No results found

Your search did not match any results.

We suggest you try the following to help find what you're looking for:

  • Check the spelling of your keyword search.
  • Use synonyms for the keyword you typed, for example, try “application” instead of “software.”
  • Try one of the popular searches shown below.
  • Start a new search.

 

Trending Questions

Oracle Machine Learning for R

Oracle Machine Learning for R

Oracle Machine Learning for R (OML4R) makes the open source R statistical programming language and environment ready for the enterprise and big data. Designed for problems involving both large and small volumes of data, OML4R integrates R with Oracle Database.

Get the Details

Machine Learning for R

Data scientists and broader R users can take advantage of the R ecosystem on data managed by Oracle Database. R provides a suite of software packages for data manipulation, graphics, statistical functions, and machine learning algorithms. Oracle Machine Learning for R extends R’s capabilities through three primary areas: transparent access and manipulation of database data from R, in-database machine learning algorithms, ease of deployment using embedded R execution.

Oracle Machine Learning also supports a "drag and drop" graphical user interface, Oracle Data Miner, that is integrated with Oracle SQL Developer and is capable of executing user-defined R functions as part of user-created analytics workflows.

 

Features Overview

 
  • Rapid development and deployment of R scripts that work on database data
  • Comprehensive in-database sampling, statistics, and data mining functionality invoked seamlessly using R
  • Data-parallel and task-parallel execution of R scripts using database spawned and managed R engines
  • Execution of R scripts through dynamic SQL invocation
  • Database R script repository and R object Datastore with user access privileges
  • Inclusion of R-based statistics and advanced analytics through Oracle Analytics Cloud, Oracle Data Visualization Desktop, and Oracle Business Intelligence dashboards

Key Business Benefits

 
  • Seamlessly leverage Oracle Database as a high performance compute environment for R scripts, providing data parallelism and resource management
  • Draw upon a wide range of scalable predictive analytics and machine learning algorithms
  • Avoid reinventing code to integrate R scripts and results into existing applications
  • Operationalize entire R scripts in production applications, thereby eliminating the porting of R code
  • Minimize data movement
  • Scale exploratory data analysis for big data
  • Use R packages contributed by the R community
  • Automatically leverage existing database backup and recovery mechanisms and procedures
  • Reach Hadoop data through Oracle Big Data SQL

Core Features

 

Transparency layer - Leverage R data.frame proxy objects so data remains as database tables and views. Overloaded R functions translate select R functionality to equivalent SQL functions for in-database processing, parallelism, scalability and security. Data scientists can use familiar R syntax to manipulate database data that remains in the database. Leverage the package OREdplyr, which provides overloaded functionality from the popular open source R dplyr package.

Machine Learning Algorithms - R users can take advantage of Oracle Machine Learning’s library of in-database, parallel algorithms using the R language. Users can specify machine learning models using the familiar R formula syntax.

Embedded R Execution - Manage and invoke R scripts in Oracle Database for data-parallel, task-parallel, and non-parallel execution, which may also use open source CRAN packages. When data scientists require techniques from the R ecosystem to satisfy unique requirements, they can leverage R ecosystem packages.

Additional Features

 

OAAgraph - For those interested in leveraging the powerful graph analytics present in Oracle Spatial and Graph, Oracle Machine Learning for R provides the package OAAgraph that eases working with both in-database machine learning algorithms and the Parallel Graph AnalytiX (PGX) engine. Prepare your data using R in Oracle Machine Learning for R, build models and score data to augment graph data and analysis, and compute graph metrics to augment data provided to in-database machine learning algorithms – all with the goal to boost model quality and graph analytics.

Integrated Text Mining - The in-database algorithms accept text columns from tables and views, and then automates term and theme extraction. The extracted data is combined with other predictors in building models and scoring data.

Partitioned Models - With in-database models, users can automatically create ensembles of models, where each component model is built on a user-specified partition of the data. Scoring is enabled and simplified using a single integrated model.

 

For a complete list of features and enhancements, see the product release notes in the documentation.

Trending in R
 
Get started with Oracle Machine Learning for R

Join the conversation about Oracle Machine Learning for R