未找到结果

您的搜索操作未匹配到任何结果。

我们建议您尝试以下操作,以帮助您找到所需内容:

  • 检查关键词搜索的拼写。
  • 使用同义词代替键入的关键词,例如,尝试使用“应用”代替“软件”。
  • 请尝试下方显示的热门搜索之一。
  • 重新搜索。
热门问题

机器学习的定义

机器学习的定义

机器学习是人工智能 (AI) 的一个分支,旨在构建可基于自身使用的数据学习或提升自身性能的系统。人工智能是一个宽泛的术语,指的是模仿人类智能的系统或机器。机器学习和人工智能这两个术语经常被人们放在一起讨论,有时甚至互换使用,但它们的含义并不相同。一个重要的区别是,所有的机器学习都是 AI,但不是所有的 AI 都是机器学习。

在今天,机器学习无处不在。当我们与银行交互、在线购物或使用社交媒体时,机器学习算法会发挥作用,让我们获得高效、顺畅和安全的体验。目前,机器学习及其相关技术正迅速发展,对于它的强大能力,我们只不过刚刚领略皮毛而已。

 

“Traditionally what we see is people not being able to work together.Adding machine learning to Oracle Analytics Cloud ultimately helps people organize their work and build, train, and deploy these data models.It's a collaboration tool whose value is in accelerating the process and allowing different parts of the business to collaborate, giving you better quality and models for you to deploy.”

—Oracle Analytics 产品战略副总裁 Rich Clayton

机器学习:两种学习方法

算法是机器学习的引擎。一般来说,机器学习算法主要分两种:监督学习和无监督学习。这两者的区别在于如何学习数据从而做出预测。

监督机器学习 监督机器学习算法最为常用。在该模型下,数据科学家扮演向导,告诉算法它应该得出什么结论。数据科学家会使用带标记且具有预定义输出的数据集来训练算法,就像让孩子浏览画册,记住水果,然后学习识别水果一样。

监督机器学习的典型算法有线性和逻辑回归、多类别分类和支持向量机。
无监督机器学习 无监督机器学习相对而言更加独立,在该模式下,计算机会在无人类持续提供密切指导的前提下学习识别复杂的过程和模式。它使用无标记或无已定义输出的数据来训练算法,

就像让孩子通过观察颜色和图案来识别水果,而不是在老师的帮助下记住水果的名字一样。孩子(算法)会自己寻找图像之间的相似性,对图像分组,为每一个小组分配一个新标签。无监督机器学习的算法有 K 均值聚类、主成分和独立分量分析以及关联规则。
如何选择? 哪种方法更符合您的需求?在现实中,选择监督还是无监督机器学习算法,取决于一些与数据结构和数据量相关的因素以及具体使用场景。目前,机器学习已在很多行业中实现了蓬勃发展,被广泛应用于各种业务目标和场景,包括:

  • 客户终身价值
  • 异常检测
  • 动态定价
  • 预测性维护
  • 图像分类
  • 推荐引擎

机器学习的业务目标:客户终身价值建模

客户终身价值建模不仅对电子商务至关重要,同时也适用于许多其他行业。在此模型中,企业使用机器学习算法来识别、洞察和留住最有价值的客户。这些价值模型将评估海量的客户数据,以识别贡献营收最多的消费者,忠诚度最高的拥趸,或者这些特质的组合。

客户终身价值模型在预测一定时期内客户将为企业带来多少收入上尤其有效,它让企业能够将营销重点放在激励高价值客户更频繁地与品牌互动上。此外,客户终身价值模型还可以帮助企业精确投放营销支出,吸引与现有高价值客户类似的新客户。

基于学习的客户流失建模

与维持现有客户的满意度和忠诚度相比,吸引新客户更耗时,成本也更高。而通过对客户流失建模,企业可识别哪些客户可能会停止互动以及背后的原因。

一个有效的客户流失模型可基于机器学习算法提供全面的洞察 — 从单个客户的流失风险评分到按重要性排序的客户流失动因。这些洞察对于算法性客户维系策略的开发至关重要。

在深入了解客户流失数据后,企业可以优化折扣优惠、电子邮件营销活动和其他精准营销活动,促成高价值客户购买和再次光顾。

机器学习策略之动态定价模型

如今消费者和过去相比有更多的选择,他们可以即时比较各种渠道的价格。而动态定价(也称为需求定价)让企业能够适应不断变化的市场动态,根据目标客户的兴趣水平、购买时的需求以及是否参加了营销活动等因素对产品进行灵活定价。

要想获得这样的业务敏捷性,企业需要一个可靠的机器学习策略,以及大量关于不同客户在各种场景下付费意愿如何变化的数据。动态定价模型可能很复杂,但为了最大限度提高收入,目前航空公司和拼车服务等企业已经成功实施了动态价格优化策略。

机器学习的业务目标:基于客户细分精准定位客户

成功的营销是始终在适当的时机为适当的人提供适当的产品。就在不久前,营销人员还需要依靠自己的直觉对客户进行细分,将客户分成几个小组,然后有针对性地投放营销活动。

如今,机器学习使数据科学家能够使用聚类和分类算法,根据特定的变量将客户分组到各角色中。这些角色考虑了多个维度的客户差异,例如人口统计数据、浏览行为和亲和度。将这些特征与购买行为模式联系起来,精通数据的企业就能推出高度个性化的营销活动,进而更有效地促进销售。

随着企业可用数据的增长和算法日趋复杂,个性化功能将会越来越多,让企业更贴近理想的客户群。

机器学习的业务目标:发挥图像分类的强大力量

机器学习不仅适用于零售、金融服务和电子商务等场景,它在科学、医疗卫生、建筑和能源应用领域也有巨大的潜力。例如,在机器学习算法的帮助下,图像分类可将一组固定的标签分配给任意图像。它支持企业基于 2D 设计对 3D 建筑计划进行建模,支持在社交媒体中进行照片标记,支持预判医疗诊断结果等。

神经网络等深度学习方法经常被用于图像分类,因为它们可以根据潜在联系有效识别图像的相关特征。例如,它们可以识别图像中的视角、光照、缩放或杂斑量的变化然后进行补偿,提供相关度最高的高质量洞察。

推荐引擎

推荐引擎对于交叉销售和追加销售以及改善客户体验必不可少。

Netflix 表示自家的推荐引擎每年在内容建议方面创造的价值高达 10 亿美元,亚马逊表示自家的推荐引擎系统每年带来了 20% 至 35% 的年销售额增长。

推荐引擎使用机器学习算法筛选大量数据,预测客户购买商品或浏览内容的可能性,然后为用户提供个性化建议。这有助于构建更加个性化、相关度更高的客户体验,促进客户互动,减少客户流失。

机器学习的使用场景

机器学习适用于一系列广泛的关键业务使用场景。它如何提升企业竞争优势?机器学习最引人注目的一大特点是自动化和加快决策速度,更快创造价值。它能为企业提供更高的可见性,增强企业协作。

“我们通常会发现,人们无法在一起协作,“Oracle 分析事业部产品战略副总裁 Rich Clayton 表示,“在 Oracle 分析云中添加机器学习,工作人员就可以有序组织工作,构建、培训和部署这些数据模型。它是一种协作工具,其价值在于加快流程,并帮助不同业务部门开展协作,从而提供更高的质量和更好的模型供您部署。“

例如,财务部门往往面临一项重负,就是反复执行各种差异分析过程 — 即比较实际情况和预测结果。这是一项低认知性工作,尤其适合机器学习技术。

Clayton 表示:“在嵌入机器学习后,财务部门可以更加快速、智能地开展工作,在机器处理的基础上开展工作。”

预测的力量

机器学习另一个令人兴奋的功能是预测。过去,业务决策通常是基于历史结果做出的。如今,机器学习使用丰富的分析来预测将要发生的事。组织可以做出前瞻性的主动决策,而不是依赖历史数据。

例如,预测性维护可帮助制造商、能源公司和其他行业占据主动权,确保运营的可靠性和优化状态。在拥有数百台钻机的油田中,机器学习模型可以发现在不久的将来有故障风险的设备,然后提前通知维护团队。这种方法不仅能尽可能提高生产率,还可以改善资产性能,延长正常运行时间和使用寿命。它还可以尽可能降低员工风险,减少不利因素并改善合规性。

预测性维护的优势可扩展至库存控制和管理。通过实施预测性维护,企业可以避免计划外设备停机,更准确地预测备件和维修需求,从而显著降低资本和运营支出。

机器学习的潜力

机器学习具有巨大的潜力,可帮助企业从现有的大量数据中挖掘巨大的业务价值。然而,低效的工作流程会阻碍企业充分发挥机器学习的潜力。

要在整个组织层面取得成功,企业需要将机器学习嵌入一个全面的平台,从而规模化地简化运营和部署模型。而选择理想的机器学习解决方案,企业将能在一个协作式平台上集中处理所有数据科学工作,更高效地使用和管理开源工具、框架和基础设施。

机器学习解决方案

人工智能是什么?
了解有关人工智能的更多信息

人工智能 (AI) 让技术和机器能够处理数据并学习、成长和执行人工任务。

了解有关数据科学的更多信息
了解有关数据科学的更多信息

企业正积极将统计学与计算机科学概念(如机器学习和人工智能)结合起来,从大数据中提取洞见,进而推动创新并转变决策制定。

新闻和观点
新闻和观点

机器学习、人工智能和数据科学正在改变企业处理复杂问题的方式,进而转变各个行业的发展方向。阅读最新文章,了解行业和您的同行都在如何采用这些技术。