Generative AI Agents

Oracle Cloud Infrastructure (OCI) Generative AI Agents combines the power of large language models (LLMs) and retrieval-augmented generation (RAG) with your enterprise data, letting users query diverse enterprise knowledge bases. The service provides up-to-date information through a natural language interface and the ability to act directly on it.

Why use OCI Generative AI Agents?

  • Converse directly with your enterprise knowledge bases

    Leverage a conversational interface that lets anyone query enterprise data stores in natural language.

  • Get up-to-date results

    Receive dynamic, real-time responses, even on fast-changing enterprise data stores.

  • Embedded for actionable results

    Create and embed custom AI agents into enterprise business applications and processes.

  • Scale your search

    Get faster results through RAG with OpenSearch and AI Vector Search in Oracle Database 23ai.

How OCI Generative AI Agents works

How OCI Generative AI works technical diagram, details below
  1. Input

    The left hand side of the diagram shows an icon of a person, designating the user, underneath the text “Input”.
    1. A user’s natural language request is sent to the Generative AI agent for encoding. The agent then sends the request to the enterprise data store.
  2. Generative AI Agent

    A blue arrow then points from left to right, directing the reader to another section of the diagram. This section is titled “Generative AI Agent” and features an icon designating a cloud database, with a smaller black arrow pointing towards an icon designating Artificial Intelligence. Below these icons, the text reads “The Generative AI agent uses a large language model (LLM) to understand the query, then formulates and executes a plan to:
    1. 1. Search the knowledge base for related articles
    2. 2. Re-rank the documents for semantic relevance
    3. 3. Send the top documents and the original query to be combined into a coherent response
    4. 4. Send the response to the user
  3. Output

    A second blue arrow then points from left to right, directing the reader to the third and final section of the diagram. This section is titled “Output” and features an icon designating a chatbot typing a response. Below the icon, text reads:
    1. The user receives the formulated response and references to the documents used to create the response.

Learn about the efficiency architecture of OCI Generative AI Agents

Explore how OCI Generative AI Agents uses RAG to retrieve real-time, accurate information from your own data stores, making strategic use of data quick and easy.

OCI Generative AI Agents use cases

Call center optimization

Help increase customer satisfaction through more accurate responses and a higher volume of query resolution.

Expedite legal research

Find answers faster by conversing with AI rather than manually searching court record databases.

Revenue intelligence

Understand customer purchase history and trends by asking natural language questions instead of running reports.

Recruit qualified job candidates

Source potential new hires more easily by typing in natural language rather than constructing a database query.

What customers are saying about OCI Generative AI Agents

“The beta launch of Oracle’s Generative AI Agents RAG service is a game changer. We can’t wait to showcase this innovation to our clients across a range of industries as it is fundamental to unlocking new potential with their generative AI strategies on OCI. For example, implementing RAG is vital for enabling faster and smarter access to data and knowledge within Human Resources, Finance, and Healthcare for both structured and unstructured data sources.”

Antony Heljula
Technology Director, TPXimpact

“By accessing a wider range of information and diverse perspectives, retrieval-augmented generation (RAG) can help generate more creative and coherent outputs. This is valuable for content creation tasks like writing reports, marketing materials, and creative writing. Customer service organizations can now leverage Oracle RAG to unlock a new level of efficiency and effectiveness, enhance chatbots and virtual assistants, personalize customer interactions, and resolve inquiries with remarkable accuracy and speed.”

Imran Azhar Sheikh
Head of Artificial Intelligence, Abu Dhabi Media Network

OCI Generative AI Agents resources

開始使用 Oracle AI

試用 Oracle AI,立即試用 30 天

Oracle 針對大多數 AI 服務提供免費的定價等級,以及附贈 300 美元點數的免費試用帳戶,這些點數可用於試用額外的雲端服務。取得詳細資料,並立即註冊您的免費帳戶。

  • 哪些 Oracle AI and ML 服務提供免費的定價等級?

    • OCI Speech
    • OCI Language
    • OCI 願景
    • OCI 文件理解
    • Oracle Database 中的機器學習功能
    • OCI 資料標籤

    您也只需要支付 OCI 資料科學的運算和儲存空間費用。

瞭解 AI 實機操作實驗室

學習知識和技能的最佳方法是自行嘗試。使用我們的教學課程和實作實驗室與您自己的 Oracle Cloud 租用環境,許多服務不額外收費。

立即瞭解如何應用 AI

邁入新生產力時代,為您的企業採用生成式 AI 解決方案。瞭解 Oracle 如何協助客戶運用內嵌於完整技術堆疊中的 AI。

  • 使用 Oracle AI 可以實現什麼?

    • OCI 中微調 LLM
    • 自動化發票處理
    • 使用 RAG 建置聊天機器人
    • 使用生成式 AI 總結 Web 內容
    • 還有更多!

AI 認證

參加 OCI AI Foundations 認證考試

接受 AI、機器學習、深度學習和生成式 AI 的相關訓練,並免費獲取 OCI AI 認證。

  • 完成本課程後,您將可具備下列能力

    • 瞭解並描述 AI 概念與工作負載
    • 說明機器學習的重要概念和術語
    • 說明深度學習的重要概念和術語
    • 辨識常見的機器學習類型
    • 瞭解生成式 AI 的基本概念
    • 瞭解大型語言模型的概念
    • 說明大型語言模型的提示工程和微調
    • 描述 Oracle AI 基礎架構
    • 描述 Oracle AI 服務

聯絡業務代表

有興趣深入瞭解 Oracle AI 嗎?讓我們的專家助您一臂之力。

  • 我們的業務代表可以為您解答以下問題:

    • 如何開始使用 AI 和機器學習?
    • 我可以如何運用生成式 AI 推動我的業務?
    • 哪些服務適合我?