Oracle Machine Learning Algorithms

Oracle Machine Learning Algorithms

Oracle Machine Learning provides a wide range of machine learning algorithms to address key enterprise business problems. "Move the algorithms, not the data!" is a tagline that characterizes algorithms that exist in the Oracle Database kernel or are available on Big Data environments. These algorithms are accessible through several convenient interfaces to create and deploy machine learning solutions.

Key
- Native Oracle implementation
+ - Embedded R execution implementation
3p - Integrated third-party implementation
Note: documentation links are for Oracle Database algorithms
Technique Algorithm OML4SQL OML4R OML4Py ODMr OML4Spark
Classification Decision Tree
3p
Logistic Regression (GLM)
+
3p
Naive Bayes
 
Neural Network
Roadmap
 
Random Forest
+
 
Support Vector Machine
3p
Gradient Boosted Trees (XGBoost)
Database 21c
Roadmap Roadmap   3p
Explicit Semantic Analysis (ESA)
Roadmap
   
Regression Generalized Linear Model (GLM)
+
Linear Regression
+
3p
Neural Network
+
 
Ridge Regression
 
3p
Support Vector Machine
3p
Gradient Boosted Trees
Database 21c
Roadmap Roadmap   3p
Random Forest
Database 21c
Roadmap Roadmap   3p
LASSO         3p
Decision Tree         3p
Clustering Expectation Maximization (EM)
 
Gaussian Mixture Model (GMM)
3p
Hierarchical K-Means
3p
Orthogonal Partitioning (O-Cluster)
Roadmap  
Feature Extraction Explicit Semantic Analysis (ESA)
 
Non-Negative Matrix Factorization (NMF)
Roadmap
Principal Component Analysis (PCA)
+
3p
Singular Value Decomposition (SVD)
+
Low Rank Matrix Factorization        
Association Rules A Priori
 
Anomaly Detection One Class Support Vector Machine
 
MSET-SPRT
Database 21c
Roadmap Roadmap    
Attribute Importance Minimum Description Length
 
CUR Matrix Decomposition
Roadmap Roadmap    
Time Series Exponential Smoothing
+
Roadmap