预测近 80 种疾病。

即时可用型 AI 让 AI 应用更简单

基于 AI 的解决方案和工具的兴起意味着更多的公司可以在更短的时间内以更低的成本利用 AI。即时可用的 AI 是指具有内置 AI 功能或者自动化算法决策过程的解决方案、工具和软件。

即时可用的 AI 范围非常广,包括使用机器学习进行自我修复的自治数据库,以及在各种数据集中解决图像识别和文本分析等问题的预构建模型。所有这些都能帮助公司更快地实现价值,提高生产效率,降低成本并改善客户关系。

如何开始使用 AI?

通过聊天机器人与客户沟通:聊天机器人可以使用自然语言处理技术来理解客户,允许客户提问和获取信息。这些聊天机器人会随着时间的推移不断学习,旨在为客户交互创造更大的价值。

监视数据中心:IT 运营团队可以将所有 Web、应用、数据库性能、用户体验和日志数据整合到一个基于云的数据平台中,然后通过该平台自动监视阈值和检测异常,从而在系统监视上节省大量时间和精力。

无需专家帮助即执行业务分析: 利用具有可视化用户界面的分析工具,非技术人员也可以轻松在系统中查询所需信息,获得通俗易懂的答案。

哪些因素在阻碍企业释放 AI 潜力?

尽管 AI 具有广阔的前景,但许多公司仍然无法充分发挥机器学习和其他 AI 功能的潜力。其原因在于,然而,讽刺的是,这一问题在很大程度上是人自己造成的,正是低效的工作流阻碍了公司充分发挥 AI 的价值。

例如,数据科学家有时无法获得构建机器学习模型所需的资源和数据,无法与同事有效开展协作,需要管理许多不同的开源工具。而应用开发人员有时需要对数据科学家开发的模型进行完全重新编码,然后才能将这些模型嵌入到其应用中。

此外,随着开源 AI 工具不断涌现,IT 团队要花费更多的时间来持续更新工作环境,以此为数据科学团队提供支持。在很多情况下,由于数据科学团队工作方式不够标准化,这个问题还会变得更加复杂。

最终,高管层可能无法看到 AI 投资的价值,自然也就不会提供充足的支持和资源来构建 AI 成功所需要的协作和集成式生态系统。

构建良好的 AI 文化

要想充分利用 AI,消除 AI 应用面临的阻碍,企业需要构建良好的 AI 文化,从而为 AI 生态系统提供全面支持。在此环境中

  • 业务分析师与数据科学家共同定义问题和目标
  • 数据工程师负责管理数据和底层数据平台,确保其完全可用于分析
  • 数据科学家在数据科学平台上准备和探索数据并实施数据可视化和建模
  • IT 架构师负责管理为数据科学提供全面支持所需的底层基础设施,无论是在本地部署环境还是云中
  • 应用开发人员将模型部署到应用中,构建数据驱动的产品

从人工智能到自适应智能

随着 AI 功能广泛应用于主流企业运营,一个新术语正在兴起:自适应智能。通过将实时的内部和外部数据与决策科学及高度可扩展的计算基础设施相结合,自适应智能应用可帮助企业做出更明智的业务决策。

从本质上说,这些应用使您的业务更智能。您将能够为客户提供更好的产品、建议和服务 — 所有这些都能带来更好的业务成果。

AI — 未来企业的战略要务和竞争优势

对于任何希望获得更高效率、新的收入机会和提高客户忠诚度的企业来说,AI 都是一项战略要务。它正迅速成为众多组织的竞争优势。有了 AI,企业可以在更短的时间内完成更多任务、创建个性化和极具吸引力的客户体验并预测业务成果,从而提升盈利能力。

但 AI 仍是一项颇为复杂的新兴技术。为了充分发挥其价值,您需要在如何构建和管理大规模 AI 解决方案方面具备专业知识。一个成功的 AI 项目需要的不仅仅是聘用数据科学家。企业需要实施合适的工具、流程和管理策略来确保 AI 的成功。

充分发挥 AI 价值的优秀实践

哈佛商业评论 就如何开始使用 AI 提出了以下建议:

  • 在对收入和成本具有重大和直接影响的活动中应用 AI 功能。
  • 在保持人员不变的情况下使用 AI 来提高工作效率,而不是削减或增加员工数量。
  • 在后端而非前端开始实施 AI(IT 和会计受益最大)。

获取 AI 支持,开启 AI 之旅

AI 转型已是大势所趋。为了保持竞争力,企业终将拥抱 AI 并构建 AI 生态系统。在未来10年里,未能在某种程度上采用 AI 的企业终将落于人后。

虽然您的企业可能是个例外,但大多数公司没有内部人才和专业知识来开发能够充分发挥人工智能能力的生态系统和解决方案

为了确保成功实现 AI 转型,您需要制定正确的战略,找到正确的工具。对此,请选择引领行业创新,具有深厚行业知识和全面的 AI 产品组合的合作伙伴。

免费在 Oracle 云上构建、测试和部署应用。

人工智能学习库

  • 什么是数据科学?
    企业正积极将统计学与计算机科学概念(如机器学习和人工智能)结合起来,从大数据中提取洞见,进而推动创新并转变决策制定。
  • 什么是机器学习?
    机器学习是人工智能 (AI) 的一个子集,专注于构建通过数据进行学习的系统,旨在加快自动化决策流程和价值实现速度。
  • AI 资讯和观点
    机器学习、人工智能和数据科学正在改变企业处理复杂问题的方式,转变各个行业的发展方向。阅读最新文章,了解行业和您的同行都在如何采用这些技术。

注:为免疑义,本网页所用以下术语专指以下含义:

  1. Oracle专指Oracle境外公司而非甲骨文中国。
  2. 相关Cloud或云术语均指代Oracle境外公司提供的云技术或其解决方案。